Alaska Railload

Whitier Barge Liit

Operations \& Maintenance Manual

GNE Project \#14045

June 1, 2015

By: Randy Downing, Project Engineer

137 E Arctic Avenue, Suite 101
Palmer, Alaska 99645
(907) 745-6988
(907) 745-0591 FAX
gne@mtaonline.netEMAIL

Whittier Barge Lift Operations \& Maintenance Manual

Table of Contents

GNE \#14045
Rev 0
June 1, 2015
TITLE PAGE
Introduction 01
Safety Precautions 02
Recognizing Faulty Components or Improper Operation 03
Maintenance Schedule 04
Hydraulic Fluid 06
Hydraulic System Care 08
Hydraulic System Major Component Description and Operation 11

ATTACHMENTS

A. ARRC Whittier Barge Slip Control System
B. Control System Drawings L2
C. Mechanical System Construction Drawings (5-27-10)
D. Hydraulic System Schematic
E. AS-BUILT ARRC Whittier Dual Use Conversion (Civil \& Structural)
F. Hydraulic Reservoir System Capacity Calculation
G. Manufacturers Submittals and Individual O\&M Manuals

Introduction

This operation and maintenance program was written for the Whittier Barge Slip. The maintenance information is intended to provide inspection intervals based on the manufacturers listed recommendations and general hydraulic system knowledge. It is up to the Owner and operators of the facility to follow these suggested guidelines and to improve and modify as seen fit. The operations of the Whittier Barge Slip can be found in the Whittier Barge Slip Controls in subsequent sections. This section provides the operator with a step-by-step guideline on how the controls are intended to be used to operate the lift and further explain equipment operation.

Most hydraulic problems can be avoided if a Preventative Maintenance (PM) program is implemented and followed. This starts with an understanding of each of the hydraulic system components and operation. Some major failures cannot be avoided; however, preventative maintenance and routine inspections can prevent most of them. Over half of all hydraulic system problems have been identified by the oil. This is why sampling and testing of the fluid is one of the most important preventative maintenance measures that can be undertaken. Hydraulic systems that operate on coastal areas, especially with the severe climate conditions such as Whittier, minor problems can accelerate to major issues if they go unnoticed.

The following is a list of the most common causes of hydraulic system breakdowns:
A. Clogged or dirty filters.
B. Inadequate supply of oil in the reservoir.
C. Leaking seals.
D. Loose inlet lines that cause the pump to take in air.
E. Incorrect type of oil.
F. Excessive oil temperature.
G. Excessive oil pressure (due to defunct pressure relief system).

Most of these problems can be eliminated if a planned Preventative Maintenance program is implemented. This starts with a fluid testing program. Fluid testing with supportive documentation history will provide a reliable way to not only track the systems operating conditions, but in the event of a warranty claim the fluid tests will be necessary to have on hand. Three simple maintenance procedures have the greatest effect on hydraulic system performance, efficiency and life of the system.

1. Proper care for the hydraulic system fluid.
2. Changing of the high pressure filters and tank return filters.
3. Inspection and ensuring that all hydraulic fittings are tight, but not to the point of overextending the fittings, to prevent leaking or air entry into the system.
This manual will review these subject matters and provide a more in depth explanation on how to perform these basic tasks.

Safety Precautions

Hydraulic systems operate under very high pressures. Shut the system down and relieve system pressure before opening any part of the system that is under pressure. Do not allow spray from any high pressure leak to contact any part of the body, as serious injection injuries may result. Pumps, valves and motor may become hot; be cautious of incidental contact between bare skin and hot surfaces.

HIGH VOLTAGE

The system operates with 480 V three-phase, high voltage systems if not deenergized before servicing could cause death by electrocution. Shutdown lockout and tag out all electrical power equipment to avoid incident.

CRUSHING - PINCH POINTS

Use extreme caution and safety measures when performing maintenance on the barge lift system.

Review and adhere to all Manufacturers' written instructions.

Recognizing Faulty Components or Improper Operation

Not all preventative maintenance can prevent component failure. Most of the time just observing the equipment for things such as an abnormal sound (excessive noise), high or low operating pressure, an unfamiliar smell, or high operational temperatures can let you know a piece of equipment could be damaged.
A. Excessive noise generally means misalignment, wear, cavitation of the pump from air entering in the fluid. Pressure relief valves (or safety relief valves) can stick and chatter due to build up from contaminated hydraulic fluid. These noises may be the result of clogged filters, dirty fluid, high fluid viscosity, excessive drive speed, low reservoir level, loose hydraulic intake lines or worn pump driver couplings.
B. Above normal operational temperature can be an easy way to identify problems. An Infrared surface temperature gun is recommended to be used to check the system when it is operational to note the various temperatures of each working component. Since the two hydraulic systems are mirror images of themselves comparing two identical components is simplified to find the outlier.
C. Abnormal sound identification heavily relies on an operator who has been around the machinery long enough to detect sounds out of the ordinary. Sound recognition would lead to identifying a problematic component and further diagnosis sometimes is required to pinpoint the exact problem.

Maintenance Schedule

The following maintenance intervals are based on the assumption that Alaska Railroad will be providing the upkeep and maintenance on all parts and components. Although the time intervals are based on the equipment manufacturer's factory recommendations, most have been modified to ensure that items such as hydraulic fluid levels and equipment are checked at intervals that would promote maximum life expectancy of the hydraulic system. Many of the maintenance procedures may be performed more often than recommended in the following schedule. This owner-operator initiative is encouraged.

Before first daily start-up of the System

A. Ramp and Exterior Hydraulic Equipment

1. Visually check the cylinder, shear pins, valves and seals for abnormal conditions.
2. Visually check the ramp winch and coils. Ensure cabling is spooling correctly.
B. Pump Module Equipment
3. Check the Dessicant Air Breather on top of each day tank to determine if replacement of media is needed.
4. Visually inspect the level of the hydraulic fluid in the hydraulic tanks.
5. Check to see if there are any warnings or messages on the main controls display panel from the previous system operation.

Throughout the Weekly System Operations

A. Perform the 10 point check list specified under the Hydraulic System Care section.

Every 50 hours or 1 month of System Operation (Whichever Comes First)

1. Replace ALL Return and Supply Filters for the first 50 operating hours upon receiving new fluid in the system. See 100 hour interval for filter replacement during normal operations.
2. Lower Ramp to full down position, or a predetermined setpoint, measure and record the hydraulic fluid in each tank.
3. Check that the Float Valve Actuators (El-o-Matic) correctly opens and closes. See Major Component Description for additional information in regards to the Float Valve set points.
4. Clean external components such as the electric unit heater, electrical cabinets (cabinet fans and exhaust filters), hydraulic tank, motors and components using an air compressor. Areas of grime: use grease and oil cutting cleaning products.

Every $\mathbf{2 0 0}$ hours or $\mathbf{6}$ months of System Operation (Whichever Comes First)

1. Replace ALL Return and Supply Filters every 200 hours of operation.

Every 400 hours or 1-year of System Operation (Whichever Comes First)

1. Check the torque on the cylinder manifold bolts to $750+/-50$ in-lbf using a calibrated torque wrench.
2. Check the torque of the valves and ancillary equipment attached to the cylinder manifold per the manufacturer's written instructions.
3. Send hydraulic samples to certified testing lab for analysis ${ }^{1}$.
4. Clean lubricate and/or grease moving components on barge ramp.
5. Verify EMERGENCY STOP feature works on Controls System Panel.

Every 3 years of Operation

1. Test the tank level appurtenances, immersion heater, switch controls, and temperature switches for correct operation of the unit and the warnings display on the PLC system's status screen signal as required per the ARRC Whittier Barge Slip Control System section see Attachment A.

Every 5 years of Operation

1. At extreme low water level (minus (-) 5 feet) verify that the bottom of the cylinder seat is in good operable condition, no cracks or damage to the cylinder bearing surface. (Note if the cylinder has operated in the pocket or places of unusual wear.)
2. Visually examine the winch and wire rope and wire rope connections for damage or excessive wear. Repair or replace accordingly.
3. Bench test the pressure relief valves (1VPC1, 1VPC2, 2VPC1, 2VPC2).
4. Field test the counterbalance valves for proper operation (1VL1, 1VL2).
5. Perform leak test of the piping system at the working pressure $(1,500 \mathrm{psig})$ to the hydraulic piping, hoses, etc. external of the connex ${ }^{2}$.

Note 1: The hydraulic fluid manufacturer, PANOLIN, will provide hydraulic fluid sample kits upon request. Contact Jared Mikacich, Sales and Marketing Manager, 805-320-1751 (Cell), email jared@panolinamerica.com these kits will include instructions on sampling and pre-addressed labels for shipment to the nearest testing lab.

Note 2: Leak Test. Pressurize the system to operating pressure with the pumping system. Isolate the piping external to the connex and monitor the pressure over an hour period. Pressure swings may vary over the period of the test from ambient conditions. Note any decreasing pressure at an increasing rate is indicative of a leak. Replace any fittings, hoses, and components of equal design.

Hydraulic Fluid

The hydraulic fluid currently used in the Whittier Barge Slip hydraulic system is Panolin HLP SYNTH 22, Product Number 35030. This fluid is a bio-hydraulic fluid that is considered to be environmentally friendly and can be decomposed by micro-organisms in water and/or soil without residues. The hydraulic fluid is well suited for this application with a low temperature pour point of $-72^{\circ} \mathrm{F}$. See the manufacturer’s datasheet for additional information in regards to this product.

On systems where the possibility of water contamination cannot be completely ruled out (also condensation), it should be ensured via the hydraulic system circuit that fluid aging products are not accumulating in individual areas of the hydraulic system, but are being removed from the system in a controlled manner via the filtration system.

Upon refilling a system, please note that the required minimum cleanliness level needs to be attained. Due to severe start-up contamination, it may be possible that a fluid and/or filter, replacement becomes necessary after a short operating period (<50 operating hours). The hydraulic fluid must be replaced at regular intervals and tested by the lubricant manufacturer or recognized accredited test labs. It is recommended to test the fluid after the system has been refilled and operated after the 50 hours filter replacement period. The minimum data analysis typically tested for and reported on are:

- Viscosity at $40^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$
- Neutralization number NN (acid number AN)
- Water content (Karl-Fischer method)
- Particle measurement with evaluation according to ISO 4406 or mass of solid foreign substances with evaluation to EN 12662
- Element analysis (RFA (EDX) / ICP, specify test method)
- Comparison with new product or available trend analyses
- Assessment/evaluation for further use
- Also recommended: IR spectrum

The evaluation report conducted by a certified test lab should provide the recommendations for hydraulic fluid treatment and or replacement. The report should prescribe immediate action to take place, necessary doping additives or require additional testing. The Panolin sample kit instructions are provided along with the hydraulic fluid manufacturers' warnings and instructions for use.

Mixing of Fluids

If hydraulic fluids from different manufacturers or even different types of fluid from the same manufacturer are mixed, gelling, silting and deposits may occur. These, in turn, may cause foaming, impaired air separation ability, malfunctions and damage to the hydraulic system. If the fluid contains more than 2% of another fluid then it is considered to be a mixture. Exceptions apply for water. Mixing with other hydraulic fluids is not advisable. If other hydraulic liquid manufacturers advertise miscibility and/or compatibility with Panolin, this is
entirely the responsibility of the lubricant manufacturer. The hydraulic fluid is advertised to provide lifetime filling with no oil changes required as long as the rest of the system is looked after.

Hydraulic System Care

Background

Hydraulic machines power the moving parts of many kinds of industrial machines by applying the force of a fluid under pressure. Some systems are very small, simple and straight-forward to very large, high pressure systems with a complex array of servo valves and pumps. Proper maintenance of any sized hydraulic system and the hydraulic oil is critical in maximizing uptime and reducing overall repair costs.

Hydraulic Fluid Care

Hydraulic fluid can be thought of as the blood of the hydraulic system. The hydraulic fluid transmits pressure and energy, seals close-clearance parts against leakage, minimizes wear, tear and friction, removes heat, flushes away dirt and particles, and protects surfaces against rusting. Four key objectives essential to gaining optimum service life of hydraulic fluids and are referenced below.

A. Control the Temperature

Heat develops in the fluid as it is forced through the pumps, motor tubing, and relief valves. In conventional systems, excessive temperatures will oxidize the oil and can lead to varnish and sludge deposits in the system. Conversely, running the temperature too low will allow condensation in the reservoir and increase the likelihood of pump cavitation. Typical industrial hydraulic system temperatures often range between $110^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F}$. Become familiar and know the typical operating temperatures throughout the season. Remember to always warm up the system and keep the system operating above $32^{\circ} \mathrm{F}$. Deposits caused by oil degradation can plug valves, suction screens and cause directional control valves or pressure relief valves to seize and/or operate sluggishly. Allow heat to radiate from the system, keep the outside of the reservoir clean and the surrounding area clear of obstructions. It is recommended that all equipment (including the PLC and electrical controls cabinets) be blown down monthly with dry compressed air. Residual hydraulic fluid, grease and grime build-ups on surfaces should be cleaned with a suitable degreaser-cleaner solution like simple green. The hydraulic tanks should be filled to the proper level to allow enough fluid residence time for the heat to dissipate and to shed water and deposits. In some cases oil degradation can be even more damaging.

B. Keep a Clean Hydraulic System

Hydraulic systems should be cleaned periodically. This is to prevent contaminants such as dirt, water, cutting fluids, and metal particles from entering the system around the reservoir cover, openings for suction and drain lines, through breather fill openings, and through leaks in pump suction lines. Most of the critical hydraulic components reside in a heated and ventilated connex. Dust and wind-blown debris however can still get within the control systems cabinets, communications gear and hydraulic equipment.

C. Keep the Hydraulic Fluid Clean

Keeping hydraulic fluids clean begins with good storage and handling practices. To prevent contamination before use, store new fluid in a protected area and dispense it in clean dedicated containers. Clean the fill cap before removing it from the hydraulic tanks
to add hydraulic fluid. Change filters on a routine basis. These filters are often forgotten and go into bypass mode from clogged filters, thus allowing dirty oil to circulate, and potentially self-destruction of the filter element. Inspect fluid filters frequently and change or clean them before they go into bypass mode. Drain a gallon of fluid from the bottom of the hydraulic tank and let settle to see if water has collected in the system at the minimum annually. Systems should be filtered long enough to pass the total volume of oil through the filter at least 10 times or (15 minutes of ramp operation). Portable filters should be used when transferring new oil from drums or storage tank to the system.

D. Keep an Oil Analysis Program

Manufacturers typically require that system hydraulic oil be drained and replaced annually; However, with an effective oil analysis program, that might not be required since the Panolin fluid is advertised to provide a lifetime filling if the system is maintained correctly. Testing the hydraulic fluid will provide insight to the fluid condition but at the same time provide an early warning detection of possible mechanical problems. At minimum, test the two hydraulic systems at least annually by oil analysis.

Fluid Change-Out Recommendations

These are the proper steps to follow when changing the hydraulic fluid in a system if required by the testing lab.

1. Drain the system while the fluid is hot to keep contaminants in suspension.
2. Empty fluid from cylinders, as much as possible by lowering the ramp, and lines that might not drain properly.
3. Mop, siphon, or pump out residual oil left in the tanks.
4. Wipe reservoir clean, as much as possible, with lint free rags.
5. Replace or clean filter elements and strainers and clean filter housings.
6. Refill the system with new fluid making sure to vent high points.
7. Restart and check system for proper operation.
For systems that exhibit high deposit, sludge and/or varnish formation: a petroleum based cleaner may be required. Follow manufacturers recommendations and instructions.

Hydraulic System Preventative Maintenance - A 10 Point Check

Hydraulic system maintenance is just as important, and directly related to, hydraulic oil maintenance. All the filtering and analysis done on a hydraulic oil, would be pointless if the system itself is in various states of disrepair. A 10 Point Check conducted by the technician or operator responsible for hydraulic system maintenance should, at minimum, perform the following 10 point checklist as part of a routine weekly scan of the hydraulic system:

1. Check fluid levels. Add oil (if needed). Do not mix different hydraulic oils. Use Panolin HLP SYNTH 22 only.
2. Inspect tank breather filters.
3. Check filter indicators and/or pressure differential gages.
4. Visually inspect all system hoses, pipes, pipe connections for leaks and frays. Hydraulic fluid leakage is a common problem. Excessive leakage is an
environmental and safety hazard, increases waste streams and oil consumption, and, if ignored, can reduce the system capacity enough to overheat the system.
5. Check system temperature via built-in thermometers or hand-held infrared detectors. Normal temperature range for most systems is 110-140 degrees Fahrenheit. If temperatures are high, check immersion heater operation and relief valve settings.
6. Visually inspect the inside of the tank/reservoir for signs of aeration (look through the fill hole using a flashlight). Aeration is a condition in which discrete bubbles of air are carried along in the stream of oil as it enters the pump. Visual signs of aeration in the reservoir are generally foaming and/or little whirlpools taking small gulps of air into the suction strainer. Causes of aeration include: low fluid levels; air leaks in the suction line; low fluid temperature; fluid is too viscous to release air or maintain suction at the pump; or faulty shaft seals. When air leaks are suspected on the suction line, smothering these points with oil will usually pinpoint the leaks by creating a marked change in pump noise. A pump ingesting air sounds as if it were gargling marbles.
7. Listen to the pump for the signs of cavitation. Cavitation is slightly more complicated than aeration, but bares some similarities. Cavitation can occur due to entrained air bubbles in the hydraulic fluid or vaporization of the hydraulic fluid. This occurs when pump suction lift is excessive and the pump inlet pressure falls below the vapor pressure of the fluid (usually about 5 psia suction). As a result, air or vapor bubbles, which form in the low-pressure inlet region of the pump, are collapsed when they reach the high-pressure discharge region. This produces high fluid velocity and impact forces, which can erode the metallic components and shorten pump life. A cavitating pump will emit a high-pitched whine or scream. Foaming in the reservoir is usually the telltale sign of aeration.
8. Inspect a small sample of fluid for color, signs of contamination and odor. Keep in mind that visual inspection is limited in that it will only detect signs of excess contamination.
9. Scan electrically controlled servo valves, electric actuators with an infrared thermometer. High valve and solenoid temperatures (over $150^{\circ} \mathrm{F}$) usually indicate the valve is sticking.
10. Scan the electric drive motor with for housing hot spots and rotor bearing temperatures using an infrared thermometer.

Hydraulic System Major Component Description and Operation

This section overviews the hydraulic system components and their basic function. By reviewing this section, the reader will attain knowledge of basic hydraulic system design, function, and use of each component. By understanding each system components function the operator will be able to diagnose the problem and solutions to the problem quicker and easier. It is important to keep in mind that if every system component operates as intended the barge lift has no choice but to work correctly.

The ramp lift utilizes two independent hydraulic power systems that are identical in design. Under normal operating conditions the two systems are separated hydraulically by isolation valves (see Figure 1 and 2 - Hydraulic System Isolation Valves). The hydraulic system is designed to, if the need should arise, to operate the barge ramp with one hydraulic power unit. This would be necessary in the event that one pump system was down for maintenance or failed during operation. A single reservoir is provided with enough fluid to operate the two. The valves do require manual operation in order to direct flow to the appropriate cylinder.

The major hydraulic systems schematics are referenced from drawing M4.01 PND and Hartford Engineers designed for this package. This drawing package is included with this manual as Attachment C-Mechanical System Construction Drawings.

Supply/Return from Power Unit 1.

Figure 1 - Hydraulic System Isolation Valves Schematic

Figure 2 - Hydraulic System Isolation Valves Photograph

PUMP AND PRESSURE FILTER COMPONENTS FUNCTIONAL DESCRIPTION

Figure 3 - Pump and Pressure Filter Schematic

Hydraulic Pump - 1PG1 and 1PG2 - Bucher QX Series

Two (100HP) positive displacement gear pumps provide the hydraulic power to lift the barge ramp. These pumps are operated with a variable frequency drive (VFD) that allows the pumps rpm's to be controlled (see Figure 3 - Pump and Pressure Filter Schematic below). Since the pump is a positive displacement pump an increase in RPM translates to a proportional increase in flow which ultimately controls the ramp tip speed. The ramp tip speed ranges from 6 to 18 feet per minute ${ }^{1}$ (see Table-01 - Ramp Tip Speed).

SPEED DESCRIPTION	RAMP TIP SPEED (ft/m)	MOTOR SPEED (RPM)	FLOW $(G P M)$
FAST UP	18	1740	92
SLOW UP	6	580	31
FAST DOWN	18	627	33
SLOW DOWN	6	209	11

Table-01 Ramp Tip Speed

Pump Specific Maintenance

To guarantee the reliable operation and a long service life of the pump the permissible operating conditions of the pump must be adhered to over the period of use. In particular, compliance with the following operating parameters must be ensured:

- Required oil cleanliness
- Operating temperature range
- Fluid level in the tank/ reservoir

Moreover, the pump and the system must be inspected at regular intervals for changes in the following parameters:

- Vibration
- Noise
- Differential temperature of pump - fluid in the tank
- Foaming in the tank
- Leak tightness

Changes in these parameters indicate wear of components (e.g. drive motor, coupling, pump, etc.). The cause must be immediately pinpointed and eliminated. To provide high operational reliability of the pump in the machine or system, GNE recommends continuous, automatic checks of the above parameters and an automatic shutdown in the case of changes that exceed the usual fluctuations within the provided operating range per Table-01.

Filter - High Pressure Filter - 1FP1 and 1FP2 - Stauff

The high pressure filter assembly depicts an adjustable differential pressure switch with a visual high differential pressure (DP) indicator. There does not appear to be a high differential pressure valve bypass specified or ordered with this filter vessel. If a high differential pressure event goes unnoticed the filter element has a chance to fall apart or self-destruct and filter media will contaminate the hydraulic fluid and systems. See Whittier ARRC Barge Slip Controls in Attachment A for additional automation controls and specific equipment sequence of events.

DIRECTIONAL CONTROL VALVE AND PRV COMPONENTS FUNCTIONAL DESCRIPTION

Figure 4 - Directional Control Valve Schematic

Directional Control Valves, 1VD1 and 1VD2, Yuken

As the name implies, directional control valves are used to control the direction of flow in a hydraulic circuit. The directional control valve depicted in Figure 4 - Directional Control Valve Schematic below is a solenoid operated pilot valve and a pilot operated slave valve. The principal of operation is that when a solenoid is energized the pilot valve directs the flow to move the spool of the slave valve, thus changing the direction of flow in the hydraulic circuit to extend or retracts the cylinder. Whenever the solenoids are de-energized the valve returns via springs to the center "neutral" position. All solenoids, like a light bulb, typically have a maximum life expectancy (lifespan typically ranges from 500,000 to 1 million uses). Solenoids should be inspected for correct operation if unit is faulty before replacement. Refer to the manufacturers written instructions for proper testing.

Adjustable Pressure Relief Valves, 1VPC1 and 1VPC2, Sun Hydraulics

Pressure relief valves are typically set at the maximum allowable working pressure (MAWP) which for this system is 3,000 psig. These valve's operation are critical to relieve the pump pressure when the system is in a neutral state, i.e., when the ramp is neither being lifted nor lowered. If this valve did not relieve pressure, the pump would continue to build pressure up to dangerous levels and a fitting would most likely fail. This pressure relief valve should be bench tested periodically in order to ensure that it is operating at the correct pressure. Failure to hold pressure indicates that the seat of the pressure relief valve may have become fouled or worn and is in need of replacement.

Figure 5 - Cylinder and Cylinder Manifold Schematic

Ramp Cylinders 1CH1 and 1CH2, Hunger Hydraulik

The Barge Lift ramp cylinders utilize a machined manifold attached to the rod end of the cylinder. The float valves, recirculation valves and pressure relief valves all are bolted to this manifold. Throughout the operational season of ambient temperature swings and warmup and cool down periods steel expands and contracts. This will tend to loosen bolted connections. Apart from monitoring for leaks around gaskets, joints and seals the devices attached to the manifold, and the manifold itself should be re-torqued as necessary to the manufacturer's recommendations. The lift cylinders have been provided with specialized coatings that will prevent corrosion from salt water and adverse conditions. The bearings that are set within the eye of the rod are not expected to require maintenance nor should they need to be replaced for the lifespan of the cylinder. There is approximately 150 gallons of hydraulic fluid in each cylinder when it is retracted and 250 gallons of fluid when the cylinder is fully extended that is not recirculated during the warmup cycle (see circulation valves).

Counterbalance Valve - 1VL1 and 1VL2 - Sun Hydraulics

A counterbalance valve (CBV) is a final pressure control device. The purpose of the CBV is to maintain control of the barge lift cylinder to prevent it from descending due to the weight of the ramp and load it is carrying. The primary port of this valve is connected to the bottom of the cylinder, and the secondary port is connected to the directional control valve (DCV) mentioned in previous sections. When pump flow is directed (via the DCV) to the CBV to the top of the cylinder under extension, an integral check valve opens allowing free flow to extend and lift the barge ramp. During retraction the CBV acts like a pressure relief valve and is set to relieve somewhat higher than is necessary to prevent the cylinder load from falling due to its weight. Upon lowering the ramp the DCV routes fluid to the annulus area creating backpressure against the CBV. This causes pressure at the primary port to increase to a value above the pressure
setting of the CBV and thus raise the spool of the CBV. This opens a flow path through the CBV for discharge the secondary port to the DCV and back to the tank. Typically the retracting of the cylinder due to the CBV is not seamless meaning there is a slight delay in order to build up pressure. The valve is typically set to 1.3 times the working pressure $(1,500$ psig*1.3) = 2,000 psig. The CBV does not require bench testing since they are field adjusted. The valves should be adjusted if the ramps start to settle when the system is static.

Circulation Valves - VPP1, VPP2, VPP3, and VPP4 - Sun Hydraulics

The circulation valves are normally closed and are only operational during the warmup cycle. The valves are energized opened by a solenoid and spring return closed when de-energized. Both valves do not operate simultaneously. One valve will open for the first half of the warmup cycle followed by second valve operating for the last half in order to warm the system. The circulation valve is rated for a flow capacity of 4 gpm . Approximately 20 gallons of fluid resides just in the hydraulic hoses extending to the ramp resulting in 5 minutes needed per volume change. The warm up period should be programmed to provide a hydraulic fluid temperature over 32° F. The start-up period is adjustable. Please see the ARRC Whittier Barge Slip Control System for further information. It is important to note that the hydraulic fluid in the cylinder is not being circulated during the warm-up cycle. Upon lifting and lowering the ramp cold fluid will return to the hydraulic reservoir. This is unavoidable and it is not feasible to try and warm an entire cylinder that is exposed to the elements. Care should be taken to monitor the reservoir temperature during operations.

Float Valves - 3VM1, 3VM2, 3VM3, and 3VM4 - Stauff Ball Valve

The float valves are normally closed and only operate to the open position when the ramp is desired to track with a barge. Both valves open to transfer the weight of the ramp to the barge. The valve actuators are El-0-Matic (refer to the manufacturers Owner’s Manual) and electrically driven to open and close with limit switches. The manufacturer recommends that these limit switch set-points are manually checked routinely. The following is from the El-o-Matic Actuators Operation and Maintenance Manual included in this manual. The actuator utilizes limit switches in order to provide feedback that the valve is in the correct position. The manufacturer recommends checking the position of the limit switches every month of operation to ensure that the valves open and close correctly. Please refer to the manufacturer's operators manual for further information on the procedure for correct maintenance of the actuators.

Return Filter - 1FR1 and 1FR2, Stauff

The return pressure filter assembly depicts an adjustable differential pressure switch and bypass check valve. The Bypass check valve built into the unit is an integral spring loaded check valve. This valve is set to allow fluid to bypass around the filter if the filter media is plugged. If this plugged filter event goes unnoticed the filter element has a chance to fall apart and filter media or unfiltered oil will contaminate the hydraulic fluid. The filter should be replaced in accordance with the recommended maintenance intervals.

HYRAULIC TANK AND TANK COMPONENTS FUNCTIONAL DESCRIPTION

Figure 6 - Hydraulic Tank and Return Filter Schematic

Hydraulic Tank - 1R1 and 1R2, 300 Gallon

The hydraulic tank (or reservoir) is welded stainless steel construction. No shop drawings are made available for inclusion to this manual. From the schematic the tank comprises of various appurtenances designed for safe operations (refer to the Barge Slip Master Operations Manual, Section 11 - Safety for further information). This includes but not limited to high and low level switches to warn the operators upon nearing unsafe operating conditions, Temperature switches to alert the operators of unsafe operating conditions, an immersion tank heater combined with a temperature transducer to regulate the heat in the reservoir and a clear tube visual level gauge to monitor the fluid levels. The water draw off connection should be used to sample the lower portion of the tank in order to determine if water is present. If this access fitting does not extend down to the lower portion of the tank, sample the fluid using the drain nozzle of the tank labeled 5VM1 and 5VM2. Bottom sampling should be checked routinely in accordance with the maintenance intervals. Samples should be allowed to settle and separate for 45 minutes in a clear glass container before determining if water is or is not present. Depending on the fluid condition the sampled portion can be put back into the system if clean or legally disposed of if contaminated.

Tank Vent - 1FB1 and 1FB2, Stauff

The tank vent is provided with a water vapor absorbent and particulate filter media to prevent moisture buildup and contaminants from entering the tank. The filter is provided with a visual replacement media replacement indicator as well as the filter media changes color to indicate replacement is needed. Replace the media as needed in accordance with the manufacturer's instructions.

Tank Heater - 1HTR1 and 1HTR2, Watlow

The tank immersion heater is rated at 5 kW of heating capacity. The heating element should be inspected and cleaned every time the fluid is drained from the tank. This will promote the maximum life expectancy and increase the efficiency of the unit.

Level Switch - 1LTS1 and 1LTS2, Stauff

The Level Switch is a combination temperature switch and a liquid level switch. The temperature switch actuates upon reaching a temperature setpoint of $140^{\circ} \mathrm{F}$. The Level switches are set to alarm at a high level point and low level point. High or low liquid level event will shut down the hydraulic system if it goes unnoticed. (See Barge Slip Master Operations Manual Section 11 - Safety for further information.) The level switches should be manually tested for operation.

Adjustable Temperature Switch - 1TSN1 and 1TSN2, Barksdale

The temperature switches are adjustable from a range of $+15^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$. Verify and record the temperature switch set points.

Hydraulic fittings and hoses should be inspected with caution. Visually Inspect the hydraulic lines by looking for bubbles or cracks in the hoses. Cracks may not be a compromise in the integrity of the hydraulic hose since hydraulic hoses are typically encapsulated in a protective rubber cover that is not a pressure component. Do not place your hand near an area that is suspect of a leak. Use a piece of cardboard or use something other than your hand to prevent injury. High pressure hydraulic lines can cut directly through skin and garments. Always wear personal protective equipment when near or around equipment.

Attachment A

ARRC Whittier Barge Slip Control System

ARRC Whittier Barge Slip Control System

Table of Contents

1) DEFINITIONS 2
2) OVERVIEW 2
3) MCP - MAIN CONTROL PANEL 4
4) OCC-OPERATOR CONTROL CONSOLE 4
5) OCI - OPERATOR CAB INTERFACE 5
6) WSP-WINCH STARTER PANEL 5
7) SRS - SLIP REMOTE STATION 5
8) RE-CIRCULATION (Warm UP) 6
9) OPERATION 7
10) RADIO CONTROL 12
11) SAFETY 17
12) POWER SYSTEMS 18
13) PLC CONTROLLER 20
14) LED SIGN 21
15) SYSTEM STARTUP \& SHUTDOWN 22
16) REMOTE ACCESS 23
17) PaneIView DISPLAYS 23
18) MAINTENANCE 46
19) ALARMS 47
20) TABLE OF ALARMS 48

1) DEFINITIONS

1.1) PLC - Programmable Logic Controller
1.2) PanelView - Operator interface panel, graphics, selectors, alarms, touch screen
1.3) ATS - Automatic Transfer Switch
1.4) FWD - Forward
1.5) REV - Reverse
1.6) LCP - Lighting Control Panel
1.7) VFD - Variable Frequency Drive
1.8) I/O - Inputs and Outputs

2) OVERVIEW

2.1) The Dual Use Barge Slip located at Whittier Alaska is comprised of a moveable Ramp, Operator Cab, Block Building, and Blue Building. The Ramp is raised and lowered with hydraulic systems controlled by a PLC. Ramp operators can use either the Operator Console or remote control via a radio transmitter/receiver system. Once the Ramp is placed onto the Barge the hydraulic system is placed into a "COAST" mode that will allow the Slip to follow the movements of the Barge during the off loading. As tide elevations and Barge ballasting change the Slip will follow these changes.
2.1.1) Conex - This is a 30 foot shipping container converted to house the two hydraulic power units and the MCP - Main Control Panel, 480 VAC power distributions for the HPUs and 120 VAC for the Control system.
2.1.2) Controls Stations
2.1.2.1) MCP - Main Control Panel, located in the Conex the MCP houses the PLC, VFDs, Power distribution for the Conex, PanelView display for operational information, and E-STOP button
2.1.2.2) OCC - Operator Console, located in the Operator Cab on the Barge Slip is a central location for all operations for the Barge Slip control system, PanelView display for operational information, and E-STOP button
2.1.2.3) SRS - Slip Remote Station, located off to the side of the Slip Ramp this panel provides a PanelView terminal, E-STOP button, Alarm silence, and reset
2.1.3) Field Remote Panels
2.1.3.1) WSP - Winch Starter Panel, located in the "Blue Winch Shack" contains the starters for all of the Mooring Winches
2.1.3.2) OCl - Operator Cab Interface - This panel is also located in the Operator Cab on the Barge Slip. This panel provides an interface for the remote Radio Control system and the PLC control system. Alarm lights and horns are connected here as well as interface for the LED sign
2.1.4) Hydraulic systems
2.1.4.1) HPU1 (In-Board, land side of Barge Slip)
2.1.4.1.1) Hydraulic oil reservoir, pump and electric motor
2.1.4.1.2) Hydraulic cylinder
2.1.4.1.3) Coast ball valves
2.1.4.1.4) Re-circulation valves
2.1.4.1.5) Raise / Lower solenoid valves
2.1.4.2) HPU2 (Out-Board, water side of Barge Slip)
2.1.4.2.1) Hydraulic oil reservoir, pump and electric motor
2.1.4.2.2) Hydraulic cylinder
2.1.4.2.3) Coast ball valves
2.1.4.2.4) Re-circulation valves
2.1.4.2.5) Raise / Lower solenoid valves

3) MCP - MAIN CONTROL PANEL

3.1) The Main Control Panel is located in the Conex hydraulic container and houses the following equipment:
3.1.1) Main PLC controller, PanelView operator interface, E-STOP, Alarm silence and reset buttons
3.1.2) UPS systems for PLC Backup power
3.1.3) Hydraulic motor VFD, and line filters
3.1.4) Circuit breakers, terminals, fuses for control systems
3.2) The MCP is a constructed with mild steel and carries a NEMA 12 rating. The Enclosure had a lockable disconnect switch that must be in the OFF position to gain access to the inside. The right had door must be opened to allow access to the left hand door.
3.3) The MCP has a circulating fan to assist in circulating air through the enclosure. There is a thermostat installed on the back panel to start and stop the circulating fan. This thermostat should be set at 80° the fan and exhaust grills have removable filters for air filtration.
3.4) The MCP has an alarm buzzer and alarm light mounted on the door of the enclosure. These will provide alarm notification to the Operator. There is also alarm silence and alarm reset buttons to allow the Operator to silence and reset alarms that occur.

4) OCC-OPERATOR CONTROL CONSOLE

4.1) The Operator Control Console is located in the Operator Cab on the Slip platform and contains all of the controls necessary to operate the Barge Slip control system
4.2) The Console is mounted on a pedestal in the forward part of the Cab to view out the windows. The Console is made of Stainless Steel and has a NEMA 4X rating
4.3) The Console has controls for the following:
4.3.1) E-STOP, Alarm silence and reset
4.3.2) System Enable keyed selector switch
4.3.3) Ramp UP / DOWN Joystick controller
4.3.4) Mooring Winches 1 thru 4, In-Board, and Out-Board
4.3.5) Control Mode keyed selector switch
4.3.6) Operation Mode illuminated selector switch
4.3.7) PanelView Operator interface panel
4.4) The Console houses a remote PLC I/O drop for digital, analog inputs
4.5) Ethernet communications and Ethernet switch for PLC and PanelView communications back to the MCP

5) OCI - OPERATOR CAB INTERFACE

5.1) The Operator Cab Interface panel is located in the Operator Cab and is used to provide a method to interface the radio receiver with the PLC control system as well as communications to the LED sign and Control Console
5.2) The OCI panel is mounted on the wall and is made of Steel and has a NEMA 12 rating
5.3) The OCl houses a remote PLC I/O drop for digital inputs and outputs
5.4) Ethernet communications and Ethernet switch for PLC, LED sign, and Control Console back to the MCP
5.5) Circuit breakers and 120 VAC power distribution to the OCC and LED sign

6) WSP-WINCH STARTER PANEL

6.1) The Winch Start Panel is located in the "Blue Building" next to the Slip platform and contains the controls necessary to operate the Mooring Winches
6.2) The enclosure is NEMA 12 Rated
6.3) The panel houses a remote PLC I/O drop for digital inputs and outputs
6.4) Ethernet communications and Ethernet switch for PLC communications back to the MCP
6.5) 480 VAC power distribution for the Mooring Winch starters
6.5.1) Forward and reverse motor starters for each Winch
6.5.2) Each motor starter has a Motor Circuit Protector to prevent motor overload conditions.

Each motor circuit protector has the ability to manually turn OFF the power to the motor and place a locking device on the operator
6.5.3) Remote reset capabilities for each Winch, in the unlikely event the Winch motor causes an overload and trips the overcurrent motor protector the PLC can remotely reset the overload.

7) SRS - SLIP REMOTE STATION

7.1) The Slip Remote Station is located at the end of the Ramp
7.2) The SRS is made of Stainless Steel and has a NEMA 4X rating with a Lexan view window on the front door for easy reading of the PanelView display
7.3) The SRS has controls for the following:
7.3.1) E-STOP, Alarm silence and reset
7.3.2) PanelView Operator interface panel
7.4) Ethernet communications and Ethernet switch for PLC and PanelView communications back to the MCP
7.5) The panel has a 100 W heater with integral fan and thermostat (set at 40°) to help maintain the environment inside of the enclosure

8) RE-CIRCULATION (Warm UP)

8.1) Re-Circulation "Warm UP" is used to circulate warm hydraulic fluid through the hydraulic components prior to operation. This will allow the hydraulic system to operate at designed parameters.
8.2) When the hydraulic system has not run in the past 30 minutes or is first started the hydraulic oil should be re-circulated from the hydraulic pump out to the cylinder and back to the reservoir. This will help stabilize the temperature of the oil and provide more consistent operation of the Ramp cylinders

NOTE: The re-circulation process can be initiated when in either the "OPERATE" or "COAST" modes

NOTE: When a Ramp movement is desired the Operator would first initiate the "WARM UP" process, this requirement is a permissive to allow operation but if the Operator needs to operate the Ramp immediately there is an override feature that will allow operation without warm up
8.3) Pre-requisites
8.3.1) System Enabled
8.3.2) Alarms Reset and Cleared
8.4) Control Mode $=$ LOCAL or REMOTE
8.4.1) Using the PanelView display select "WARM UP"
8.4.2) PLC will energize 1VD1, and 1VD2 raise solenoids
8.4.3) PLC will energize, 1VPP1, and 1VPP4 recirculation valves
8.4.4) PLC will start both pumps at re-circulation speed

NOTE: The PLC will continuously monitor the Ramp angles to ensure no movement is occurring, and stop the pumps if any movement occurs and activate the alarm system

NOTE: The PLC will continuously monitor the system pressures to ensure that at no time pressure is greater than 800 PSI (or current set-point)
8.4.5) After a pre-determined amount of time, approximately $1 / 2$ of the total warm-up cycle time the PLC will switch the re-circulation valves to warm up the rest of the hydraulic system
8.4.6) PLC will energize, 1VPP2 and 1VPP3 re-circulation valves
8.4.7) PLC will de-energize, 1VPP1, and 1VPP4 re-circulation valves
8.4.8) At the end of the re-circulation "WARM UP" period the PLC will stop both pumps
8.4.9) After the pumps have stopped, the PLC will de-energize the 1VD1, and 1VD2 raise solenoids, and 1VPP2 and 1VPP3 re-circulation valves
8.4.10) The re-circulation "WARM UP" is complete

9) OPERATION

9.1) The Barge Slip control system has two modes for control, LOCAL or REMOTE and two modes of operation OPERATE or COAST.
9.2) The Control Mode is selected at the Operator Control Console with a keyed selector switch. LOCAL mode is when the Operator will use the Control Console selector switches and PanelView to operate the Barge Slip systems. REMOTE mode is when the Operator will use the radio control system to operate the Barge Slip systems.
9.3) The modes are selected but not completed until all of the coast ball valves are either fully open for COAST mode or fully closed for OPERATE mode.
9.3.1) COAST mode is when the coast ball valves located at the hydraulic cylinders are fully open allowing hydraulic fluid to flow in and out of the cylinders as the Ramp changes position due to tidal or Barge movements.
9.3.2) OPEARTE mode is when all of the coast ball valves are fully closed, this allows the hydraulic system to raise or lower the Ramp.

9.4)

MODE SELECTION

9.4.1) Selection process from one mode to another mode involves a two-step process, the first is to "request a mode change" the second is to change the ball valve position and complete the mode change. When the control system is configured for OPERATE all four of the coast ball valves are closed. When the control system is configured for COAST mode all four of the coast ball valves are opened.
9.4.2) OPERATE to COAST
9.4.2.1) Pre-Requisites
9.4.2.1.1) System Enabled
9.4.2.1.2) Warm Up sequence is complete or overridden
9.4.2.1.3) Alarms Reset and Cleared
9.4.2.2) LOCAL - Control Console
9.4.2.2.1) Place the Mode switch into the "COAST" position, the mode switch will light up. The PanelView will display the Operation Mode status change from red "OPERATE" to blinking yellow "REQUEST COAST", this is an indicator that the system is waiting for the Operator to lower the Ramp and transfer the weight onto the Barge.
9.4.2.2.2) The PLC monitors the pressure in the hydraulic system and becomes a permissive to allow the mode change to COAST. The less pressure in the hydraulic system indicates that more weight is transferred onto the Barge.
9.4.2.2.3) The Operator will lower the Ramp onto the Barge and the instant the pressure drops in the hydraulic system to less than the set point the ball valves will begin to open, this process will take approximately $5-10$ seconds to complete but as soon as any one valve for each cylinder is "cracked open" the pressure quickly drops in that cylinder and the remaining weight is transferred onto the Barge, allowing the Ramp to track the Barge movements.
9.4.2.2.4) The individual ball valve status will change from red "OPERATE" to blinking yellow "MOVING" this indicates the valves are not open or closed (somewhere in between), as the valves complete their movement to the opened position the valve status will change from blinking "MOVING" to green "COAST" when all four ball valves are opened the Operation Mode will change to green "COAST"
9.4.2.2.5) The GREEN light located on the Operator cab will activate

REMOTE - Radio
9.4.2.3.1) Enable the radio systems (See the RADIO CONTROL section)
9.4.2.3.2) The selector switches " B " and " C " are placed into the " B " (right) position. The PanelView will display the Operation Mode status change from red "OPERATE" to blinking yellow "REQUEST COAST", this is an indicator that the system is waiting for the Operator to lower the Ramp onto the Barge.
9.4.2.3.3) The PLC monitors the pressure in the hydraulic system and becomes a permissive to allow the mode change to COAST. The Operator will lower the Ramp onto the Barge and the instant the pressure drops in the hydraulic system to less than the set point the ball valves will begin to open, this process will take approximately $5-10$ seconds to complete but as soon as any one valve for each cylinder is "cracked open" the pressure quickly drops in that cylinder and the remaining weight is transferred onto the Barge, allowing the Ramp to track the Barge movements.
9.4.2.3.4) The individual ball valve status will change from red "OPERATE" to blinking yellow "MOVING" this indicates the valves are not open or closed (somewhere in between), as the valves complete their movement to the opened position the valve status will change from blinking "MOVING" to green "COAST" when all four ball valves are opened the Operation Mode will change to green "COAST"
9.4.2.3.5) The GREEN light located on the Operator cab will activate.
9.4.2.4) ALARMS
9.4.2.4.1) During the valve movements that are necessary for mode changes the valve positions are monitored for failures. An example would be if a particular valve was to be opened to change the mode to COAST and that valve does not complete that movement in the required amount of time (15 seconds) an alarm will be generated. The Operator would investigate for the cause of the alarm. The PLC will also monitor the pressure in the hydraulic cylinders, if the ball valve is failed (in alarm) the PLC will compare the pressures in the cylinder to a set point and when the pressure is lower than the set point the PLC will consider the valve opened. The same situation would also be applied for closing the valves for OPEARTE mode.

9.4.3) COAST to OPERATE

9.4.3.1) Pre-Requisites
9.4.3.1.1) System Enabled
9.4.3.1.2) Warm Up sequence is complete or overridden
9.4.3.1.3) Alarms Reset and Cleared
9.4.3.2) LOCAL - Control Console
9.4.3.2.1) Place the Mode switch into the "OPERATE" position; the mode switch light will go OFF. The PanelView will display the Operation Mode status change from green "COAST" to blinking yellow "REQUEST OPERATE", this is an indicator that the system is changing the ball valve positions from open to closed. This process will take approximately 5-10 seconds to complete

NOTE: Once the valves close the Ramp will no longer track the Barge movements and the Ramp must be raised immediately off of the Barge.
9.4.3.2.2) The individual ball valve status will change from green "COAST" to blinking yellow "MOVING" this indicates the valves are not open or closed (somewhere in between), as the valves complete their movement to the closed position the valve status will change from blinking "MOVING" to solid red "OPERATE", when all four ball valves are closed the Operation Mode change to red "OPERATE"
9.4.3.2.3) The RED light located on the Operator cab will activate
9.4.3.3) REMOTE - Radio
9.4.3.3.1) Enable the radio systems (See the RADIO CONTROL section)
9.4.3.3.2) The selector switches "B" and "C" are placed into the "A" (left) position. The PanelView will display the Operation Mode status change from green "COAST" to blinking yellow "REQUEST OPERATE", this is an indicator that the system is changing the ball valve positions from open to closed. This process will take approximately 5-10 seconds to complete.

NOTE: Once the valves close the Ramp will no longer track the Barge movements and the Ramp must be raised immediately off of the Barge.
9.4.3.3.3) The individual ball valve status will change from green "COAST" to blinking yellow "MOVING" this indicates the valves are not open or closed (somewhere in between), as the valves complete their movement to the closed position the valve status will change from blinking "MOVING" to solid red "OPERATE", when all four ball valves are closed the Operation Mode change to red "OPERATE"
9.4.3.3.4) The RED light located on the Operator cab will activate.
9.5) LOWERING / RAISING RAMP

NOTE: This procedure will describe the steps necessary to raise or lower the Ramp using both cylinders. If operating a single cylinder is desired the procedure is the same except only one cylinder is selected, not both
9.5.1) Pre-requisites

9.5.1.1) System Enabled

9.5.1.2) Warm Up sequence is complete or overridden
9.5.1.3) Alarms Reset and Cleared
9.5.1.4) Operation Mode is "OPERATE"
9.5.2) LOCAL - Control Console
9.5.2.1) Open the "Cylinders" display on the PanelView
9.5.2.2) Ensure cylinder mode is set to "BOTH", to control both sides of the Ramp for movement
9.5.2.3) Open the "MAIN" display on the PanelView, to observe the system parameters
9.5.2.4) Press and hold the enable button on the center of the Joystick
9.5.2.5) Pull back to raise or push forward to lower the Ramp

NOTE: The amount of push or pull deflection of the joystick will change the speed of the pump and the movement of the cylinders.

NOTE: When the Ramp is being lowered the movement will have a slight delay that is caused by the need for the hydraulic system to develop enough pressure to overcome the counter balance valves and then releasing the oil back to the oil reservoir.
9.5.2.6) The VFDs will start, the raise or lower solenoids are activated and pressures build up to move the Ramp, as the VFDs are sped up the speed of the Ramp movement will increase.
9.5.3) REMOTE - Radio
9.5.3.1) Enable the radio systems (See the RADIO CONTROL section)
9.5.3.2) Once the cylinders are selected the Operator would push the No. 2 joystick UP to LOWER or pull DOWN to RAISE the Ramp. There are 5 distinct detents that you feel as the joystick moves UP or DOWN. With each detent the speed will increase until full speed is attained. Releasing the joystick will stop the movement.

NOTE: When the Ramp is being lowered the movement will have a slight delay that is caused by the need for the hydraulic system to develop enough pressure to overcome the counter balance valves and then releasing the oil back to the oil reservoir.
9.5.3.3) The VFDs will start, the raise or lower solenoids are activated and pressures build up to move the Ramp, as the VFDs are sped up the speed of the Ramp movement will increase
9.5.3.4) When the Ramp is level or in the position that is desired return the joystick to the center position
9.5.3.5) Turn the transmitter key switch OFF

10) RADIO CONTROL

10.1) In addition to the Operator Control Console there is a wireless radio control system used for operation of the systems. The radio system utilizes a transmitter (belly box) that the Operator will carry with them and a receiver located at the Operator Cab. The radio system has controls for the following functions:
10.1.1) Raising and lowering of the Ramp
10.1.2) Single or dual cylinder control
10.1.3) Operation Mode selection, OPERATE or COAST
10.1.4) Winch selection and operation
10.2) The radio transmitter has a removable key switch and a red twist-to-reset stop button. The radio transmitter will enter a sleep mode after 30 minutes of inactivity.
10.3) To use the radio control system the Operator should first place the transmitter on their body and secure the clips for the neck and waist straps as necessary. This will help prevent dropping the transmitter on the ground or into the water.
10.4) Switch Descriptions (Reference Figure 1 below)
10.4.1) The transmitter has four toggle switches located at the bottom, nearest to the Operator; they are identified by the letters "A", "B", "C", "D".
10.4.1.1) Switch "A" used to select/de-select the Out-Board cylinder control
10.4.1.1.1) OFF = the cylinder will not be controlled for Raising/Lowering
10.4.1.1.2) $\mathrm{ON}=$ the cylinder will be controlled for Raising/Lowering
10.4.1.2) Switch "D" used to select/de-select the In-Board cylinder control
10.4.1.2.1) OFF = the cylinder will not be controlled for Raising/Lowering
10.4.1.2.2) $\mathrm{ON}=$ the cylinder will be controlled for Raising/Lowering
10.4.1.3) Switch "B" and " C " are used together to "request" the COAST mode or "request" the OPEARTE mode of the Ramp. There is no in-board or out-board designation for these switches, the two switches must be used together to select the modes, this will help prevent accidental mode changes if one of the switches were to be changed inadvertently. The switches are referenced as "BA" which means the "B" switch in the "A" position or "CA" which means the "C" switch in the "A" position.

```
10.4.1.3.1) "BA" and "CA" = Request OPERATE Mode
10.4.1.3.2) "BB and "CB" = Request COAST Mode
10.4.1.3.3) "B" middle position = OFF
10.4.1.3.4) "C" middle position = OFF
```

10.4.2) The radio transmitter also has two joysticks that move UP or DOWN, LEFT or RIGHT. When performing Ramp movements the UP and DOWN movement are used. When moving Winches IN or OUT the LEFT or RIGHT functions are used.
10.4.3) There are 6 additional push buttons three on each side that are used for selecting and de-selecting the various Winches used for mooring.
10.4.3.1) Switch with two arrows pointing left is used to select the Out-Board mooring Winch
10.4.3.2) Switch " 1 " is used to select Mooring Winch No. 1
10.4.3.3) Switch " 3 " is used to select Mooring Winch No. 3
10.4.3.4) Switch with two arrows pointing right is used to select the In-Board mooring Winch
10.4.3.5) Switch "2" is used to select Mooring Winch No. 2
10.4.3.6) Switch "4" is used to select Mooring Winch No. 4

NOTE: In-Board and Mooring Winch 4 are only selectable and controlled for joystick No.1, while the Out-Board and Mooring Winches 1 thru 3 are only selectable and controlled for joystick No. 2
10.4.3.7) Winch selection is made by pressing the desired Winch button once, and deselecting the Winch by pressing the button again. There are no visual indicators on the transmitter however at the PanelView the Operator can view the "MAIN" display and see the current selections for each joystick
10.5) ENABLE RADIO SYSTEM
10.5.1) Proceed to the OCC and look at the current configuration of the control system such as the selector switches, control modes, and PanelView status.
10.5.2) On the Control Console the Operator would change the Control Mode from LOCAL to REMOTE

NOTE: The Operator must ensure that the mode selector switches " B " and " C " on the radio transmitter are in the center position before enabling the radio system
10.5.3) Ensure the stop button is reset by twisting the red stop button it will "pop" out
10.5.4) Turn the green transmitter key to the ON position
10.5.4.1) The battery LED light will briefly light up indicating the batteries are active and have sufficient charge. If the battery LED flashes then the batteries are discharged and spent. The batteries would need to be replaced to continue.
10.5.5) The Operator would then press the "START" button; this will enable the radio control system. There will be a loud tone from the receiver indicating the radio transmitter and receiver are active.

NOTE: if at any time the green key switch is turned OFF or the red stop button is pressed the radio and transmitter will again need to be activated. This will also clear any selections made by button selections
10.6) RAMP CONTROL
10.6.1) The Ramp controls allow the Operator to select either one or both of the hydraulic cylinders to operate. Using both cylinders is going to be the normal operation but there are some instances that the Operator would make adjustments in the tilt by operating only one cylinder. To raise or lower the Ramp select the cylinders to control by turning either switch "A" or switch "D" either ON or OFF.
10.6.2) Once the cylinders are selected the Operator would push the No. 2 joystick UP to LOWER or pull DOWN to RAISE the Ramp. There are 5 distinct detents that you feel as the joystick moves UP or DOWN. With each detent the speed will increase until full speed is attained. Releasing the joystick will stop the movement.

NOTE: When the Ramp is being lowered the movement will have a slight delay that is caused by the need for the hydraulic system to develop enough pressure to overcome the counter balance valves and then releasing the oil back to the oil reservoir.
10.6.3) The VFDs will start, the raise or lower solenoids are activated and pressures build up to move the Ramp, as the VFDs are sped up the speed of the Ramp movement will increase.
10.7) MODE SELECTION
10.7.1) Selection process from one mode to another mode involves a two-step process, the first is to "request a mode change" the second is to change the ball valve position and complete the mode change. When the control system is configured for OPERATE all four of the ball valves are closed. When the control system is configured for COAST mode all four of the ball valves are opened.
10.7.2) OPERATE to COAST
10.7.2.1) The selector switches " B " and " C " are placed into the " B " (right) position. The PanelView will display the Operation Mode status change from red "OPERATE" to blinking yellow "REQUEST COAST", this is an indicator that the system is waiting for the Operator to lower the Ramp and transfer the weight onto the Barge.
10.7.2.2) The PLC monitors the pressure in the hydraulic system and becomes a permissive to allow the mode change to COAST. The Operator will lower the Ramp onto the Barge and the instant the pressure drops in the hydraulic system to less than the set point the ball valves will begin to open, this process will take approximately $5-10$ seconds to complete but as soon as any one valve for each cylinder is "cracked open" the pressure quickly drops in that cylinder and the remaining weight is transferred onto the Barge, allowing the Ramp to track the Barge movements.
10.7.2.3) The individual ball valve status will change from red "OPERATE" to blinking yellow "MOVING" this indicates the valves are not open or closed (somewhere in between), as the valves complete their movement to the opened position the valve status will change from blinking "MOVING" to green "COAST" when all four ball valves are opened the Operation Mode will change to green "COAST"
10.7.2.4) The GREEN light located on the Operator cab will activate.
10.7.3) COAST to OPERATE
10.7.3.1) The selector switches " B " and " C " are placed into the " A " (left) position. The PanelView will display the Operation Mode status change from green "COAST" to blinking yellow "REQUEST OPERATE", this is an indicator that the system is changing the ball valve positions from open to closed. This process will take approximately 5-10 seconds to complete.

NOTE: Once the valves close the Ramp will no longer track the Barge movements and the Ramp must be raised immediately off of the Barge.
10.7.3.2) The individual ball valve status will change from green "COAST" to blinking yellow "MOVING" this indicates the valves are not open or closed (somewhere in between), as the valves complete their movement to the closed position the valve status will change from blinking "MOVING" to solid red "OPERATE", when all four ball valves are closed the Operation Mode change to red "OPERATE"
10.7.3.3) The RED light located on the Operator cab will activate.
10.7.4) ALARMS
10.7.4.1) During the valve movements that are necessary for mode changes the valve positions are monitored for failures. An example would be if a particular valve was to be opened to change the mode to COAST and that valve does not complete that movement in the required amount of time (15 seconds) an alarm will be generated. The Operator would investigate for the cause of the alarm. The PLC will also monitor the pressure in the hydraulic cylinders, if the ball valve is failed (in alarm) the PLC will compare the pressures in the cylinder to a set point and when the pressure is lower than the set point the PLC will consider the valve opened. The same situation would also be applied for closing the valves for OPEARTE mode.
WINCH CONTROL
10.8.1) Select the Winches to control with the buttons and use the joysticks to control the IN or OUT functions of the Winches to assist in mooring the Barge to the Ramp. (See descriptions above for the Winch selection procedures)
10.8.2) The joysticks have 5 distinct detent position left and right, the Winch will operate with the first position for both IN and OUT

NOTE: The Operator must be careful to prevent clothing or other interference accidentally activating the mooring Winches when the radio system is enabled

ARRC Whittier Alaska, Barge Slip Controls Description

11) SAFETY

11.1) The Barge Slip Ramp control system has many safety items incorporated into its design:
11.2) Hard-wired emergency stop circuit, designed to stop all movement of the Barge Slip and VFDs, motors. The position of the coast ball valves will not change; if they are in transition they will simply stop moving. The Winch controls are unaffected by the E-STOP Circuit.
11.2.1) Emergency stop buttons are located at:
11.2.1.1) MCP - Main Control Panel
11.2.1.2) OCC - Operator Control Console
11.2.1.3) SRS - Slip Remote Station
11.2.2) When one of the E-STOP buttons is pressed movement stops, an alarm is generated, and the PanelView will display the alarm and indicate which E-STOP button was pressed. The E-STOP button that was pressed will be illuminated.
11.3) Hydraulic oil reservoir monitoring for the following:
11.3.1) Low level warning
11.3.2) Low level shutdown
11.3.3) High temperature warning
11.3.4) High temperature shutdown
11.3.5) Oil heater failing (excessive temperature)
11.3.6) High pressure filter clogged
11.3.7) Return pressure filter clogged
11.4) Each of the two hydraulic power units have has a local disconnect to isolate the power to that system. The position of the disconnect switch is monitored by the PLC. When the local disconnect is opened the 480 VAC is interrupted from the VFD and the PLC will open up the 120 VAC contactor inside the MCP for that HPU. The power is isolated from all devices with the following exceptions:
11.4.1) Raise / Lower solenoids (120 VAC)
11.4.2) 480 VAC to the oil heaters, there are separate breakers located at the Load Center in the Conex. These breakers have a locking capability.

12) POWER SYSTEMS

12.1) Under normal operations the Barge Slip systems will be supplied 480 VAC power from a permanent power source. During a loss of electrical power there is a stand-by generator capable of providing emergency power.
12.2) The electrical power is routed to an ATS (Automatic Transfer Switch) that controls the power source to the Barge Slip systems, from there the power enters the Conex container and is routed to the 480 VAC Load Center, and 120 VAC Panel board systems
12.3) UPS - Uninterruptable Power Supply
12.3.1) The UPS will provide filtered 120 VAC power continuously to the critical component during a power outage for over 45 minutes. This will allow the standby generator to be started.
12.3.2) The UPS system is located in the MCP panel and provide a backup power source for the following equipment:
12.3.2.1) PLC controller
12.3.2.2) Remote I/O PLC panels, and PanelView displays
12.3.2.3) LED sign
12.3.2.4) Operator cab status lights, alarm lights
12.3.2.5) Field status inputs to the PLC
12.3.3) The UPS is monitored for operation and alarms for the following conditions and will be displayed on the PanelView for action.
12.3.3.1) UPS is on batteries, indicates the 120 VAC supply to the UPS has failed
12.3.3.2) Low battery, indicates one of the batteries is not fully charged
12.3.3.3) Replace battery, indicates one of the batteries has failed and needs replacement
12.3.3.4) General alarm, any alarm the UPS has

NOTE: The general alarm might require investigation at the UPS for further information to determine the cause
12.3.4) There is a UPS bypass selector that will allow the UPS to be bypassed while still providing 120 VAC to the connected UPS loads. This will allow the UPS to be removed from the system for maintenance or repair. The selector switch is located in the MCP and has three positions (See figure 2 below)
12.3.4.1) Position 1 = BYPASS
12.3.4.2) Position $0=O F F$
12.3.4.3) Position $2=$ UPS

Figure 2

13) PLC CONTROLLER

13.1) The control system for the Barge Slip in provided by one PLC. The PLC is located in the MCP. The PLC communicates to several other control panels with remote PLC I/O via Ethernet communications. This includes:
13.1.1) OCC - Operator Control Console
13.1.2) OCI - Operator Cab Interface
13.1.3) SRS - Slip Remote Station
13.1.4) WSP - Winch Start Panel
13.2) The PLC is an Allen-Bradley CompactLogix series processor with an on-board removable memory card. The memory card contains the latest PLC program and will provide a method for the PLC to reload the program in the unlikely event of a corrupt or failed program. This function is performed by the PLC automatically when the PLC is unable to "RUN" or load it's stored program when the PLC is powered up.
13.3) The remote I/O drops are Allen-Bradley FlexLogix controllers with mixed digital and analog control points.
13.4) The PanelView information displays are Allen-Bradley PanelView Plus 700 with built in Ethernet communications
13.4.1.) Each PanelView has a touch screen display surface and several tactile buttons located on the perimeter of the display. The Operator can choose to use the touch screen to make selections of use the associated button.

14) LED SIGN

14.1) The Barge Slip control system utilizes a remote LED display to provide information to the Operators. When the control system is enabled the LED display will indicate the Ramp angle. The Ramp angle that is the greater of the two (In-Board vs. Out-Board) in the direction of movement (positive or negative) will be displayed. As the Ramp angle changes the value is updated every 5 seconds. The color of the displayed value will change based on the amount of the Ramp angle.
14.1.1) GREEN $=$ Ramp angle is between -7.0° and 7.0°
14.1.2) YELLOW $=$ Ramp angle is between -7.0° to -7.5° for the negative angle and 7.0° to 7.5° for the positive angle
14.1.3) RED $=$ Ramp angle is less than -7.5° or greater than 7.5°
14.2) The display will also indicate three different alarms.
14.2.1) When the Ramp angle is greater than the Maximum UP Ramp Angle set-point the text will change displaying this alarm to the Operations.
14.2.2) When the Ramp angle is less than the Maximum DOWN Ramp Angle set-point the text will change displaying this alarm to the Operations.
14.2.3) When the Evacuation alarm is activated the LED will display the word "EVACUATE" to Operations
14.3) The LED sign is 120 VAC powered with communications back to the MCP PLC. The sign has three internal mini strip heaters that have integral thermostats for heating during extreme cold temperatures. The thermostats are factory set to $\left(40^{\circ}\right.$ to $\left.55^{\circ}\right)$ when the temperature drops below 40° the heaters will turn ON and when the temperature increases above 50° the heaters will turn OFF
14.4) The LED sign also has two Desiccant air drying pouches to prevent moisture from collecting on the inside of the sign. The sign is sealed and is NEMA 4X rated.

15) SYSTEM STARTUP \& SHUTDOWN

15.1) STARTUP
15.1.1) Ensure the ATS (Automatic Transfer Switch) is operational
15.1.2) Ensure the emergency stand-by generator is operational
15.1.3) Ensure the OCC, OCI, SRS, and WSP panels all have their breakers closed and are ready for operation
15.1.4) Conex Equipment Shed
15.1.4.1) Open the MCP 480 disconnect, this will allow access inside the enclosure
15.1.4.2) Verify all 480 VAC breakers are closed inside the MCP
15.1.4.3) Verify all 120 VAC breakers are closed inside the MCP
15.1.4.4) Verify the UPS/BYPASS selector is in the UPS position
15.1.4.5) Ensure all of the 480 breakers are closed in the Load Center
15.1.4.6) Ensure all of the 120 VAC breakers are closed in the Panel board
15.1.4.7) Verify the UPS, PLC and controls are active
15.1.4.8) Close the MCP and close the main disconnect
15.1.4.9) After a one minute delay the PLC will be active
15.1.4.10) If the hydraulic oil is cold enough time should be allowed for the oil to warm up to a minimum of $32^{\circ} \mathrm{F}$
15.2) SHUTDOWN
15.2.1) Open the MCP disconnect
15.2.2) Open the MCP enclosure and press the ON/OFF button of the UPS and hold for a minimum of 5 seconds to shut down the UPS system. The PLC, all PanelView displays, alarms, and indicators will also be shutdown
15.2.3) Close the MCP door
15.2.4) The system is now non-operational but will have power for the space heaters and hydraulic oil heaters

NOTE: If the Conex will be unmanned for an extended period of time and there is concern of oil heater failure turn OFF (open) the hydraulic oil heater breakers in the Load Center

16) REMOTE ACCESS

16.1.1) The PanelView Plus 700 located in the Conex enclosure has the ability for an Operator to access the PanelView remotely with a web-browser. This PanelView has a built in web server that will provide web pages for the Operator use for remote monitoring and control. The Operator would open up their browser and enter the IP Address 192.168.40.51 into the address section of the browser. This IP address is the address for the PanelView Plus 700.
16.1.2) There are a few items that do not function while using the remote interface. The most obvious are the alarm lists and alarm displays. To overcome this issue there is an alarm history queue that is made from PLC code and able to display the list of alarms as they occur. The Operator can navigate this list with buttons provided. Since the alarm lists also can display the current status of an alarm (active or not active), there are also active alarms displays 1 thru 5 . These list the alarms ordered by alarm index .

17) PanelView DISPLAYS

17.1) COMMON to all displays
17.1.1) Current Time and Date at the top of each display
17.1.2) Each PanelView is a combination touch and button panel. The graphic display area is touch sensitive to operate button and make selections
17.1.3) Each button control has an associated "F" key assigned to allow activating the button external of the Touch feature of the PanelView, this is useful if the Operator is wearing heavy gloves and doesn't want to remove them
17.2) MAIN - This display is the "home" display and contains a summary of the overall status of the Barge Slip Control System

F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F2-E-STOP SYSTEM - This button opens the ESTOP display for Emergency stop status
F3-RADIO - This button opens the radio status display
F4-WARM UP - This button opens the Warm up display
F5-OVERRIDE - This button opens the override selection display
F6-ALARM HISTORY - This button opens the alarm history display
F7-CYLINDER - This button opens the cylinder selection display
F8-TIME - This button opens the Times and Date display for adjusting the PLC and LED sign internal clocks
F9-WINCH - This button opens the Winch status reset display
F10-SET PTS - This button opens the first of three set point displays
EVACUATE - This button will activate the evacuation alarm
SYSTEM STATUS - Displays the status of the control system

- NOT-READY
- READY
- WARM UP REQ
- E-STOPPED

GENERATOR STATUS - Displays the status of the standby Generator

- AUTO
- NO AUTO

CONTROL MODE - Displays the status of the control mode

- None
- Local
- Remote

ALARMS - Displays the status of the alarm system

- None
- Active

WINCH SELECTION - Displays the status of the selected Winches assigned under the joystick number 1 or number 2

- Grey = not selected
- Red = selected

OPERATIONAL MODE - Displays the current operational mode

- None
- Request Coast
- Request Operate
- Coast
- Operate

HPU1 and HPU2 Oil temperature and pressure values
OUT-BOARD and IN-BOARD Coast valves status indicators

- Green = Coast
- Red - Operate
17.3) ALARM STATUS - Displays alarms with the ability to select three display modes by pressing the F2-DISPLAY MODE. The selected mode is displayed in the header of the list.
17.3.1) All Alarms
17.3.2) Active Alarms
17.3.3) Past Alarms

K7-INFO - Opens up the alarm information display that provides detailed information about a certain alarm based on its alarm index number
F1-SILENCE ALARMS - This button will silence the alarm system
F2-DISPLAY MODE - This button is used to select one of the three display modes
F3-REMOTE HIST - This button will open the Alarm History display that the remote user can use to see the alarms
F5-RESET ALARM - Resets the selected alarm
F6-ACK ALARM - This button is used to acknowledge the selected alarm
F7-ACK ALL ALARMS - This button is used to acknowledge all of the alarms
F8-ACTIVE ALARMS - This button will open the first of 5 active alarm listing displays
F10-CLOSE - This button will close this display
The arrow keys are used to navigate the list of alarms
The UP and DOWN arrow keys will allow the operator to navigate the selector to pick a specific alarm or to navigate the alarm queue.
17.4) E-STOP SYSTEM - Displays the information and status of the emergency stop buttons and system
2:43:04 PM E-STOP SYSTEM 5/24/2012

MCP E-STOP BUTTON OKAY

E-STOP RELAY SET

OCC E-STOP BUTTON OKAY

SRS E-STOP BUTTON
OKAY

F1-ALARMS

F6-ALARM HISTORY

F7-REMOTE HIST

F10-MAIN

F1-ALARMS - This button will open the Active Status display and will flash the text when there is an active alarm present
F6-ALARM HISTORY - This button will open the alarm history display
F7-REMOTE HISTORY - This button will open the Alarm History display that the remote user can use to see the alarms
F10-MAIN - This button opens the Main display
17.5) RADIO STATUS - Displays information and status of the radio transmitter buttons and joysticks, used for diagnostics

F1-ALARMS

F6-ALARM HISTORY

F7-REMOTE HIST

F10-MAIN

F1-ALARMS - This button will open the Active Status display and will flash the text when there is an active alarm present
F6-ALARM HISTORY - This button will open the alarm history display
F7-REMOTE HISTORY - This button will open the Alarm History display that the remote user can use to
see the alarms
F10-MAIN - This button opens the Main display
The various multi-colored boxes will indicate the status of the switch inputs

- GREEN = ON
- RED = OFF
17.6) WARM UP - Displays information and status of the warm up routine for the hydraulic systems

2:43:36 PM	$\square=$ ON WARM UP	\square	OFF $\quad \mathbf{5 / 2 4 / 2 0 1 2}$
K1-HPU1 WARM	RAISE VALVE 1VD1	\square	CALL VFD1
UP MODE	RE-CIRC VALVE 1VPP1 \square	VFD1 RUNNING	
ENABLE	RE-CIRC VALVE 1VPP2		

RAISE VALVE 1VD2 RE-CIRC VALVE 1VPP3 RE-CIRC VALVE 1VPP4 \square CALL VFD2 VFD2 RUNNING

HPU2 TIME SINCE LAST WARM UP 1800 SEC HPU2 CYLINDER PRESSURE 1609 PSI

F1-ALARMS

F5-SETPTS

F6-ALARM HISTORY

F7-REMOTE HIST

F10-MAIN

K1-HPU1 WARM UP MODE ENABLE - This button will enable the warm up routine for HPU1 K3-HPU2 WARM UP MODE ENABLE - This button will enable the warm up routine for HPU2 F1-ALARMS - This button will open the Active Status display and will flash the text when there is an active alarm present
F6-ALARM HISTORY - This button will open the alarm history display
F7-REMOTE HISTORY - This button will open the Alarm History display that the remote user can use to see the alarms
F10-MAIN - This button opens the Main display
The various multi-colored boxes will indicate the status of the valve command or valve positions

- GREEN = ON
- RED = OFF

HUP1, and HPU2 oil temperature, time since last warm occurred, and pressure values
17.7) OVERRIDE - Displays the buttons available for selecting override functions and the current status of each button

2:43:52 PM OVERRIDE 5/24/2012

K1 - HPU1 WARMUP OVERRIDE ENABLED

K7 - HPU2 WARMUP OVERRIDE ENABLED

F3 - CYLINDER MAX EXTENSION ALARM OVERRIDE

F4 - DISCONNECT IMMINENT ALARM OVERRIDE

K6 - HPU1 POWERS HPU2

K12-HPU2 POWERS HPU1

F1-ALARMS

F6-ALARM HISTORY

F7-REMOTE HIST

F10-MAIN

Blue = Override is ready to be enabled
Red = Override enabled and active
K1-HPU1 WARM UP ENABLE OVERRIDE - HPU1 warm up override
K7-HPU2 WARM UP ENABLE OVERRIDE - HPU2 warm up override
F3-CYLINDER MAX EXTENSION ALARM OVERRIDE- Max extension override
F4-DISCONNECT IMMINENT ALARM OVERRIDE- Ramp disconnect imminent alarm override K6-HPU1 POWERS HPU2 ENABLE - This button will enable the cross-connect function that will allow HPU1 to provide the power source to the HPU2 system

- Blue = Cross-Connect is ready to be enabled
- Red = Cross-Connect enabled and active

K12-HPU2 POWERS HPU1 ENABLE - This button will enable the cross-connect function that will allow HPU2 to provide the power source to the HPU1 system

- Blue = Cross-Connect is ready to be enabled
- Red = Cross-Connect enabled and active

F1-ALARMS - This button will open the Active Status display and will flash the text when there is an active alarm present
F6-ALARM HISTORY - This button will open the alarm history display
F7-REMOTE HISTORY - This button will open the Alarm History display that the remote user can use to see the alarms
F10-MAIN - This button opens the Main display
17.8) ALARM HISTORY - Displays the alarms that are stored internally to the PanelView displays. This queue acts in a first in first out fashion, the oldest alarm will be dropped when there are more than 128 alarms in the queue.

F1-SILENCE ALARMS - This button will silence the alarm system
F2-REMOTE HISTORY - This button will open the Alarm History display that the remote user can use to see the alarms
F5-ALARM STATUS - Opens the Alarm Status display
F6-ACK ALARM - This button is used to acknowledge the selected alarm
F7-ACK ALL ALARMS - This button is used to acknowledge all of the alarms
F10-CLOSE - This button will close this display
The arrow keys are used to navigate the list of alarms The alarms displayed have one of four colors:

- Red = Active plus unacknowledged alarms
- Yellow = Active plus acknowledged alarms
- Blue = Inactive plus unacknowledged
- Green = Inactive plus acknowledged alarms
17.9) CYLINDERS - This display is used to select the cylinders for Ramp movement while in Local mode
3:02:11 PM $\quad \square=0 \mathrm{~N} \quad$ CYLINDERS $\quad \square=$ OFF $\quad 5 / 24 / 2012$

K2-OUTBOARD CYLINDER SELECT

K6-BOTH
 CYLINDERS
 SELECTED

K8-INBOARD
 CYLINDER SELECT

F1-ALARMS

F6-ALARM HISTORY

F7-REMOTE HIST

F10-MAIN

K2-OUTBOARD CYLINDER SELECT - This button will select the Out-Board cylinder

- Blue = Cylinder is ready to be selected
- Green = Cylinder is selected

K6-BOTH CYLINDERS SELECT - This button will select both the Out-Board and In-Board cylinders

- Blue = Cylinders are ready to be selected
- Green = Both cylinders are selected

K8-INBOARD CYLINDER SELECT - This button will select the In-Board cylinder

- Blue = Cylinder is ready to be selected
- Green = Cylinder is selected

F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F6-ALARM HISTORY -This button opens the alarm history display
F7-REMOTE HISTORY - This button will open the Alarm History display that the remote user can use to see the alarms
F10-MAIN - Opens the Main display
17.10) DATE AND TIME - Displays the current PLC date and time and provides a place for the Operator to make changes. Changing the date and time here will update all of the PanelView displays and the LED sign

| 3:02:27 PM | DATE AND TIME | 5/24/2012 |
| :--- | :--- | :--- | :--- |

F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F2-CLEAR ALARM HISTORY - This button will clear the alarm history that is stored in the PanelView. This cannot be undone.
F3-SHUTDOWN - This button will shut down the running PanelView application and display the built-in tools for adjusting the terminal settings
F6-ALARM HISTORY -This button opens the alarm history display
F7-REMOTE HISTORY - This button will open the Alarm History display that the remote user can use to see the alarms
F8-SEND TIME TO SIGN - This button will cause the date and time to be sent to the LED sign F10-MAIN - Opens the Main display
17.11) WINCHES - Displays the status and reset features for the Mooring Winches

| 3:02:37 PM | WINCHES |
| :--- | :---: | :---: |
| K1-IN-BOARD RESET | WINCH STATUS |
| K2-OUT-BOARD RESET | |\quad OUT-BOARD WINCH NORMAL

Blue=Ready to reset the tripped motor starter
Breen=Reset is active (only while pressed)
F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F6-ALARM HISTORY -This button opens the alarm history display
F7-REMOTE HISTORY - This button will open the Alarm History display that the remote user can use to
see the alarms
F10-MAIN - Opens the Main display
Winch Status will display the status of the current Winch

- Black = Normal
- Red = Faulted
17.12) SETPOINTS-1 - Displays the first of three set point displays that provide the Operator a location to make changes to the control parameters for the control system

K1-RE-CIRCULATION, "WARM-UP" DURATION - This button will allow the Operator to enter a new Warm-Up duration to be entered
K2-TIME BEFORE RE-CIRCULATION, "WARM-UP"DURATION - This button will allow the Operator to enter a new time duration before the Warm-Up routine is required to be performed
K3-In-Board Slip Angle Correction Offset - This setting is used to provide and offset to "level up" the ramp In-Board angle when the sensor has been moved or re-positioned
K4-Out-Board Slip Angle Correction Offset - This setting is used to provide and offset to "level up" the Out-Board ramp angle when the sensor has been moved or re-positioned
K5-VFD Frequency Off Set - This setting provides a "speed" signal attenuation to the VFD 1 speed command, so the Ramp can raise and lower at the same rate (side to side).
F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F4-NEXT SETPOINT - This button will open the next set point display
F5-PREV SETPOINT - This button will open the previous set point display
F6-ALARM HISTORY - This button opens the alarm history display
F7-REMOTE HISTORY - This button will open the Alarm History display that the remote user can use to see the alarms
F10-MAIN - Opens the Main display
17.13) SETPOINTS-2 - Displays the second of three set point displays that provide the Operator a location to make changes to the control parameters for the control system

3:03:02 PM		SETPOINTS-2	5/24/2012	
K1-CYLINDER MAXIMUM EXTENSION				$9.0{ }^{\circ}$
K2 - MAXIMUM UP RAMP ANGLE				7.0°
K3 - LED (+) ANGLE - RED SETPOINT				$5.0{ }^{\circ}$
K4-LED (+) ANGLE - YELLOW SETPOINT				4.0
K5 - LED (-) ANGLE - YELLOW SETPOINT				3.5
K6 - LED (-) ANGLE - RED SETPOINT				$3.8{ }^{\circ}$
K7 - MAXIMUM DOWN RAMP ANGLE				$4.0{ }^{\circ}$
K8 - BARGE DISCONNECTIMMINENT				4.1°
F1-ALARMS			F4-NEXT SETPOINTS	F5-PREV SETPOINTS
F6-ALARM F7-REMOTE HISTORY HIST				F10-MAIN

K1-CYLINDER MAXIMUM EXTENSION - This button will allow the Operator to change this value K2-MAXIMUM UP RAMP ANGLE - This button will allow the Operator to change this value K3-LED(+) ANGLE - RED SETPOINT - This button will allow the Operator to change this value K4-LED(+) ANGLE - YELLOW SETPOINT - This button will allow the Operator to change this value K5-LED(-) ANGLE - YELLOW SETPOINT - This button will allow the Operator to change this value K5-LED(-) ANGLE - RED SETPOINT - This button will allow the Operator to change this value K7-MAXIMUM DOWN RAMP ANGLE - This button will allow the Operator to change this value K8-BARGE DISCONNECT IMMINENT - This button will allow the Operator to change this value F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F4-NEXT SETPOINT - This button will open the next set point display
F5-PREV SETPOINT - This button will open the previous set point display
F6-ALARM HISTORY -This button opens the alarm history display
F7-REMOTE HISTORY - This button will open the Alarm History display that the remote user can use to see the alarms
F10-MAIN - Opens the Main display
17.14) SETPOINTS-3 - Displays the third of three set point displays that provide the Operator a location to make changes to the control parameters for the control system

K1-CYLINDER PRESSURE ALLOW "COAST" - This button will allow the Operator to change this value K2-CYLINDER PRESSURE ALLOW "OPERATE" - This button will allow the Operator to change this value
K3-RAMP TILT SIDE TO SIDE WARNING (OPERATE MODE ONLY) - This button will allow the Operator to change this value
K4-RAMP TILT SIDE TO SIDE SHUTDOWN (OPERATE MODE ONLY) - This button will allow the Operator to change this value
K5-IN-BOARD CYLINDER PRESSURE BUILD-P ALARM (A36) - This button will allow the Operator to change this value
K6-OUT-BOARD CYLINDER PRESSURE BUILD-P ALARM (A35) - This button will allow the Operator to change this value
F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F4-NEXT SETPOINT - This button will open the next set point display
F5-PREV SETPOINT - This button will open the previous set point display
F6-ALARM HISTORY -This button opens the alarm history display
F7-REMOTE HISTORY - This button will open the Alarm History display that the remote user can use to see the alarms
F10-MAIN - Opens the Main display
17.15) ALARM POP-UP BANNER - Displays the alarm pop-up banner that provides immediate alarm information when the alarm first occurs. The Operator must manually close this display to gain access to the displays that are covered

F1-Ack Alarm [F1] - This button will acknowledge the current alarm F2-Silence Alarms [F2] - This button will silence all of the alarms
F3-Clear Alarm [F3] - This button will clear the alarm F4-Close - This button will close the alarm pop-up banner
17.16) ALARM ACTIONS - Displays the alarm information windows that gives the Operator a place to review the corrective actions for a given alarm

```
    ALARM INFOMATION
A57 - EVACUATE ALARM
1. Press Red E-STOP Button
2. Leave the area
3. RESET: De-Select the alarm button from the "MAIN"
display
4. Restore any E-STOP Buttons that were activated
5. Clear and Reset Alarms
```


F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F2-Alarm Index number selector - opens up a keypad that allows the Operator to enter the alarm index that they want further information on F10-MAIN - Opens the Main display
The arrow button provide a method to navigate the alarm indexes
Each alarm is assigned an index number that can be referenced in the documentation of from the alarm history. This is index is the easiest method to research the correct actions to resolve an alarm situation
17.17) ALARM HISTORY FOR REMOTE - Displays the alarm queue that is stored in the PLC. This display is primarily for the Remote access user. There are six alarms shown at one time, stored in a large stack. This stack will store 255 alarms and then start the numbering sequence over erasing the oldest alarms first. The alarm message is comprised of a number at the far left which is the alarm queue index number, the time and date of the alarm, alarm index, and finally the alarm description.

ALARM HISTORY FOR REMOTE

25 > 10:19:10 3/17/2012 - A57 - EVACUATE ALARM
$24>10: 19: 10$ 3/17/2012 - A03 - HPU1, Disconnect is open
23 > 10:19:10 3/17/2012 - A11 - HPU2, Disconnect is open
22 > 10:19:10 3/17/2012 - A14 - HPU2, Hydraulic Oil Heater is Over Heating, Requires Heater Shutdown
$21>10: 19: 10$ 3/17/2012 - A12 - HPU2, High Pressure Filter is Clogged
20 > 10:19:10 3/17/2012 - A10 - HPU1, Hydraulic Oil Reservoir, HIGH temperature SHUTDOWN

F1	F2	F3	F4	
F	F5-ALARM			
F6-ALARM HISTORY	F7-PREV ACT ALARMS	F8-NEXT	ACTALARMS	F9-ACK ALL ALARMS

F1-Page UP arrow key - Moves the alarm queue up by 6 entries
F2-UP Arrow key - Moves the alarm queue up by one 1 entry
F3-DN Arrow key - Moves the alarm queue up by one 1 entry
F4-Page DN arrow key - Moves the alarm queue down by 6 entries
F5-ALARM INFO - Opens up the alarm information display that provides detailed information about a certain alarm based on its alarm index number
F6-ALARM HISTORY - Opens up the alarm history display
F7-PREV ALARMS - Opens up the previous active alarms display
F8-NEXT ALARMS - Opens up the next active alarms display
F9-ACK ALL ALARMS - Acknowledges all alarms
F10-MAIN - Open up the Main display
17.1) ACTIVE ALARMS 1 - Displays the alarm pop-up banner that provides immediate alarm information when the alarm first occurs. The Operator must manually close this display to gain access to the displays that are covered

F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F2-PREV ALARMS - Opens up the previous active alarms display
F3-NEXT ALARMS - Opens up the next active alarms display
F5-ALARM INFO - Opens up the alarm information display that provides detailed information about a certain alarm based on its alarm index number
F6-ALARM HISTORY - Opens up the alarm history display
F7-REMOTE HIST - Opens up the Alarm history for remote users
F10-MAIN - Open up the Main display
17.1) ACTIVE ALARMS 2 - Displays the alarm pop-up banner that provides immediate alarm information when the alarm first occurs. The Operator must manually close this display to gain access to the displays that are covered

F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F2-PREV ALARMS - Opens up the previous active alarms display
F3-NEXT ALARMS - Opens up the next active alarms display
F5-ALARM INFO - Opens up the alarm information display that provides detailed information about a certain alarm based on its alarm index number
F6-ALARM HISTORY - Opens up the alarm history display
F7-REMOTE HIST - Opens up the Alarm history for remote users
F10-MAIN - Open up the Main display
17.1) ACTIVE ALARMS 3 - Displays the alarm pop-up banner that provides immediate alarm information when the alarm first occurs. The Operator must manually close this display to gain access to the displays that are covered

ACTIVE ALARMS 3 OFF ■ON

\square A25 - MCP - Main Control Panel E-STOP Button Pressed
\square A26 - UPS System in Main Control Panel is on Batteries
\square A27 - UPS System in Main Control Panel has a low battery
\square A28 - UPS System in Main Control Panel has a failed batteries
\square A29 - UPS System in Main Control Panel has a general fault
\square A30 - MCP - Main Control Panel E-STOP Relay is Not Engaged
\square A31 - WARNING Barge Disconnect Imminent
\square A32 - WARNING Cylinders Near Maximum Extension
\square A33 - Movement on In-Board Cyl. occurred during Warm-up (OPERATE Mode only)
\square A34 - Movement on Out-Board Cyl. occurred during Warm-up (OPERATE Mode only)
\square A35 - Pres. Out-Board Cyl. is greater than set-point during the Warm UP
\square A36 - Pres. In-Board Cyl. is greater than set-point during the Warm UP operation

F1-ALARMS

F6-ALARM

 HISTORY

F7-REMOTE HIST

F5-ALARM INFO

F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F2-PREV ALARMS - Opens up the previous active alarms display
F3-NEXT ALARMS - Opens up the next active alarms display
F5-ALARM INFO - Opens up the alarm information display that provides detailed information about a certain alarm based on its alarm index number
F6-ALARM HISTORY - Opens up the alarm history display
F7-REMOTE HIST - Opens up the Alarm history for remote users
F10-MAIN - Open up the Main display
17.1) ACTIVE ALARMS 4 - Displays the alarm pop-up banner that provides immediate alarm information when the alarm first occurs. The Operator must manually close this display to gain access to the displays that are covered

ACTIVE ALARMS 4 OFF ■ON

```
    A37 - Cyl. Pres. did not drop while changing mode from OPEARTE to COAST
    \squareA38-SPARE
    \square ~ A 3 9 ~ - ~ R a m p ~ A n g l e ~ S i d e ~ t o ~ S i d e ~ W a r n i n g , ~ D i f f e r e n c e . ~ G r e a t e r ~ t h a n ~ o r ~ E q u a l ~ t o ~ 1 . 5 * * )
    \square ~ A 4 0 ~ - ~ R a m p ~ A n g l e ~ S i d e ~ t o ~ S i d e ~ D i f f . ~ a t ~ M a x , ~ N O ~ f u r t h e r ~ m o v e m e n t ~ w i l l ~ b e ~ a l l o w e d ~
    A41 - Coast Ball Valve (3VM1) failed to OPEN
    A42 - Coast Ball Valve (3VM1) failed to CLOSE
```

```
    A43 - Coast Ball Valve (3VM2) failed to OPEN
    A44 - Coast Ball Valve (3VM2) failed to CLOSE
    \square ~ A 4 5 ~ - ~ C o a s t ~ B a l l ~ V a l v e ~ ( 3 V M 3 ) ~ f a i l e d ~ t o ~ O P E N ~
    A46 - Coast Ball Valve (3VM3) failed to CLOSE
    A47 - Coast Ball Valve (3VM4) failed to OPEN
    A48 - Coast Ball Valve (3VM4) failed to CLOSE
```


F1-ALARMS

F6-ALARM HISTORY

F7-REMOTE HIST

F5-ALARM INFO

F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F2-PREV ALARMS - Opens up the previous active alarms display
F3-NEXT ALARMS - Opens up the next active alarms display
F5-ALARM INFO - Opens up the alarm information display that provides detailed information about a certain alarm based on its alarm index number
F6-ALARM HISTORY - Opens up the alarm history display
F7-REMOTE HIST - Opens up the Alarm history for remote users
F10-MAIN - Open up the Main display
17.1) ACTIVE ALARMS 5 - Displays the alarm pop-up banner that provides immediate alarm information when the alarm first occurs. The Operator must manually close this display to gain access to the displays that are covered

ACTIVE ALARMS 5 OFF ■ON

F1-ALARMS - This button will open the Active Status display and will flash red when there is an active alarm present
F2-PREV ALARMS - Opens up the previous active alarms display
F3-NEXT ALARMS - Opens up the next active alarms display
F5-ALARM INFO - Opens up the alarm information display that provides detailed information about a certain alarm based on its alarm index number
F6-ALARM HISTORY - Opens up the alarm history display
F7-REMOTE HIST - Opens up the Alarm history for remote users
F10-MAIN - Open up the Main display

18) MAINTENANCE

18.1) The Barge Slip control system is virtually maintenance free. The few items that need periodic attention are:
18.1.1) MCP circulating fan and exhaust filters need inspection, cleaning, or replacement as necessary
18.1.2) MCP UPS system has internal batteries that will need replacement when they fail to hold a charge. These batteries are readily available from many sources. The UPS is monitored for battery failures and will generate an alarm if this condition exists.
18.1.3) The E-STOP system should be checked for proper operation yearly
18.1.4) All indicators should be checked for burnt out bulbs, on the panel mounted indicators these have a "push-to-test" feature that will activate the light when pressed.
18.1.5) All panels should be opened and inspected at a minimum of once a year for general health of the panel and gasket surfaces.

19) ALARMS

19.1) The alarm system for the Barge Slip controls consists of audible horns, red indicating lights, PanelView displays and for a few select alarms the LED display located at the following:
19.1.1) MCP - Main Control Panel located in the Conex (panel mounted buzzer)
19.1.2) Operator CAB (horn, red lights, and LED display)

NOTE: The RED light located on the Operator Cab light stack is used for indication of the OPERATE Mode in addition to indicating an alarm. If an alarm occurs the Red light will flash 19.2) The PLC control system monitors various control points and specific tasks to generate alarms. When an alarm occurs the Operator is notified by visual and audible methods.
19.3) There are PanelView displays located at the control stations that will display detailed information for the alarm as well as suggested corrective actions. The PanelView displays also have a historical display feature that will collect up to 128 alarms that occur with a time and date stamp for review at a later date. The Operator can call up the historical display at any time to review past alarms. When the alarm history contains this number of alarms, the oldest alarms are deleted when new alarms occur.
19.4) In addition to the normal methods for alarm annunciation the LED sign will display three alarms and the Red strobe with klaxon alarm horn located on top of the Operator Cab will activate These alarms are:
19.4.1) Ramp cylinders approaching maximum extension
19.4.2) Ramp disconnect imminent
19.4.3) Evacuation alarm, all personnel to leave the site, alarm horn on for five 1 second pulses and then off for a 5 second pause then repeat on again for five 1 second pulses, this will repeat until the evacuation alarm is cleared
19.5) A typical alarm sequence:
19.5.1) Alarm event occurs, audible alarm horns activate and alarm lights will flash at $1 / 2$ second intervals.
19.5.2) Operator will press one of the silence buttons located at the Control Stations: MCP, OCC, SRS control panels the alarm horns will silence and the alarm lights will be steady ON.
19.5.3) Operator reviews the alarm text on the PanelView
19.5.4) Operator will correct the alarm condition
19.5.5) Operator presses the "RESET" button on the PanelView display, or the Alarm Reset pushbutton located at the Control Stations
19.6) If the alarm is successfully cleared an no further active alarms are present the alarm lights will be turned OFF

20) TABLE OF ALARMS

20.1) The text in the ALARM DESCRIPTION and CORRECTIVE ACTION fields will be what is displayed to the Operator at the PanelView
20.2) Alarm GROUP field; The alarm groups are to distinguish between the major events and everything else. The controls on the Barge Slip are designed to "operate", that is to let the Operator continue and not be stopped for non-major events.
20.3) Index field is used to identify the alarm. This index number can be referenced with the PanelView operator display panels for further information.
20.4) Alarm Groups
20.4.1) N1 - Major alarm event causing all movement to stop and motors to shut off
20.4.2) N1A - E-STOP Pressed, with no other Alarms
20.4.3) N2 - Hydraulic Systems major fault alarms, will stop hydraulic operations 20.4.4) N2A - All other Hydraulic Systems Alarms (will not stop or shut down the Hydraulic system)
20.4.5) N3 - All other Alarms

INDEX	GROUP	ALARM DESCRIPTION	CORRECTIVE ACTION
A01	N2	A01 - Hydraulic Pump (1MOT1) VFD1 Has Faulted	1. Verify hydraulic motor for proper operation 2. Inspect VFD display to determine the nature of the fault 3. Correct fault condition 4. Reset VFD, press RED button on VFD interface module 5. Clear and Reset Alarms 6. NOTE: If continued operation is desired then reconfigure valves and DISABLE this alarm to have (1MOT2) feed the Left Hand Cylinders system
A02	N2	A02 - Hydraulic Pump (1MOT2) VFD2 Has Faulted	1. Verify hydraulic motor for proper operation 2. Inspect VFD display to determine the nature of the fault 3. Correct fault condition 4. Reset VFD, press RED button on VFD interface module 5. Clear and Reset Alarms 6. NOTE: If continued operation is desired then reconfigure valves and DISABLE this alarm to have (1MOT1) feed the Right Hand Cylinders system
A03	N2	A03-HPU1, Disconnect is open	1. Verify the position of the disconnect 2. Close disconnect 3. Clear and Reset Alarms 4. NOTE: If continued operation is desired then reconfigure valves and DISABLE this alarm to have (1MOT2) feed the Left Hand Cylinder system

INDEX	GROUP	ALARM DESCRIPTION	CORRECTIVE ACTION
A04	N2A	A04 - HPU1, High Pressure Filter is Clogged	1. Inspect the filter assembly 2. Operation is allowed to continue, but maintenance is required 3. Clear and Reset Alarms
A05	N2A	A05-HPU1, Return Filter is Clogged	1. Inspect the filter assembly 2. Operation is allowed to continue, but maintenance is required 3. Clear and Reset Alarms
A06	N2A	A06 - HPU1, Hydraulic Oil Heater is Over Heating, Requires Heater Shutdown	1. Open BRK3 in the 480VAC panel, for the Oil Reservoir Heater on HPU1 Reservoir 2. Verify oil temperature in the hydraulic reservoir, visual inspection of thermometer located in site-glass 3. Visually inspect the Hydraulic Oil Heater for Failure 4. Verify Clear and Reset Alarms 5. If Continued Operation is desired then OVERRIDE this Alarm. 6. This Alarm will remain disabled until the Operator reenables it
A07	N2A	A07-HPU1, Hydraulic Oil Reservoir, LOW Level WARNING	1. Verify oil level in hydraulic reservoir, visual inspection of sight glass on reservoir, inspect for oil leakage in piping or connections 2. Confirm valve alignment 3. Add oil to reservoir 4. Clear and Reset Alarms
A08	N2	A08 - HPU1, Hydraulic Oil Reservoir, LOW Level SHUTDOWN	1. Verify oil level in hydraulic reservoir, visual inspection of sight glass on reservoir, inspect for oil leakage in piping or connections 2. Confirm valve alignment 3. Add oil to reservoir 4. Clear and Reset Alarms 5. NOTE: If continued operation is desired then reconfigure valves and DISABLE this alarm to have (1MOT2) feed the Left Hand Cylinders system
A09	N2A	A09-HPU1, Hydraulic Oil Reservoir, HIGH temperature WARNING	1. Verify oil temperature in the hydraulic reservoir, visual inspection of integral thermometer in sight glass on reservoir 2. Confirm the heater setting for the oil reservoir heater 3. Clear and Reset Alarms
A10	N2	A10 - HPU1, Hydraulic Oil Reservoir, HIGH temperature SHUTDOWN	1. Verify oil temperature in the hydraulic reservoir, visual inspection of integral thermometer in sight glass on reservoir 2. Confirm the heater setting for the oil reservoir heater 3. Clear and Reset Alarms

INDEX	GROUP	ALARM DESCRIPTION	CORRECTIVE ACTION
A11	N2	A11-HPU2, Disconnect is open	1. Verify the position of the disconnect 2. Close disconnect 3. Clear and Reset Alarms 4. NOTE: If continued operation is desired then reconfigure valves and DISABLE this alarm to have (1MOT1) feed the Right Hand Cylinder system
A12	N2A	A12 - HPU2, High Pressure Filter is Clogged	1. Inspect the filter assembly 2. Operation is allowed to continue, but maintenance is required 3. Clear and Reset Alarms
A13	N2A	A13-HPU2, Return Filter is Clogged	1. Inspect the filter assembly 2. Operation is allowed to continue, but maintenance is required 3. Clear and Reset Alarms
A14	N2A	A14 - HPU2, Hydraulic Oil Heater is Over Heating, Requires Heater Shutdown	1. Open BRK4 in the 480VAC panel, for the Oil Reservoir Heater on HPU2 Reservoir 2. Verify oil temperature in the hydraulic reservoir, visual inspection of thermometer located in site-glass 3. Visually inspect the Hydraulic Oil Heater for Failure 4. Verify Clear and Reset Alarms 5. If Continued Operation is desired then OVERRIDE this Alarm. 6. This Alarm will remain disabled until the Operator reenables it
A15	N2A	A15-HPU2, Hydraulic Oil Reservoir, LOW Level WARNING	1. Verify oil level in hydraulic reservoir, visual inspection of sight glass on reservoir, inspect for oil leakage in piping or connections 2. Confirm valve alignment 3. Add oil to reservoir 4. Clear and Reset Alarms
A16	N2	A16 - HPU2, Hydraulic Oil Reservoir, LOW Level SHUTDOWN	1. Verify oil level in hydraulic reservoir, visual inspection of sight glass on reservoir, inspect for oil leakage in piping or connections 2. Confirm valve alignment 3. Add oil to reservoir 4. Clear and Reset Alarms 5. NOTE: If continued operation is desired then reconfigure valves and DISABLE this alarm to have (1MOT1) feed the Right Hand Cylinder system
A17	N2A	A17-HPU2, Hydraulic Oil Reservoir, HIGH temperature WARNING	1. Verify oil temperature in the hydraulic reservoir, visual inspection of integral thermometer in sight glass on reservoir 2. Confirm the heater setting for the oil reservoir heater 3. Clear and Reset Alarms

INDEX	GROUP	ALARM DESCRIPTION	CORRECTIVE ACTION
A18	N2	A18 - HPU2, Hydraulic Oil Reservoir, HIGH temperature SHUTDOWN	1. Verify oil temperature in the hydraulic reservoir, visual inspection of integral thermometer in sight glass on reservoir 2. Confirm the heater setting for the oil reservoir heater 3. Clear and Reset Alarms
A19	N1	A19 - Heat or Smoke Alarm in Conex Container	1. Verify the presence of heat or smoke in the Conex container 2. Ventilate the container 3. Clear and Reset Alarms
A20		A20-SPARE	
A21	N3	A21-General Generator Alarm	1. Visually inspect generator for cause of the alarm 2. Repair, reset alarm at generator 3. Clear and Reset Alarms
A22	N3	A22 - Automatic Transfer Switch is in emergency mode position	1. Verify the position of the transfer switch 2. Restore normal power source 3. Re-Transfer power back to the normal power source 4. Clear and Reset Alarms
A23	N1A	A23- OCC - Operator Control Console E-STOP Button Pressed	1. Verify why the E-STOP button was pressed 2. Reset E-Stop button 3. Clear and Reset Alarms
A24	N1A	A24 - SRS - Slip Remote Station ESTOP Button Pressed	1. Verify why the E-STOP button was pressed 2. Reset E-Stop button 3. Clear and Reset Alarms
A25	N1A	A25 - MCP - Main Control Panel ESTOP Button Pressed	1. Verify why the E-STOP button was pressed 2. Reset E-Stop button 3. Clear and Reset Alarms
A26	N3	A26 - UPS System in Main Control Panel is on Batteries	1. Verify the power source to the Main Control Panel, CKT2 in the Load Center 2. Inspect the UPS for proper operation 3. Clear and Reset Alarms

INDEX	GROUP	ALARM DESCRIPTION	CORRECTIVE ACTION
A27	N3	A27 - UPS System in Main Control Panel has a low battery	1. Verify the proper operation of the UPS 2. Replace the batteries in the UPS 3. Clear and Reset Alarms
A28	N3	A28 - UPS System in Main Control Panel has a failed batteries	1. Verify the proper operation of the UPS 2. Replace the batteries in the UPS 3. Clear and Reset Alarms
A29	N3	A29 - UPS System in Main Control Panel has a general fault	1. Verify the proper operation of the UPS 2. Correct the alarm condition 3. Clear and Reset Alarms
A30	N1A	A30 - MCP - Main Control Panel ESTOP Relay is Not Engaged	1. Verify the position of the E-STOP relay 2. Reset any E-Stop alarms 3. Verify the PLC is in the "RUN" mode 4. Verify CB22 in MCP is closed 5. Verify CR1 in MCP is activated 6. Clear and Reset Alarms
A31	N2A	A31 - WARNING Barge Disconnect Imminent	1. Verify position of the Barge 2. Clear users off of the Barge 3. Place mode into OPERATE 4. Remove the Ramp from the Barge 5. Clear and Reset Alarms
A32	N2A	A32 - WARNING Cylinders Near Maximum Extension	1. Verify position of the Barge 2. Clear users off of the Barge 3. Place mode into OPERATE 4. Remove the Ramp from the Barge 5. Clear and Reset Alarms
A33	N2	A33 - Movement on the In-Board cylinder occurred during Warm-up (OPERATE Mode only)	1. Visually inspect the connection to the Barge to ensure Ramp is still connected 2. Inspect for mechanical problems, confirm valve configuration 3. Clear and Reset Alarms
A34	N2	A34 - Movement on the Out-Board cylinder occurred during Warm-up (OPERATE Mode only)	1. Visually inspect the connection to the Barge to ensure Ramp is still connected 2. Inspect for mechanical problems, confirm valve configuration 3. Clear and Reset Alarms

INDEX	GROUP	ALARM DESCRIPTION	CORRECTIVE ACTION
A35	N2	A35 - Pressure in the Out-Board cylinder is greater than set-point during the Warm UP operation	1. Visually inspect the connection to the Barge to ensure Ramp is still connected 2. Inspect for mechanical problems, confirm valve configuration 3. Clear and Reset Alarms
A36	N2	A36 - Pressure in the In-Board cylinder is greater than set-point during the Warm UP operation	1. Visually inspect the connection to the Barge to ensure Ramp is still connected 2. Inspect for mechanical problems, confirm valve configuration 3. Clear and Reset Alarms
A37	N2	A37 - Cylinder pressures did not drop while changing the mode from OPEARTE to COAST, this indicates that Ramp is not in contact with Barge	1. Visually verify the position of the Barge and the Ramp 2. Ensure the Ramp is in contact with the Barge 3. Clear and Reset Alarms
A38			
A39	N3	A39 - Ramp Angle Side to Side Warning Difference is Greater than or Equal to 1.5° NOTE: No further movement will be allowed to increase the difference. Alarm is not active while in COAST mode	1. Verify position of Ramp 2. Manually adjust Ramp to even out to reduce the error 3. Clear and Reset Alarms
A40	N2	A40 - Ramp Angle Side to Side Difference is at Maximum, NO further movement will be allowed Difference is Greater than or Equal to 3.0° NOTE: Alarm is not active while in COAST mode	1. Verify position of Ramp 2. Inspect for mechanical failure of system 3. Manually adjust Ramp to even out to reduce the error 4. Clear and Reset Alarms
A41	N2	A41 - Coast Ball Valve (3VM1) failed to OPEN NOTE: If placing Ramp onto the Barge and the pressure transducers confirm that the Barge has taken the load this alarm will not halt operations.	1. Verify the position of the valve 2. Verify MCP, CB11 has not tripped 3. Verify MCP, CB16 has not tripped 4. Clear and Reset Alarms

INDEX	GROUP	ALARM DESCRIPTION	CORRECTIVE ACTION
A42	N2	A42 - Coast Ball Valve (3VM1) failed to CLOSE NOTE: If removing the Ramp from the Barge and the pressure transducers confirm that the hydraulic system is developing pressure this alarm will not halt operations.	1. Verify the position of the valve 2. Verify MCP, CB11 has not tripped 3. Verify MCP, CB16 has not tripped 4. Clear and Reset Alarms
A43	N2	A43 - Coast Ball Valve (3VM2) failed to OPEN NOTE: If placing Ramp onto the Barge and the pressure transducers confirm that the Barge has taken the load this alarm will not halt operations.	1. Verify the position of the valve 2. Verify MCP, CB11 has not tripped 3. Verify MCP, CB16 has not tripped 4. Clear and Reset Alarms
A44	N2	A44 - Coast Ball Valve (3VM2) failed to CLOSE NOTE: If removing the Ramp from the Barge and the pressure transducers confirm that the hydraulic system is developing pressure this alarm will not halt operations.	1. Verify the position of the valve 2. Verify MCP, CB11 has not tripped 3. Verify MCP, CB16 has not tripped 4. Clear and Reset Alarms
A45	N2	A45 - Coast Ball Valve (3VM3) failed to OPEN NOTE: If placing Ramp onto the Barge and the pressure transducers confirm that the Barge has taken the load this alarm will not halt operations.	1. Verify the position of the valve 2. Verify MCP, CB11 has not tripped 3. Verify MCP, CB16 has not tripped 4. Clear and Reset Alarms
A46	N2	A46 - Coast Ball Valve (3VM3) failed to CLOSE NOTE: If removing the Ramp from the Barge and the pressure transducers confirm that the hydraulic system is developing pressure this alarm will not halt operations.	1. Verify the position of the valve 2. Verify MCP, CB11 has not tripped 3. Verify MCP, CB16 has not tripped 4. Clear and Reset Alarms

INDEX	GROUP	ALARM DESCRIPTION	CORRECTIVE ACTION
A47	N2	A47 - Coast Ball Valve (3VM4) failed to OPEN NOTE: If placing Ramp onto the Barge and the pressure transducers confirm that the Barge has taken the load this alarm will not halt operations.	1. Verify the position of the valve 2. Verify MCP, CB11 has not tripped 3. Verify MCP, CB16 has not tripped 4. Clear and Reset Alarms
A48	N2	A48 - Coast Ball Valve (3VM4) failed to CLOSE NOTE: If removing the Ramp from the Barge and the pressure transducers confirm that the hydraulic system is developing pressure this alarm will not halt operations.	1. Verify the position of the valve 2. Verify MCP, CB11 has not tripped 3. Verify MCP, CB16 has not tripped 4. Clear and Reset Alarms
A49	N3	A49-In-Board Mooring Winch Faulted	1. Verify condition of Winch and Motor 2. Select "WINCH" from PanelView display 3. Press the reset button for the Winch 4. Clear and Reset Alarms
A50	N3	A50 - Out-Board Mooring Winch Faulted	1. Verify condition of Winch and Motor 2. Select "WINCH" from PanelView display 3. Press the reset button for the Winch 4. Clear and Reset Alarms
A51	N3	A51- Mooring Winch No. 1 Faulted	1. Verify condition of Winch and Motor 2. Select "WINCH" from PanelView display 3. Press the reset button for the Winch 4. Clear and Reset Alarms
A52	N3	A52-Mooring Winch No.2 Faulted	1. Verify condition of Winch and Motor 2. Select "WINCH" from PanelView display 3. Press the reset button for the Winch 4. Clear and Reset Alarms
A53	N3	A53- Mooring Winch No.3 Faulted	1. Verify condition of Winch and Motor 2. Select "WINCH" from PanelView display 3. Press the reset button for the Winch 4. Clear and Reset Alarms

INDEX	GROUP	ALARM DESCRIPTION	CORRECTIVE ACTION
A54	N3	A54 - Mooring Winch No. 4 Faulted	1. Verify condition of Winch and Motor 2. Select "WINCH" from PanelView display 3. Press the reset button for the Winch 4. Clear and Reset Alarms
A55	N3	A55 - HPU1 Cross-Connect to HPU2	1. Verify proper valve alignment 2. Speed of Ramp will be $1 / 2$ of normal 3. After movement, re-configure system to separate the two power units 4. Verify the valve alignment 5. De-Select this feature from the PanelView display 6. Clear and Reset Alarms
A56	N3	A56 - HPU2 Cross-Connect to HPU1	1. Verify proper valve alignment 2. Speed of Ramp will be $1 / 2$ of normal 3. After movement, re-configure system to separate the two power units 4. Verify the valve alignment 5. De-Select this feature from the PanelView display 6. Clear and Reset Alarms
A57	N3	A57-EVACUATE ALARM	1. Press Red E-STOP Button 2. Leave the area 3. RESET: De-Select the alarm button from the "MAIN" display 4. Restore any E-STOP Buttons that were activated 5. Clear and Reset Alarms
A58	N3	A58 - Ramp Angle at Maximum UP Position	1. Verify position of Ramp 2. Make preparations to remove the Ramp from the Barge if attached, remove Ramp 3. Lower the Ramp 4. Clear and Reset Alarms
A59	N3	A59 - Ramp Angle at Maximum DOWN Position	1. Verify position of Ramp 2. Make preparations to remove the Ramp from the Barge if attached, remove Ramp 3. Raise the Ramp 4. Clear and Reset Alarms
A60			

Attachment B

Control System Drawings L2

L2 SYSTEMS, LLC 3322 16th STREET EVERETT, WA 98201 425-258-2402

PNo Eninees. hoc. is not esponsible for orotey	
construction of the design shown on these drWhere specifications are general or not called	
98//4/100	$\underset{\text { fill As-uvirs }}{\text { SHop }}$
	Ssien consinuctio
REV DAAE	DESCRPTITON

1506 West 36th Avenue
Anchorage, Alaska 99503
Phone: 907.561.1011
Fax: 907.563.4220
www.pndengneers.com

USE 60. COPPER WIRE

2
L2 SYSTEMS, LLC 3322 16th STREET EVERETT, WA 98201 425-258-2402

$\begin{aligned} & 3 \\ & \hline \end{aligned}$	FIELD AS-BUILTS SHOP AS-BULTS

1506 West 36th Avenue
Anchorage, Alaska 99503
Phone: 907.561.1011
Fax: 907.563.4220
www.pnengineers.com

	ARRC WHITTIER BARGE SLIP DUAL USE CONVERSION				
	MCP - PLC OUTPUTS 1 WIRING DIAGRAM				
	L2 JOB \# DESIGNED BY CHECKED BY:		DATE: PROJECT NO	$\begin{aligned} & 4 / 4 / 40 \\ & \hline 19902 \end{aligned}$	

Attachment C

Mechanical System Construction Drawings

MECHANICAL GENERAL NOTES

APPLCABLL CODES AND STANDARDS

NO SIAGLEE CODE OR SPECIIFICATION EXISTS FOR THIS DESIGN. THE DESIGN WIL
BE BASED ON APPLCABLE SECTONS OF THE

- machinery, electrical and controls design - aAshto movable bridge
structural steel design - aisc asd/Lrfd: thirteenth edition
- WELDING - AWS D1.1:2008

DESIGN CRITERIA

DESIGNLOADS

- MODIFIED SPAN DEAD WEIGHT 504 KIP
$\begin{array}{ll}\text { - DESIGN SNOW LOAD ALLOWANCE (40 PSF) } & 168 \mathrm{kIP} \\ \text { - SNOW REMOVAL EQUIPMENT WEIGHT } & 60 \mathrm{kIP}\end{array}$

DESIGN RANGE OF MOTION

THE MECHANICAL SYSTEM WILL PROVIDE A TOTAL OF APPROXIMATELY THIRTY (30) ADDITIONAL TRAVEL OF ONE (1) FOOT UPWARD TO MINIIIE DAMAGE POTENTAL:

- MAX OBSERVED TIDE $18.0 \mathrm{FT}+$ MAX VESSEL FREEBOARD $18.0 \mathrm{FT}+1.0 \mathrm{FT}$
$=37.0$ FT (ELEVATION OF TOP OF RALL ON BARGE)
- REASONABLE MNIMUM OPERATING TIDE $1.0 \mathrm{FT}+\mathrm{MN}$
$\mathrm{FT}=7.0 \mathrm{FT}$ (ELEVATION OF TOP OF RAIL ON BARGE)

GENERAL MACHINERY DESCRIPTION

THIS SPECIFICATION COVERS THE WORK NECESSARY TO BUILD, INSTALL, STARTUP NDD DEBUG THE MACHINERY TO BE USED FOR THE ACTUATION OF THE WHITTIER BARGE SLI \#2 LOCATED IN WHIITER ALASKA.THE SCOPE OF MACHINERY TO BE
BUILT AND INSTALEED IS DESCRIBED AND DEFNED BY THIS SPECIFICATION AND THE OLLOWING DRAWING SETS:
M1 - GENERAL NOTES AND REQUREMENTS

12 - TOP ASSEMBLY GENERAL ARRANGEMEN

M3 - HYDRAULIC LIFT CYLINDER
M4 - HYDRAULIC SCHEMATC \&
45 - STRUCTURAL COMPONENTS AND SUB-ASSEMBLIES
$M 6$ - HYDRAULIC POWER UNIT \& SHED
M - HYDRAULIC SYSTEM-ROUTING

FOR FINAL REVIEW

GENERAL MACHINERY DESCRIPTION (CONTINUED)

THE THREE (3) MAJor SUB-SYStems to be fabricated, installed, tested, and
validated are: 1. 2 (EA) IDENTICAL HYDRAULIC LIFT CYLINDERS, $15^{" \prime}$ bore $\times 209$ " STROKE, EACH MONTED APHRXXMATEEY VERTICALLY, WITH THE BARREL (BLINDR END RESTING (PROVIDED BY OTHERS) LOCATED BELOW THE TIDE LINE ON EACH SIDE OF THE BARGE RAMP, ATTACHED TO THE RAMP BY A NEWLY FABRICATED STRUCTURE,
2. A NEW HYDRAULIC SYSTEM CONSISTING OF TWO (2) 100 HP HYDRAULC
POWER UNTTS, EACH OPERATING ONE OF THE LIFT CYLINDERS AND CAPA POWER UNITS, EACH OPERATING ONE OF THE LITF CYLINDERS AND CAPPBLE, IN
EMERGENCY SITUATIONS, OF OPERATING BOTH LIFT CYINDERS SIMUTTANEOUSLY (THOUGH AT REDUCED SPEED), ALONG WTH ALL PLUMBING, VALVES, AND EQUIPMENT REQUIRED TO POWER THE LIFT CYLINDERS. THE HPU'S ARE BOTH HOUSED WTHIN A SINGLE HEATED SHED.
3. ELLCTRICAL AND CONTROL SYSTEMS TO OPERATE THE LIFT SYSTEM, INCLUDING A NEW OPERATOR STATION.

GENERAL MACHINERY OPERATION SUMMARY

THE BARME RAMP IS RAISED AND LOWERED FROM THE OPERATOR'S STATION BY
SIMULTANEOUSLY EXTENDING AND RETRACTING THE LIFT CYLINDERS. THE RAM
SPEED IS INFINTELY VARIABIE VIA OPERATOR SEIFCTABIE NOYSTCKS
SPEED IS ININITELY VARIABLE VAL
THE OPERATOR ALSO CONTROLS MINOR SIDE TO SIDE RAMP ADJUSTMENTS IN ORDE TO MAINTAIN THE RAMP IN A RELATVELY LEVEL ATTIUDE, SIDE TO SIDE.
GENERAL HYDRAULIC SPECIFICATIONS
ALL HIGH PRESSURE HYDRAULIC HOSE, TUBE, AND FITTINGS SHALL BE RATED FOR A MINMUM 3000 PSI WORKING PRESSURE. ALL LOW PRESSURE HYDRAULIC HOSE,
TUBE, AND FITTNGS SHALL BE RATED FOR A MINIMUM 600 PSI WORKING PRESSUR TUBE, AND FITTINGS SHALL BE RATED FOR A MINIMUM 600 PSI WORKING PRESSUR
ALL FLUID CONTAINMENT COMPONENTS SHALL BE COMPATBLE WITH THE SPECIFIED HYDRAULIC FLUDD. ALL LOAD-HOLDING HYDRAULIC CYLINDER VALVES (E.G.
COUNTERBALANCE VALVES) SHALL BE HARD PLUMBED DIRECTLY TO THE CYLINDER.
PRIOR TO STARTUP AFTER PROLONGED EXPOSURE TO LOW TEMPERATURES, ALL
YDRAULIC LNES WHICH ARE EXPOSED TO THE ATMOSPHERE SHALL BE CIRCULATED HYDRAULLC LINES WHICH ARE EXPOSED TO THE ATMOSPHERE SHALL
TO BRING FLUID TEMPERATURE UP TO 32 DEGREES F (MINMUM)

Viton seal material shall be used in all components.
THE HYDRAULIC RESERVOIR AND SHED SHALL BE INSLLATED, HEATED AND
VENTLLATED FOR OPERATION N N AMBIENT TEMPERATURES OF -20^{\prime} F TO $+80^{\circ}$
HEATER TO RAISE INSIDE TEMPERATURE TO $60^{\circ} \mathrm{F}$ @ -20° F AMBIENT TEMPERATURE tUBING SPECIIICATIONS
RIGID HYDRAULIC LINES INSIDE OF THE HYDRAULIC POWER SHED SHALL BE 316 STAINLESS STEEL TUBNG RATED TO THE PRESSURES INDICATED ABOVE. JOI
THE TUBING SHALL BE MADE USING COMMERCILL BITE TYPE FITTINGS OR EQUVALENT. FOR RIGID LINES OUTSIDE OF THE HYDRAULIC POWER UNIT SHED SEE SHEET M7.01. ALL BENDING RADII OF TUBING AND HOSES SHALL BE ACCORDING TO MANUFACTURERS SPECIFICATIONS.

HOSE SPECIFICATIONS:

ALL HYDRAULIC HIGH: PRESSURE HOSES SHALL BE SAE100R12. HOSES FOR LOW PRESSURE VENT LINES SHALL BE SAE10R2. SCETON HOSES SHALE BE SAE 100 S4.
ALL HOSES SHALL BE COMPATBLE FOR USE WTTH PANOLIN HLP SYNTH FLUID. HOSE END CONECTTNS FOR HIIG PRESSURE LINES SHALL BE SAE CODE 62 FLANGE
FITINGS. FITTINGS FOR LOW PRESSURE LINES SHAL BE SAE CODE 61 FLANGD FITTINGS. fiTting for low rressure lines shall be sae
FITINgs. fitings for suction lines shall be barb TYPe.

CLEANING SPECIFICATIONS:

HYRAUUC COMPONENTS MUST BE CLEANED AND INSPECTED PRIOR TO INSTALLATION ACCORDING TO ISO4406. LEVEL 17/15/12 REQUREMENTS. TESTING SPECIFICATIONS
SHOP (BENCH) TEST CERTIFICATE IS REQUIRED FOR ALL COUNTERBALANCE VALVES
 DEMONSTRATED TO THE ENGINEER DURING POWER UNT SHOP TEST.
COUNTERBALANCE TEST SHALL DEMONSTRATE FLOW FOR SPECIFED PRESSURE AND NO FLOW FOR 85% OF THAT PRESSURE (VALVE RESEAT PRESSURE). FLUID
TEMPERATURE: 70 F MIN, 100 F MAX. SPECIAL MANIFOLD FOR TEST MAY BE TEMPERATUR
REQUIRED.

DO NOT USE TEFLON TAPE.
BLEEDING PORTS TO BE PROVIDED AT HIGHEST POINTS OF THE INSTALLATION IN TH HPU SHED. PROVIDE ADDTIONAL TWO (2) PRESSURE GAUGES FOR TESTING AND
DIAGNOSIS. ALL RETURN \& DRAIN LINES TO THE TANK MUST TERMINATE BELOW THE OIL LEVEL.
GAUGE TEST PORTS TO BE PROVIDED WITH TEST COUPLINGS AS SHOWN IN THE
SCHEMATIC. SCHROEDER SYSTEM1620, AND PART NO SP1620 UN716VSSMO1 OR EQUIVALENT.

FOR FINAL REVIEW

NOTES (SHEETS M3.01 AND M3.02

CYLINEER WLL BE OPERATED © Na THE VERTICAL POSTIION, ROD END UP WTH
THE BARREL MMERSED
2. CYLNDER WIL BE DOUBLE ACTING (EXTEND) WTH FLLAAT MODE CAPABLITY,

3. PRESSURE - 1500 PSI working; 3000 PSI DESIIN; 4500 PSI RAtED.
4. ALL LOAD-BEARIN COMPONENTS OF CYINDER SHALL HAVE A MINMUM 5:1 SAFETY FACTOR BASED ON MATERAL ULTIMATE STRENGIH AT DESIGN
PRESURE. MINMMM $3: 1$ BUCKLIGG SAEETY FACTOR 9 O 3000 PSI. PE-STAMPED BUCKLING AND STRENGTH (INCLUDING BURST) CALCL
SUBMITED FOR ALL LOAD-BEARING COMPONENTS.
5. CYLLNDER TO BE HYOROSTATCALLY TESTED TO 4500 PSI AND FULLY CYCLED IN BOTH DIRECTIONS, WITH VALLESS INSTALLED. NO PERMANENT DEFORMATION
OF ANY PART OF THE SYSTEM SHALL EE ALLOWED FOLIOWNG THE TEST.
6. FOLLOWNG COMPLETION OF TESTNG, ALL EXPOSED PORTS AND THREADED HOLES NUST BE CAPPED AND PROTG
OR NTROOUCTION OF CONTAMINANTS
7. ROD MATERIAL AND COATING SHALL BE APPROPRATE FOR SALT SPRAY AND
OCCASIONAL SALT WATER MMERSION (SPLASH ZONE). CYINDER WILL BE OCCASIONAL SALT WATER MMMERSIONTSPLASH ZONE) CYLNDER WLL
OPERRATIGG ON WATERFRONT IN CENTRAL ALASKA WTH COOL TO RRIGD

winter conotions.
8. SEALS AND ROD WIPER Shall be approprate for salt spray ENURONMENT/ OCCASIONAL IMMERSION AS WELL AS FLOAT-MODE OPERATON
SEAIS AD WPER TO BE REPLACEABLE WITHOUT REQUIRNG DISASSEMBLY OF CYINDER.
9. CYLINDER WILL OPERATE ON SYNTHETTC BIO-DEGRAdABLE FLUID (i.e. PANOLII
10. CYLINDER to be suppled with ports and mounting surface for
11. CYIINEER TO HAVE ENGRAVED, PERMMNENT NAMEEPATE SECURELY ATTACHED
 THEOREICAL STAIIC FAL
CYLINDER IN POUNDS.

12. SELLER TO Provid calculatons Assembly and detall drawncs of
CYLINOER for ENG

13. CYLINDER BARREL TO BE TSA (THERMAL SPRAYED ALUMINM) COATED PRIOR
TO PAITING WIH MARINE GRADE PAINT APPROPRATE FOR SALT WAIER IMMERSION.
14. nickel-based hard face weld overlay appled to this surface. grind

- our sel

16. All raw materials and welos to be ultrasoncally inspected prior to
17. CYINDER DRY WEIGHT: APPROX. 12,800 LBS.
18. TOTAL QUANTITY 3 (2 PRIMARY + 1 SPARE),
19. CCIINEER MANUFACTURER TO PROVIIE RECOMMENAATIONS FOR STORAGE OF

$$
\begin{aligned}
& \text { FLOAT MODE VALVE } \\
& \text { SEE ITEM } 3 V M 1 / 3 \mathrm{MM} \text { ON SHEET M4.01 }
\end{aligned}
$$

Counterbalance valve
SEE ITEM $1 \mathrm{VL} 1 / 1 \mathrm{~V}$ V 2 ON SHEE

SEE ITEM IVPP1/1VPP4 ON SHEET M4.01
Bx SOCKET HeAD CAP SCREw, $95 / 8-11$ UNC $\times 11^{\prime \prime}$ LONG, STAINLESS

LIFT CYLINDER ASSY
SCALE: NONE

MANIFOLD INSTALLATION
SCALE: NONE
PRESSURE RELLEF VALVE
SEEE IIEM 2VPC1/2VPC2
SEE IEM 2VP
FOR DETALS

CIRCULATION VALLE
SEE ITEM IVPP2/VPP3 on SHEET M4.01 FOR DETALS

FLOAT MODE VALVE
SEE ITEM 3 MM2/3VM4 ON SHEET M4.01
-

FOR FINAL REVIEW

RELEASED FOR

 CONSTRUCTION MAY 27, 2010

NOTES:

GENERAL:
HOSES SHAL BE ACCORDING, TO
MANUACTUVERS SPECFICATIONS.

Attachment D

Hydraulic System Schematic

atr.	part number	DESCRIPTION	manuFacturer	
2	TJo0111B (Quote Number)	ELECTRIC MOTOR, $100 \mathrm{HP} / 1800$ RPM/ 405TSC /460V / 3PH/60HZ/ with THERMOSTATS	LINCOLN	
2	PD1-B963-A2-R01	PUMPMOTOR ADAPTOR	BSF	
2	RT 48-01 ST $2-1 / 8 \times \times 1 / 2$	COUPLING HALF, 2-1/18"(B) $\times 112^{\prime \prime}(\mathrm{K})$ (MOTOR)	Rotex	
2	RT 48-02 ST $63 \mathrm{MM} \times 18 \mathrm{MM}$	COUPLING HALF, 63mm(B) $\times 18 \mathrm{~mm}(\mathrm{~K})$ (PUMP)	Rotex	
2	RT 48	COUPLING INSERT, 98 SHorea Red	ROtEX	
2	Qx82-200R-136	INTERNAL CRESCENT GEAR PUMP	BUCHER	
2	2BVVL2R48BL	ball valve, 3" SAE	StauFF	
2	SAS-48	3" CODE 61 SPLT FLG. ${ }^{\text {3 }}$ " SAE ADAPTER	StauFF	
2	HA-48	$3{ }^{\prime \prime}$ HOSE BARB \times 3" SAE ADAPTER	StauFF	
2	HAS90-48	$3^{\text {" }}$ HOSE EARB $\times 3^{\prime \prime}$ CODE 61 ELBOW	StauFF	
2	RV40-65-S	CHECK VALVE, 65psi, SAE-32	StauFF	11
2	SF250-H05-V-T/10/P110/L	PRESSURE FLLTER	Stauff	12
1Ref	SE250H05V	REPLACEMENT ELEMENT, SF250	StauFF	A
2	NSAB-KXV-BA	GAUGE SNUBBER, 1/4" ${ }^{\text {NPT }}$	Sun	
2	SPG-063-05000-5---N04	PRESSURE GAUGE, 0-5000psi	StauFF	14
2	мc700---24C1s	SUBPLATE, D10 wT-18A CAVITY	SEALUM	15
2	RPKC-LAV	Pressure relie valve	sun	16
2	DSHG-10-3C3-C112-ET-A10-N1-4390	DIRECTIONAL VALVE, D10	YUken	17
2	RFS250G10V/F/G110/F	RETURN FLLTER	STAUFF	18
1Ref	RE-250c10V	REPLACEMENT ELEMENT, RFS250	StauFF	A
2	SM-1919.01	FILTER WELD RING, RFS250, 304SS	DRT	
2	SDB-122	DESICCANT BREATHER	STAUFF	20
2	7033-20-20	BREATHER ADAPTOR FITTING	brennan	21
2	SLTS18-0-2-N16-G115	Leveltemperature switch	StauFF	22
2	SNA305V-S-O-U	Level gauge, 12"	StauFF	23
2	SNA305V-S-T1-U	LEVEL GAUGE W/DIL THERMOMETER, 12"	StauFF	24
2	L2H-H203	DUAL TEMPERATURE SWITCH	BARKSDALE	25
2	65140	THERMOWELL	THERMAL TRANSFER	26
2	BLT739R13W5	IMMERSION HEATER, 5KW, 480V	WatLow	27
2	28VL2124B	ball valve, sat-24	Stauf	28
2	WR-1913-01	HYORAULIC RESERVOIR, 300 GALLON, SS	DRT	29
2	WT-1914.01	BASE FRAME/ DRRP TRAY	DRT	30
3	FBV2H320101M	BALL VALVE, 2 " CDE 610 O-RING/FLAT, SS BALL	Stauff	
6	FbV2T320101M	BALL VALVE, 2 " CDE 62 O-RING/FLAT, SS BALL	Stauff	32
2	FBV2H241101M	BALL VaLVE, 1-1/2" CDE 610 -Ring/fleat, ss	StauFF	33
4	FBV2T241101M	BALL VaLVE, 1-1/2" CDE 62 O-RING/FLAT, SS	STAUFF	34
2	MA-1915-01	MANIFOLD ASSEMBLY, HYD. LIFT CYLINDER	DRT	35
2 Ref	MM-1916-01	MANIFOLD, HYD. LIFT CYLINDER	DRT	5 A
4Ref	SKK20-7/16UNF-VE-V2A	TEST POINT, SAE-04, SS	StauFF	35B
4 Ref	BBV25240101M / EL200-110VAC	BALL VALVE, 1-1/2" MANIFOLD MOUNT, ELECTRIC ACTUATOR	StauFF	350
2 Ref	CBIA-LHV	COUNTERBALANCE VALVE	SuN	350
4Ref	DTDA-SCV-DT04-2P	POPPET VALVE, 2-POS / 2 -WAY / N.C.	SuN	35 E
1	SA-1	HPU ENCLOSURE, (MODIFIED 30FT SHIPPING CONTAINER	DRT	36

-			
	-	-	
-	-		
REV.	DATE	DESCRIPTION	BY

DRT Fluid Power, LLC

 THIS ORAWIN IS ITHE PROPERTY OF DRT FLUID POWER AND AL
RIGHTS TO THE DATA HEREIN ISCI OSED REST WITE POWER. NO PART OF THIS DATA MAY BE RESRROUUCED OR USED POWER. NO PART OF THIS DATA AAY BE RERRODUCED OR USED

Job /ASSY.	${ }^{1214}$ ALASKA MARINE LINES	SCAL	MATER		date	${ }^{\text {subtitle }}$
			DRAWN BY			
LOCATION		TOLERANCESEXCEPT AS NOTED		R. WITRUK	01125110	
s.o.\#	2006513		ENG. BY	M. Thebault	0112510	H
PROD.\#	8001591	$x= \pm .030$	CHECKED BY			
P.O.\#		$x \mathrm{x}= \pm .015$	APPROVED BY			
PROJECT	AML BARGE LOADING FACILITY	xxX $= \pm .005$				
	WHITTIER	FRAC. $= \pm 1 / 32$				

Attachment E

As-Built ARRC Whittier Dual Use Conversion (Civil \& Structural)

ARRC WHITTIER BARGE SLIP DUAL USE CONVERSION

GENERAL NOTES

 GENERAL NOTEES:

1. MACHER, ELECTRICAL AND CONTROLS DESIGN - AASHTO MOVABLE BRIDGE CODE
2.

20. EXISING GIRER M MODFICATIN DESISN - AREMA (2009)
3. WELING
COMPONENTS
 THE ALL PROJECT PERMT REQUREMENTS
3. THESA GENERAL NOTES AND MLANS

DESIGN CRITERIA

ORIGINAL DESIGN LOADS FOR RAMP ARE NOT AFFECTED BY THIS PROJEC

- SNOW LAOD ON RAMP $=40$ PSF WTH CAT 966 LOADER (I.E. SNOW
CLEARED REGULARLY)
CLEARED REGULARLY
: SNOW LOOD ON OPRARR CAB $=300$ PSF
CONTANER HANDLER TRAVELING AT 5 MPH (SEE BeLow)

design vehicles

$\frac{\text { CAT } 966 \text { LOADER }}{\text { GVW= } 54 \mathrm{~K} \text { IMPACT }=33 \%}$

CONTAINER HANDLER

 COOPER E60 SINGLE LOCOMOTIVE

SURVEY
AlL CONSTR
LICENSED IN THE STATE OF ALASKA. AN ACCURATE METHOD OF HORZONTAL CONTROL SHALL BE ESTABLISHED BY THE CONTRACTOR AND
APPROVED BY HEE ENGINER BEFORE CONSTRUCTON BEGGN. THE CONTRACTOR SHALL MANTAN THE

 HorRZONTAL CON
THESE POINT.

MATERIALS AND CONSTRUCTION

MATERIALS NOT SPECIIICALLY NOTED IN THESE GENERAL NOTES OR ELSEWHERE ON THE DRAWNGS SHALL BE
SUBMTTEO BY THE CONTRACTOR FOR APRROVAL. APPROVAL WLL BE BASED ON CONFORMANCE TO CURRENT
 STANDARD UTLIZED BY THE OWNER ALL MATERALS MUST CONF
INOUSTRY STANDARDS AND MANUFACTURERS RECOMMENDATONS.
CONSTRUCTON NOT MENTINED IN THESE GENERAL NOTES SHALL BE PERFORMED USING REASONABLE CARE
ANO GOOD CONTIUCTON RRACTCES. FINAL NSPECTION ANO ACCEPTANCE OF ALL WORK NOT SPECIFCALY

 DRAWNGS, QUALTY
RECOMNENOATIONS.

 SHALL BE ASTM ASOO, GRAEE B, GALVANZED, UNLESS OTHERWSE NOTED. STEEL FOR
MEET A MNIWM CHARPY IMPACT ENERGY OF 15 FT-LBS AT 40 DEGRESS FAHRENHEIT.
PIPE PIEE -
PIIEE PILE SHaLl be apl $5 L-x 52$ or approved equal

 PROPERLY CONDTIONED LOW HYRROGEN. SUBMIT WELDER QUALFIC
ENGNEER FOR APRROVAL AT LEAST 15 DAYS PRIOR TO WELONG.

No weling Through galvanizd coating wll be performed. The galvanzing witin one inch of
THE welo shall be removed and repalied by spray Metalizing aiter weling. STEEL GRATNG -
STELL GRATNG SH

$\frac{\text { CEMENT SHORT CAR }}{\text { GVW= } 264 K \text { PRR CAR }}$
$\frac{A S-B U / L T}{9 / 21 / 10}$

BOLTS-
ALL BBits CONNECTNG STEEL TO CONCRETE OR STEEL TO STEEL CONNECTIONS SHAL BE ASTM A325,
GALVANZED, UNIESS OTHERMSE NOTED. WASHERS SHALL BE USED UNDER BOTH HEAD AND NUT OF ALL GALVAN IZED, UNLESS
ASTM A325 BOLTS.
IF "Nylock" nuts are specified wit steel bolts, the bolt shall be threaded and galvanized to
AcCep The corrosion resisant nylock nut.
 GAL VANZED. WASHERS SHALL BE USED UNDER BOTH HEAD AND NUT OF ALL ASTM ABOC AND ASTM A36
BOLTS AND THRU-RODS AND UNDER THE HEAD OF

 PIPE PILE DRIUNG -
ALL PILES SHALL BE DRIVEN. THE CONTRACTOR SHALL SUBMIT A PLAN FOR PILE DRVING. THE PLAN
SHAL CONTAN HAMMER TYPE AND DRVING METHOD FOR ALL PIPE TYPSS. THE CONTRACTOR SHALL

 ANY hammer that causes damage to the ples during driving operations shall be substiuted
wTh an acceptable alternate hammer at no aditinal expense to The owner impact HAMMERS SHALL BE SUPPLED WTH NEW CAPBLOCK CUSHIONS, WHICH SHALL BE CHANGED AT THE

PLLES SHALL BE PLACED WTHN 1% OF SPECIFED VERTICAL ALIGNMENT AND WTHIN 2 INCHES OF
SPECIFED LOCATION AT CUTOFF. PILES HITTING OBSTACLES, MSALIGNED PILES AND PILES THAT HA SNot ACHEVED MINMUM PENETRATION PRIOR TO REFUSAL SHALL BE PULLED BY THE CONTRACTOR WTH A
A VBRATORY MAMMER AND REDRIVEN AT NO ADDTIONAL COST TO THE OWNER. A IBRATORY HAMMER WTH A MNMUM HORSEPOWER OF 300 AND MNIMUM ECCENTRC MOMENT OF 4 .OOO IN-LBS OR AS
OHERMSE APPROVED BY ENGINER MUST BE AVALABLE AND ON SIIE DURING ALL PIPE PILE DRVNG OPERATINS.
pILE lengths shall be suppled as specified.
ALL PIE INSTALATIONS SHALL BE CONDUCTED WTH ENGINEER PRESENT. THE CONTRACTOR SHALL
ASSIST THE ENGINER IN MONTORNG THE PLE DRIUNG. THE CONTRACTOR SHALL MARK EACH PILE
 PILE REFUSAL OR CAPACITY, THE CONTRACTOR SHALL MARK THE PILES WTH ONE-INCH INCREMENTS
DURNG THE FINAL DRIVE. THE MARKS SHALL BE VISABLERRADABLE FROM ALL SDES OF THE PILE. PIPE PLLE SHALL be driven wih an impact hammer wit a mimum energy of 100,000 ft-lbs. ALL RECLAMMED STEEL PLLES, EXTRA NEW STEEL PLLES AND STEEL PPE PILE CUTOFFS 10 ' AND LONGER
SHALL BE DELVERED TO THE OWNER. CUTOFSS SHORTER THAN 10 ' SHALL BECOME THE PROPERTY O SHALL BE DELLERED TO THE OWNER. CUTOFFS SHORTER THAN 10 ' SHALL BECOME THE PROPERTY OF
THE CONTRACTOR. THE CONTRACTOR SHAL
SETIEVE PITE CUTOFSS THAT FALL
NTO WATER. THE CONTACTOR SHALL REMOVE THE PPE CUTOFFS FROM THE PROJECT SITE.
PLLES SHALL BE DRIVEN TO REQURED PILE CAPACITY AND EMBEDMENT AS SHOWN ON THE DRAWNGS.
PILE CAPACITY AND EMBEDMENT WLL BE DETERMNED SOLELY BY THE ENGINEER.
 CARE PILE LESS THAN 5 FEET LONG SHALL BE SPLCED. CAISSON INSTALLATON
CAIISON SHALL
BE INST
CAISON SHALL BE INSTALLED USING A MBRATORY HAMMER, OR OTHER APPROVED EQUIPMENT. IF OBSTACLES
ARE ENCOUTERED, EXCAVATON, JETTNG, OR OTHER METHOOS MAY BE REOURED TO ACHEVE MIN TIP
 REINFORCEMENT FOR DRIVNG AND YBRATORY HAMMER D
CONTRACTOR, SUBMT FOR ENGNERR REVEW APPROVAL.
reference pipe ple specifications for calison vertical alignment
GALVANIING
AL STEEL, PII

ARRC WHITTIER BARGE SLIP DUAL USE CONVERSION						
GENERAL NOTES (1 OF 2)						
(estane bry	$\underset{\text { MTBMKK }}{\text { DSI }}$	Pate	9/2/1/10	18		21

```
SPRAY METALIZING --
SPRAY METALLIING SHALL BE WTH ALUMINUM OR ZINC PER AWS C2.23-2003 AND AWS C2.18-1993
*)
M,
REPAR MA
CONRETE
CoNCRET PLACED UNDERWATER SHALL SHALL CONTAN AN ANT-WASHOUT ADMIXTURE TO HELP MINMIE 
```



```
*)
M,
DESGN, MINING, FORMWOR,, REINFRRCMENT,
CONTRACTOR SHALL SUBMTT MIX DESIGN AND SUPPORTNG TEST RESULTS 30 DAYS PRIOR TO PLACEMENT
OHE OWNER/ENGNEER FOR REVEW AND APPROVAL PRIOR TO MOBLIZATION FOR ANY CONCRENE WORR,
CONTAACTR SHALL NOTIFY THE OWNER/ENGNEER SEVEN (7) DAYS IN ADVANCE OF ANY CONCRETE
```



```
STRENGTH TEST CYLNDERS SHALL ONLY BE TAKEN AFTER ALL ADDTTVES HAVE BEEN ADDED. A MNMUM OF
SH
*)
NCREASE WORKA
GRAVEL BACKFILL INCH MNUS MATERILL wTH LESS THAN 6% (BY wT) PASSING #200 SIEVE. COMPACT IN
WELL LRADED 2 INCH MNUS MATERILL WTH LLESS 
BEDDING - - mem BE ADOT/PF D1. COMPACT IN LEVEL 6 NCH UFTS TO 95% PROCTOR DENSITY.
SUBMITTALS-
THE ENGNEER'S REVEW OF SUBMITALS WLL BE FOR GENERAL CONFORMNCE ONLY AND IT SHALL REMIN
SPECIICATONS. ANY NNTNDED DEVATION FROM THE PLANS AND SPECFIFATONS MUST BE SPECIFCALLY
```



```
M,
MHMCHWO WLL BE RETURNED TO THE CONTRACTOR. THE CONTRACTOR SHOULD ALLOW TWO WEESS FROM
*)
REOUREMENTS NECESSARY TO FARRICATE AND ERECT COMPONENTS OF', THE STRUCTURE IN CONSORMA
M,
MENGNEER'S
CERTFICATIONS, MANUFACTURER'S DATA AND OTHER INFORMATION FOR ALL MATERRALS, INCLUDING THOSE NO
S*)
*)
MALERALS SHALL CONFORM TO THESE GENERAL NTTES, GOOD WO
```

($\frac{A S-B U 1 L T}{9 / 21 / 10}$

DUAL USE CONVERSION						
GENERAL NOTES (2 OF 2)						
		$\left.\right\|_{\text {Date: }} ^{\text {Proiect No: }}$	9/2/1/10	19		

THE FOLLOWNG IS A PARTAL LIST OF REQURED SUBMITALS FOR THIS PROUECT. THIS DOES NOT
CONSTTUTE A COMPLETE UST AS IT WIL VARY DEEENONGG UPON THE CONTRACTOR'S METHOOS. CONSTRUCTION PLANS (INCLUDES PLAN DRAWINGS AND WRITTEN DESCRPTION OF METHODS): 2. SURVEY PLAN AND UPDA
4. STAGING AREA PLAN - INCLUDING DATES OF USE, COORDINATION WTH ARRC/AML

SHOP DRAWNGS AND MATERIAL CERTFIFATION
STEEL PIPE PILES
GALVANIING CERTFICATION AND/OR METALIIZNG CERTFICATION
AWS WELDN CERTIFICATION FOR ALL WELDERS UTLIZED ON THE PROJEC
WELONG PROCEOURES FOR ALL SHOP AND FILID WELDS
. WELDING RROCEDRES FOR ALL
14. CONCREEE MX DESIGN(S) \& TEST RESULTS
15. RED-LINE AS-BULT DRAWNGS $1=$

Attachment F

Hydraulic Reservoir System Capacity
 Calculations

Given: Whittier Barge Slip \#2 Modification. This option utilizes 2(ea) 15" bore x 209" stroke hydraulic lifting cylinders with 12 " OD, 8" ID rods. Each cylinder is supplied by its own reservoir.

Find: \quad Calculate the minimum Hydraulic Reservoir capacity required to support each system. Calculate Horsepower necessary to extend cylinder.

Solution:

Calculation variables

Lift Cylinder Bore (d_{cy}):
Lift Cylinder Rod Diameter ($\mathrm{od}_{\text {rod }}$):
Lift Cylinder Rod Inside Diameter ($\mathrm{id}_{\mathrm{rod}}$):
Lift Cylinder Stroke ($l_{\text {cy }}$):
Working Pressure of system $\left(\mathrm{P}_{\mathrm{w}}\right)$:
Length of supply lines $\left(\mathrm{l}_{\text {pipe }}\right)$:
Pump Flow $\left(\mathrm{Q}_{\mathrm{p}}\right)$:
Pump efficiency (η) :
Maximum fluid velocity $\left(\mathrm{V}_{\text {fluid }}\right)$:
Calculate minimum supply line diameter ($\mathrm{d}_{\text {pipe }}$):

$$
\mathrm{d}_{\text {pipe }}:=\sqrt{\frac{4}{\pi} \cdot \frac{\mathrm{Q}_{\mathrm{p}}}{\mathrm{~V}_{\text {fluid }}}}
$$

$$
\mathrm{d}_{\text {pipe }}=1.539 \text { in }
$$

$$
\text { Note: use } \quad d_{\text {pipe }}:=1.625 \text { in }
$$

Calculate total volume of oil in each system when retracted $\left(\mathrm{V}_{\text {ret }}\right)$:

$$
\mathrm{V}_{\text {ret }}:=\frac{\pi}{4} \cdot\left[\left(\mathrm{~d}_{\text {cyl }}^{2}-\text { od }_{\mathrm{rod}}^{2}+\mathrm{id}_{\mathrm{rod}}^{2}\right) \cdot \mathrm{l}_{\text {cyl }}+\mathrm{d}_{\text {pipe }}{ }^{2} \cdot \mathrm{l}_{\mathrm{pipe}}\right]
$$

$$
\mathrm{V}_{\mathrm{ret}}=168 \mathrm{gal}
$$

Calculate total volume of oil in each system when extended ($\mathrm{V}_{\mathrm{ext}}$)

$$
\mathrm{V}_{\mathrm{ext}}:=\frac{\pi}{4} \cdot\left[\left(\mathrm{~d}_{\mathrm{cyl}}^{2}+\mathrm{id}_{\mathrm{rod}}^{2}\right) \cdot \mathrm{l}_{\mathrm{cyl}}+\mathrm{d}_{\mathrm{pipe}}{ }^{2} \cdot \mathrm{l}_{\mathrm{pipe}}\right]
$$

$$
\mathrm{V}_{\mathrm{ext}}=270 \mathrm{gal}
$$

Calculate reservoir capacity needed to supply each cylinder $\left(\mathrm{V}_{\text {res }}\right)$:

$$
\mathrm{V}_{\mathrm{res}}:=\max \left[\left(\mathrm{V}_{\mathrm{ext}}-\mathrm{V}_{\mathrm{ret}}\right) \cdot 1.5,2 \mathrm{~min} \cdot \mathrm{Q}_{\mathrm{p}}\right]
$$

$$
\mathrm{V}_{\mathrm{res}}=186 \mathrm{gal}
$$

Initial system fill requirement $\left(\mathrm{Vi}_{\text {nit }}\right)$:

$$
\mathrm{V}_{\text {init }}:=\mathrm{V}_{\text {ret }}+\mathrm{V}_{\text {res }}
$$

$$
\mathrm{V}_{\mathrm{init}}=353 \text { gal }
$$

Conclusion: Use 250 gallon reservoirs and supply with 375 gallons of fluid ea.
Calculate Power needed to extend cylinder ($\mathrm{HP}_{\text {req }}$):

$$
\mathrm{HP}_{\mathrm{req}}:=\frac{\mathrm{Q}_{\mathrm{p}} \cdot \mathrm{P}_{\mathrm{w}}}{\eta}
$$

$$
\mathrm{HP}_{\mathrm{req}}=85 \mathrm{hp}
$$

Attachment G

Manufacturers' Submittals and Individual O\&M Manuals

Attachment G-01

Manufacturers' Submittals and Individual O\&M Manuals

DIRECTIONAL SUBPLATES

Subplates

Directional Valves

Servo Valves
Surface Mounted Valves

Double Flow Manifold

D03

PART NO: MB1083S

MATL: STEEL
PRESSURE: 5000 PSI
IN, OUT: \#12 SAE ORB

2" THICK

D05

PART NO: MB1085S
MATL: STEEL
PRESSURE: $\mathbf{5 0 0 0} \mathbf{~ P S I}$
IN, OUT: \#16 SAE ORB
2" THICK

D07

PART NO: MB1974S
MATL: STEEL
PRESSURE: $\mathbf{5 0 0 0} \mathbf{~ P S I}$
IN, OUT: \#20 SAE ORB
X, Y: \#4 SAE ORB
2 1/2" THICK

D08

PART NO: MB1434S
MATL: STEEL
PRESSURE: $\mathbf{3 0 0 0}$ PSI WORKING PRESSURE
IN, OUT: 11/2 C61 SAE 4-BOLT FLANGE
X, Y: \#6 SAE ORB

4" THICK

FOR DIMENSIONS OF FLANGE PORTS AND PRESSURE RATING SEE PAGE 41-12.

FLANGE MOUNTING HOLES ARE IN INCHES.

Directional Subplate

D03 - SAE ORB SIDE PORT

MB201-0-8AM

TO ORDER MOUNTING PLATE ONLY: MB581-3
G (GAGE ON P): \#4 SAE ORB
2" THICK

D03 - SAE ORB BOTTOM PORT

Directional Subplate

D05 - SAE ORB SIDE PORT

MB202-0-12AM

TO ORDER MOUNTING PLATE ONLY: MB581-5
G (GAGE ON P): \#4 SAE ORB
2" THICK

D05 - SAE ORB BOTTOM PORT

MB564-8A

BOTTOM VIEW
$11 / 4 "$ THICK

Directional Subplate

D05H - SAE ORB SIDE PORT

MB203-0-12AM

TO ORDER MOUNTING PLATE ONLY: MB581-5
X, Y, G (GAGE ON P): \#4 SAE ORB 2" THICK

- WITH $1 / 2^{\prime \prime}$ MOUNTING PLATE
(OMIT IF NO MOUNTING PLATE)
A - 6061 T6 ALUMINUM 3000 PSI
S - C1018 STEEL 5000 PSI
12 - \#12 SAE ORB
0 - NO CAVITY
M - C-10-2 CAVITY
S - SUN T-10A CAVITY

D05HE - SAE ORB SIDE PORT

MB504-0-12AM

TO ORDER MOUNTING PLATE ONLY: MB581-5
X, Y, G (GAGE ON P): \#4 SAE ORB 2" THICK

Directional Subplate

D07 - SAE ORB SIDE PORT

MB654-0-12AM

TO ORDER MOUNTING PLATE ONLY: MB831-7
X, Y, G (GAGE ON P): \#4 SAE ORB
2" THICK FOR \#12 SAE ORB
2 1/2" THICK FOR \#16 SAE ORB

D07 - SAE ORB BOTTOM PORT

Directional Subplate

D07 - SAE 4-BOLT FLANGE SIDE PORT

MC1466-0-20C1S

X, Y, G (GAGE): \#4 SAE ORB MATL: STEEL

FOR DIMENSIONS OF FLANGE PORTS AND PRESSURE RATING SEE PAGE 41-12.

FLANGE MOUNTING HOLES ARE IN INCHES.

Part No.	$\mathbf{P}, \mathbf{A}, \mathbf{B}$	\mathbf{T}	$\mathbf{A A}$	$\mathbf{B B}$	$\mathbf{C C}$	$\mathbf{D D}$	EE
MC1466 - *-20C1S	$11 / 4 \mathrm{C} 61$	$11 / 4 \mathrm{C} 61$	3.50	6.00	5.00	5.69	4.69
MC1466 - *-20C2S	$11 / 4 \mathrm{C} 62$	$11 / 4 \mathrm{C} 61$	4.00	6.25	5.00	5.94	4.69
MC1466 - *-24C1S	$11 / 2 \mathrm{C} 61$	$11 / 2 \mathrm{C} 61$	4.00	6.63	5.00	6.31	4.69
MC1466 - *-24C2S	$11 / 2 \mathrm{C} 62$	$11 / 2 \mathrm{C} 61$	5.00	7.00	5.25	4.13	4.94

Directional Subplate

D08 - SAE ORB SIDE PORT

MB652-0-16AM

TO ORDER MOUNTING PLATE ONLY: MB831-8
X, Y: \#6 SAE ORB
G (GAGE ON P): \#4 SAE ORB
2" THICK FOR \#16 SAE ORB
3" THICK FOR \#20 SAE ORB

D08 - SAE ORB BOTTOM PORT

MB2211-16A

A - 6061 T6 ALUMINUM 3000 PSI
S - C1018 STEEL 5000 PSI
16 - \#16 SAE ORB
20 - \#20 SAE ORB

X, Y: \#6 SAE ORB
1 1/2" THICK FOR \#16 SAE ORB
2 1/2" THICK FOR \#20 SAE ORB

Directional Subplate

D08 - SAE 4-BOLT FLANGE SIDE PORT

MC1313-0-20C1S

20C1S - 1 1/4 C61 P, T, A, B
20C2S - $11 / 4$ C62 P, A, B 11/4 C61 T
24C1S - $11 / 2 \mathrm{C} 61 \mathrm{P}, \mathrm{T}, \mathrm{A}, \mathrm{B}$
24C2S - $11 / 2 \mathrm{C} 62 \mathrm{P}, \mathrm{A}, \mathrm{B} 11 / 4 \mathrm{C} 61 \mathrm{~T}$
32C1S - 2 C61 P, T, A, B
32C2S-2 C62 P, A, B 2 C61 T
0 - NO RELIEF CAVITY
M - STD C-16-2 CAVITY
S - SUN T-16A CAVITY

X, Y, G (GAGE): \# 6 SAE ORB
MATL: STEEL

FOR DIMENSIONS OF FLANGE PORTS AND PRESSURE RATING SEE PAGE 41-12.

FLANGE MOUNTING HOLES ARE IN INCHES.

Part No.	$\mathbf{P}, \mathbf{A}, \mathbf{B}$	\mathbf{T}	$\mathbf{A A}$	$\mathbf{B B}$	$\mathbf{C C}$	$\mathbf{D D}$	$\mathbf{E E}$
MC1313 - *-20C1S	$11 / 4 \mathrm{C} 61$	$11 / 4 \mathrm{C} 61$	3.50	6.00	6.00	5.69	5.69
MC1313 - *-20C2S	$11 / 4 \mathrm{C} 62$	$11 / 4 \mathrm{C} 61$	4.00	6.25	6.00	5.94	5.69
MC1313 - *-24C1S	$11 / 2 \mathrm{C} 61$	$11 / 2 \mathrm{C} 61$	4.00	6.63	6.00	6.31	5.69
MC1313 - *-24C2S	$11 / 2 \mathrm{C} 62$	$11 / 2 \mathrm{C} 61$	5.00	7.00	6.25	4.13	5.94
MC1313 - *-32C1S	2 C 61	2 C 61	4.50	7.50	6.00	4.38	5.69
MC1313 - *-32C2S	2 C 62	2 C 61	6.00	8.38	6.50	4.75	6.19

Directional Subplate

D10 - SAE ORB OR SAE 4-BOLT SIDE PORT

MC700-0-24C1S

X, Y: \#8 SAE ORB

G (GAGE ON P): \#4 SAE ORB
3" THICK (SAE ORB PORTS)
$31 / 2^{\prime \prime}$ THICK (FLANGE PORTS)

FOR DIMENSIONS OF FLANGE PORTS AND PRESSURE RATING SEE PAGE 41-12.

(5000 PSI SAE ORB PORTS)
(4000 PSI FLANGE PORTS)

24 - \#24 SAE ORB
24CI-1 1/2 CODE 61
4-BOLT COMP FLANGE

0 - NO CAVITY
S - SUN T-18A CAVITY

FLANGE MOUNTING HOLES ARE IN INCHES.

D10 - SAE ORB BOTTOM PORT

Directional Subplate with L

D03 With L - SAE ORB SIDE PORT

D07 With L - SAE ORB SIDE PORT

D05 With L - SAE ORB SIDE PORT

MB2556-0-12AM

TO ORDER MOUNTING PLATE ONLY: MB581-5
L, G (GAGE ON P): \#4 SAE ORB

2" THICK

D08 With L - SAE ORB SIDE PORT

MB2558-0-20-AM

TO ORDER MOUNTING PLATE
ONLY: MB831-8
L, X, Y: \#6 SAE ORB
3" THICK

Surface Mounted Valve Subplate - SAE ORB Ports

MATL: STEEL

P08 - SIDE PORT

part no: MB530-16S
MATL: STEEL
PRESSURE: 5000 PSI
A, B: \#16 SAE ORB
X, Y: \#6 SAE ORB

P08 - BOTTOM PORT

P06 - SIDE PORT
part no: MB532-12S

PRESSURE: 5000 PSI
A, B: \#12 SAE ORB
X, Y: \#6 SAE ORB

$0.34 ø$ THRU

P06 - BOTTOM

part no: MB529-12S
MATL: STEEL
PRESSURE: 5000 PSI
A, B: \#12 SAE ORB
X, Y: \#6 SAE ORB
1 1/2" THICK
TOP VIEW

BOTTOM VIEW

$0.34 ø$ THRU
$0.50 \emptyset \times 0.50$ C.B. 2 HOLES
$0.50 ø$ x 0.50 C.B. 2 HOLES

Surface Mounted Valve Subplate - SAE ORB Ports

P10 - SIDE PORT

part no: MB528-20S
MATL: STEEL
PRESSURE: 5000 PSI
A, B: \#20 SAE ORB
X, Y: \#6 SAE ORB

$0.34 \emptyset$ THRU $0.50 \varnothing \times 0.50$ C.B. 4 HOLES

P10 - BOTTOM PORT

part no: MB515-20S
MATL: STEEL
PRESSURE: 5000 PSI
A, B: \#20 SAE ORB
X, Y: \#6 SAE ORB
2" THICK
TOP VIEW

BOTTOM VIEW

C03 - SIDE PORT

part no: MB992-12S
MATL: STEEL
PRESSURE: 5000 PSI
A, B: \#12 SAE ORB

0.34ø THRU

C03 - BOTTOM PORT

Part no: MB995-12S
MATL: STEEL
PRESSURE: 5000 PSI
A, B: \#12 SAE ORB
1 1/4" THICK

Surface Mounted Valve Subplate - SAE ORB Ports

C06 - SIDE PORT

PART NO: MB994-16S
MATL: STEEL
PRESSURE: $\mathbf{5 0 0 0} \mathbf{~ P S I}$ A, B: \#16 SAE ORB

C10 - SIDE PORT

part no: MB996-20S
MATL: STEEL
PRESSURE: $\mathbf{5 0 0 0}$ PSI
A, B: \#20 SAE ORB

C06 - BOTTOM PORT

part no: MB997-16S
MATL: STEEL PRESSURE: 5000 PSI A, B: \#16 SAE ORB

1 1/2" THICK

2 HOLES

BOTTOM VIEW

C10 - BOTTOM PORT

Surface Mounted Valve Subplate - SAE ORB Ports

2F02 - SIDE PORT

part no: MB2048-12S
MATL: STEEL
PRESSURE: 5000 PSI
1, 2: \#12 SAE ORB

2F03 - SIDE PORT

Part no: MB2051-12S
MATL: STEEL
PRESSURE: 5000 PSI
1, 2, 3: \#12 SAE ORB

2F02 - BOTTOM PORT

part no: MB991-12S
MATL: STEEL
 2 HOLES

BOTTOM VIEW

2F03 - BOTTOM PORT

PART NO: MB993-12S
MATL: STEEL
PRESSURE: $\mathbf{5 0 0 0} \mathbf{~ P S I}$
1, 2, 3: \#12 SAE ORB
1 1/4" THICK
$0.41 \varnothing$ THRU
$0.63 \varnothing \times 0.63$ C.B
2 HOLES

BOTTOM VIEW

Surface Mounted Valve Subplate - SAE ORB Ports

3F03 - SIDE PORT

part no: MB2056-12S
MATL: STEEL
PRESSURE: 5000 PSI
1, 2, 3, 4: \#12 SAE ORB
5: \#4 SAE ORB
 2 HOLES

3F03 - BOTTOM PORT

part no: MB998-12S
MATL: STEEL
PRESSURE: 5000 PSI
1, 2, 3, 4: \#12 SAE ORB
5: \#4 SAE ORB
1 1/4" THICK

TOP VIEW
$0.41 \varnothing$ THRU $0.63 \varnothing \times 0.63$ C.B. 2 HOLES

BOTTOM VIEW

R06/ VICKERS CG03 - SIDE PORT

part no: MB2049-8S
MATL: STEEL
PRESSURE: 5000 PSI
A, B: \#8 SAE ORB
X: \#4 SAE ORB

R06/ VICKERS CG03 - BOTTOM

part no: MB1043-8S
MATL: STEEL
PRESSURE: $\mathbf{5 0 0 0}$ PSI
A, B: \#8 SAE ORB
X: \#4 SAE ORB
1 1/4" ${ }^{\text {THICK }}$

TOP VIEW

2 HOLES

BOTTOM VIEW

Surface Mounted Valve Subplate - SAE ORB Ports

R08 - SIDE PORT

R10 - SIDE PORT

Part no: MB2052-20S
MATL: STEEL
PRESSURE: $\mathbf{5 0 0 0} \mathbf{~ P S I}$
A, B: \#20 SAE ORB
X: \#4 SAE ORB

R08 - BOTTOM PORT
part no: MB1046-16S
MATL: STEEL
PRESSURE: $\mathbf{5 0 0 0}$ PSI
A, B: \#16 SAE ORB
X: \#4 SAE ORB
1 1/2" THICK

2 HOLES

R10 - BOTTOM PORT

part no: MB1049-20S
MATL: STEEL
PRESSURE: 5000 PSI
A, B: \#20 SAE ORB
X: \#4 SAE ORB
11/2" THICK

TOP VIEW
$0.41 \varnothing$ THRU
$0.63 \varnothing \times 0.63$ C.B.
2 HOLES

BOTTOM VIEW

Surface Mounted Valve Subplate - SAE ORB Ports

VICKERS CG06 - SIDE PORT
part no: MB2053-16S
MATL: STEEL
PRESSURE: 5000 PSI
A, B: \#16 SAE ORB
X, Y: \#4 SAE ORB

VICKERS CG10 - SIDE PORT

Part no: MB2057-20S
MATL: STEEL
PRESSURE: 5000 PSI
A, B: \#20 SAE ORB
X, Y: \#4 SAE ORB

VICKERS CG06 - BOTTOM PORT
part no: MB1045-16S
MATL: STEEL
PRESSURE: 5000 PSI
A, B: \#16 SAE ORB
X, Y: \#4 SAE ORB

1 1/2" THICK
 2 HOLES

BOTTOM VIEW

VICKERS CG10 - BOTTOM PORT

part no: MB1048-20S
MATL: STEEL
PRESSURE: 5000 PSI $-3 / 4-10 \mathrm{NC}$ A, B: \#20 SAE ORB
X, Y: \#4 SAE ORB

1 1/2" THICK

TOP VIEW
 2 HOLES

BOTTOM VIEW

Surface Mounted Valve Subplate - SAE ORB Ports

VICKERS URG06 - SIDE PORT

VICKERS URG10 - SIDE PORT
part no: MB2058-20S
MATL: STEEL
PRESSURE: 5000 PSI
PORTS: \#20 SAE ORB

VICKERS URG06 - BOTTOM PORT
part no: MB1044-12S
MATL: STEEL
PRESSURE: 5000 PSI
PORTS: \#12 SAE ORB
1 1/4" THICK

2 HOLES

BOTTOM VIEW

VICKERS URG10 - BOTTOM PORT

part no: MB1047-20S
MATL: STEEL
PRESSURE: 5000 PSI
PORTS: \#20 SAE ORB
 2 HOLES

BOTTOM VIEW

Surface Mounted Valve Subplate - SAE ORB Ports

SUNDSTRAND 9510648

SIDE PORT - HOT OIL SHUTTLE
part no: MB348-12S
MATL: STEEL
PRESSURE: 5000 PSI
P, T: \#12 SAE ORB

5/16-18NC 6 HOLES

EATON

SIDE PORT - HOT OIL SHUTTLE
part no: MB361-12S
MATL: STEEL
PRESSURE: 5000 PSI
P, T: \#12 SAE ORB
2" THICK

3/8-16NC 4 HOLES

SUNDSTRAND 9510648
BOTTOM PORT - HOT OIL SHUTTLE
part no: MB2050-12S
MATL: STEEL
PRESSURE: 5000 PSI $\quad 5 / 16-18 N C$
P, T: \#12 SAE ORB

1 1/2" THICK

BOTTOM VIEW

EATON

BOTTOM PORT - HOT OIL SHUTTLE
Part no: MB2055-12S
MATL: STEEL

BOTTOM VIEW

Servo Subplate - SAE ORB Side Port

ATCHLEY 215A
MOOG 62-100 SERIES
VICKERS SM4-20
part no: MB139-12A
MATL: ALUMINUM
PRESSURE: $\mathbf{3 0 0 0} \mathbf{~ P S I}$ PORTS: \#12 SAE ORB
$2 "$ THICK

0.34ø THRU 2 HOLES

ATCHLEY 206/ 208A
MOOG 771
VICKERS SM4-10
part no: MB410-8A
MATL: ALUMINUM PRESSURE: 3000 PSI PORTS: \#8 SAE ORB

1 1/2" THICK

ATCHLEY 241
MOOG 62-300 SERIES VICKERS SM4-30
part no: MB138-12A
MATL: ALUMINUM
PRESSURE: 3000 PSI
PORTS: \#12 SAE ORB

ATCHLEY 211A
MOOG 772
part no: MB444-8A
MATL: ALUMINUM
PRESSURE: 3000 PSI PORTS: \#8 SAE ORB

1 1/2" THICK

Servo Subplate - SAE ORB Side Port

MOOG 72
 ATCHLEY 261

part no: MB739-20A
MATL: ALUMINUM PRESSURE: 3000 PSI PORTS: \#20 SAE ORB AP: \#4 SAE ORB

$0.41 \varnothing$ THRU $0.63 \emptyset \times 0.63$ C.B. 2 HOLES

MOOG 773
ATCHLEY 218
VICKERS SM4-15
part no: MB984-8A
MATL: ALUMINUM PRESSURE: 3000 PSI PORTS: \#8 SAE ORB

1 1/2" THICK

MOOG 78-100 SERIES
ATCHLEY 240
VICKERS SM4-40
part no: MB837-20A
MATL: ALUMINUM PRESSURE: 3000 PSI
PORTS: \#20 SAE ORB
2 1/2" THICK

ATCHLEY 242

PART no: MB990-16A
MATL: ALUMINUM
PRESSURE: 3000 PSI
PORTS: \#16 SAE ORB
2" THICK

Attachment G-02

Manufacturers' Submittals and Individual O\&M Manuals

HUNGER HYDRAULIC CYLINDERS OFFSHORE APPLICATIONS

 1CH1 \& 1CH2 - Hydraulic CylinderHydraulic Cylinders for Offshore Applications

Knuckle boom crane cylinders

Safe, lifting and handling of goods on drill ships and other offshore rigs. With this solution of knuckle boom cranes the risk of swinging loads especially under rough weather conditions will become minimized. The lifted loads are under permanent hydraulic control. Special load control valves directly mounted on the cylinders guarantee that there are no uncontrolled movements of main boom or knuckle boom arms. Typical knuckle boom crane is operated with four cylinders in total: two knuckle boom cylinders and two main boom cylinders.

Technical data:

Main boom cylinder (example)

- Bore diameter: 470 mm • Stroke 5.080 mm
- Rod diameter 360 mm • Load capacity: 600 t per cylinder

Knuckle boom cylinder (example)

- Bore diameter: 380 mm • Stroke 3.800 mm
- Rod diameter 250 mm • Load capacity: 350 t per cylinder

Main features of the Hunger offshore crane cylinders are:

- Different corrosion resistant rod coatings are available, exactly adjustedto the application in question ($\mathrm{N} / / \mathrm{Cr}$ layer, thermic sprayed Carbides and Oxides or Ultraplate coating)
- Cylinder components, critical regarding corrosion, are special treated to optimize corrosion resistance
- Stainless steel piping and manifold block for safety and load control function
- Equipped with wear resistant Hunger seal and bearing elements for low wear and friction and stick-slip free crane movement
- Cylinders designed for high working pressure over 400 bar

One of the world's largest drill ships, Stena Carron

Example for main boom cylinder

Certification according to DNV lifting appliances 2008, DNV standard for certification No. 2.9 hydraulic cylinders and DNV offshore standard E101/D101 or alternatively according to ABS rules for building and classing, steel vessel. Part 4, Lloyds register, GL or Bureau Veritas.

N - line tensioner cylinders

The modern N - line tensioner design is used to ensure a pre-defined tension to the marine riser and to compensate any rig motions like heave, roll or pitch. The system consist of accumulator loaded, long stroke hydraulic cylinders, which are directly mounted between the drill rig structure on one side and the tension ring on the other side.

Block diagram and installation situation of a \mathbf{N} - line riser tensioner system

Technical data:

- Bore diameter: 560 mm
- Stroke 15.240 mm
- Rod diameter 230 mm
- Load capacity: 350 t per cylinder

Certification according to DNV lifting appliances 2008, DNV standard for certification No. 2.9 hydraulic cylinders and DNV offshore standard E101/D101

Because N- line tensioner cylinders are installed directly in the splash zone with partly submerged piston rods an excellent corrosion protection is necessary. The Ultraplate coating guarantees premium corrosion protection as well as high wear resistance for the continuously moving rods. Hunger DFE seal and guiding elements are used to provide long life properties. Other special features are an externally adjustable seal which can improve the reliability of the whole system, an absolute position measuring system, special ball joints allowing a tilt movement in any direction and the Nitrogen loaded accumulators with rupture disc and temperature safety valve.

Wire line tensioner cylinders

 other side.

Block diagram and installation situation of a wire line riser tensioner system

Because the hydraulic cylinders are installed on the platform deck free access for service and maintenance is given. To protect the piston rod against corrosion, Nickel-Chrome layers or thermical sprayed coatings are used. Hunger DFE seal and guiding elements are used to provide long life properties. The cylinders can be delivered with mounted accumulators and piping.

Certification according to DNV lifting appliances 2008, DNV standard for certification No. 2.9 hydraulic cylinders and DNV offshore standard E101/D101 or alternatively according to ABS rules for building and classing, steel vessel. Part 4, Lloyds register, GL or Bureau Veritas.

Piling barge cylinders are used for operating ram-cranes on working barges. With these barges, concrete-steel pillars with lengths up to 100 m get rammed in the sea ground used for construction of bridges, quay walls or harbour walls. By the bi-directional working cylinder the mast can be adjusted to different angles to get higher stiffness from the lightly crossed pillars.

Piling barge cylinder with 900 mm piston diameter
The cylinders are certificated according to CCS standard or DNV lifting appliances 2008, DNV standard for certification No. 2.9-hydraulic cylinders. Main features of the cylinders are the Ceraplate rod coating, stainless steel spherical bearing, offshore plastic compound bushings at rod end for automatic locking function and friction and wear optimized Hunger seal and bearing elements. The cylinders are equipped with manifold block providing all safety and load control functions.

Technical data:

- Bore diameter: 800-1.150 mm
- Rod diameter: $500-750 \mathrm{~mm}$
- Stroke: $12.000-14.500 \mathrm{~mm}$
- Load capacity: up to 1.600 t
- Cylinder weight: up to 100 t

Walking Platform

SeaWalker, the first of a new range of innovative 8 legged, self-contained walking jack-up platforms, capable of walking and safely operating in water depths up to 30 metres. The new versatile walking jack-ups can move and operate completely independently in rough seas, strong currents or on beaches and other intertidal locations, considerably boosting the productivity of a variety of traditional jack-up platform operations. Including geotechnical site investigation drilling,

trenching, pipeline and cable laying, drilling, blasting and other underwater work.

32 hydraulic cylinders with Ceraplate rod coating are used to move the legs of the platform. The cylinders are equipped with spherical bearings in stainless steel / plastic compound design and with Hunger DFE special seal elements to guarantee a leakage free hold of the load.

Hydraulic cylinder for winch / rope control

To lead the rope of large winches of ocean-going tug boats hydraulic cylinders with clamped double piston rod and moving cylinder body are used. Because of the permanent exposure of the piston rod to the sea atmosphere the Ultraplate layer is used to avoid any kind of corrosion and to provide a polished and wear resistance rod surface to the seal and guiding elements.

Double piston rod with centred piston, Ultraplate coating and oil feeding through the rod

Keel lift cylinder

The Mirabella V is with a length of 75 m and a mast height of 90 m the currently biggest single mast sailing ship in the world. To allow the ship to enter in smaller harbours a hydraulic cylinder can lift up the 150 t heavy retractable keel by approximately 6.000 mm .

Because the hydraulic cylinder is always sub-merged or in the splash zone the Ultraplate rod coating was selected to provide a long life corrosion protection.

To put the weight as deep as possible in the keel, the cylinder is installed with rod side up. Therefore the hydraulic oil is feeded through the rod in the cylinder.

Motion compensator

To produce raw material from the sea ground conveyor belts or remote controlled moveable units are used. In the motion compensator unit a hydraulic cylinder is used to stabilize all vertical movements during operation or set down of the production unit. The cylinder rod is always exposed to the sea atmosphere and therefore the Ultraplate rod coating is used.

Technical data:

- Bore diameter: 320 mm
- Rod diameter: 190 mm
- Stroke: 6.000 mm

Ceraplate rod coating

Ceraplate - Layers

- Thermically sprayed $\mathrm{Ni} / \mathrm{Cr}$ base layer and Cr2O3 / TiO2 top layer
- Other materials (metallic or carbide) on request

- Suitable for on deck installations with normal working cycle

Ultraplate rod coating

Ultraplate - Layers

- Plasma welding technology (P.T.A.) for stainless steel layers
- Different sea water resistant materials available
- Suitable for marine atmosphere, splash zone or submerged condition

For more details please see our brochure SURFACE COATING SYSTEMS.

Die HUNGER-Gruppe - The HUNGER Group

Hydraulik
Walter Hunger GmbH \& Co. KG Hydraulikzylinderwerk
Rodenbacher Str. 50 - DE-97816 Lohr am Main Phone: +49-9352-501-0 Fax +49-9352-501-106 Internet: www.hunger-hydraulik.de
E-mail: info@hunger-hydraulik.de

Maschinen

Hunger Maschinen GmbH
Alfred-Nobel-Str. 26 - DE-97080 Würzburg
Phone: +49-931-90097-0 • Fax +49-931-90097-30 Internet: www.hunger-maschinen-gmbh.de E-mail: info@hunger-maschinen-gmbh.de

Dichtungen

Hunger DFE GmbH
Dichtungs- und Führungselemente Alfred-Nobel-Str. 26 - DE-97080 Würzburg Phone: +49-931-90097-0 Fax +49-931-90097Internet: www.hunger-dichtungen.de E-mail: info@hunger-dichtungen.de

Schleifmittel

Hunger Schleifmittel GmbH Alfred-Nobel-Str. 26 - DE-97080 Würzburg Phone: +49-931-90097-0 Fax +49-931-90097-30 Internet: www.hunger-schleifmittel.de E-mail: info@hunger-schleifmittel.de

Mobilhydraulik/Fahrzeugbau

Hunger GmbH \& Co
Werke für Fahrzeugbau und Mobilhydraulik KG Chemnitzer Strasse 61a • DE-09669 Frankenberg Phone: +49-37206-6008-0 Fax +49-37206-6008-10 Internet: www.hunger-automotive.de E-mail: info@hunger-automotive.de
Hydraulics USA
Hunger Hydraulics C.C., Ltd 63 Dixie Highway - Rossford (Toledo), OH 43460 Phone: +1-419-666-4510 • Fax +1-419-666-9834 Internet: www.hunger-hydraulics.com E-mail: info@hunger-hydraulics.com

HUNEER Hydraulik EIN UNTERNEHMEN DER HUNGER-GRUPPE

Rodenbacher Str. 50 - DE-97816 Lohr am Main Phone $+49(0) 9352 / 501-0 \cdot$ Fax $+49(0) 9352 / 501-106$ Internet: www.hunger-hydraulik.de E-mail: info@hunger-hydraulik.de

Attachment G-03

Manufacturers' Submittals and Individual O\&M Manuals

IMMERSION HEATER

Ideal for Direct Immersion Heating of Liquids

Screw plug immersion heaters are ideal for direct immersion heating of liquids, including all types of oils and heat transfer solutions.
Available in a variety of sizes, Watlow ${ }^{\circledR}$ screw plug immersion heaters feature both WATROD ${ }^{\text {TM }}$ round and FIREBAR ${ }^{\circledR}$ flat tubular elements.
Heating elements are hairpin bent and either welded or brazed into the screw plug-depending on element sheath and plug material compatibility.
General purpose terminal enclosures are standard; with optional moisture resistant, explosion resistant and explosion/moisture resistant enclosures available to meet specific application needs.
Optional thermostats provide convenient process temperature regulation.

Performance Capabilities

- Watt densities up to $120 \mathrm{~W} / \mathrm{in}^{2}\left(18.6 \mathrm{~W} / \mathrm{cm}^{2}\right)$
- Wattages up to 38 kilowatts
- UL ${ }^{\circledR}$ and CSA component recognition up to 480VAC and 600VAC respectively
- Alloy $800 / 840$ sheath temperatures up to $1600^{\circ} \mathrm{F}\left(870^{\circ} \mathrm{C}\right)$
- Passivated 316 stainless steel sheath temperatures up to $1200^{\circ} \mathrm{F}\left(650^{\circ} \mathrm{C}\right)$
- 304 stainless steel sheath temperatures up to $1200^{\circ} \mathrm{F}$ ($650^{\circ} \mathrm{C}$)
- Steel sheath temperatures up to $750^{\circ} \mathrm{F}\left(400^{\circ} \mathrm{C}\right)$

Features and Benefits

A variety of element sheath and screw plug materials

- Meets a variety of application needs

Integral thermowells

- Provides convenient temperature sensor insertion and replacement without draining the fluid being heated

Terminal enclosures

- Provides ability to be rotated to simplify connection with existing conduits
Welding or brazing WATROD and FIREBAR elements to the screw plug
- Provides a pressure tight seal

WATROD hairpins are repressed (recompacted)

- Maintains magnesium oxide density, dielectric strength, heat transfer and life
$2^{1 ⁄ 2} 2 \mathrm{in}$. (64 mm) NPT screw plug assemblies feature element support(s)
- Ensures proper spacing for maximizing heater performance and life

Typical Applications

- Water:

Deionized
Demineralized
Clean
Potable
Process

- Industrial water rinse tanks
- Vapor degreasers
- Hydraulic oil, crude, asphalt
- Lubricating oils at API specified watt densities
- Air and gas flow
- Caustic solutions
- Chemical baths
- Anti-freeze (glycol) solutions
- Paraffin

Specifications

- Screw plug and element sizes:

1 in . NPT	0.260 and 0.315 in. WATROD
11/4 in. NPT	0.260 and 0.315 in . WATROD 1 in . FIREBAR
2 in. NPT	0.430 and 0.475 in. WATROD
$2^{11 / 2} \mathrm{in}$. NPT	0.430 and 0.475 in. WATROD 1 in . FIREBAR

- Phase capability:

1 in. NPT	1-Phase
$1^{1 / 4}, 2,2^{1 / 2}$ in., NPT	1 - or 3-Phase

UL® and CSA component recognition under File E52951 and 31388 respectively.

Options

Terminal Enclosures

General purpose terminal enclosures, without thermostats, are available on all screw plug immersion heaters. To meet specific application requirements, Watlow offers the following optional terminal enclosures:

- General purpose with single- or double-pole thermostat
- Moisture-resistant or corrosion-resistant available with optional single- or double-pole thermostat
- Explosion-resistant Class 1, Groups B, C and D explosion resistant available with optional single- or double-pole thermostat
- Explosion and moisture-resistant combination available with optional single- or double-pole thermostat
Note: Unless otherwise stated on the accompanying illustrations, both WATROD and FIREBAR screw plugs are centered on the terminal enclosure. To order, add the suffix letter(s) to the screw plug heater's base part number. Also, specify class and group, if applicable.

CSA Certified Enclosures

CSA certified moisture and/or explosion-resistant terminal enclosures protect wiring in hazardous gas environments. These terminal enclosures, covered under CSA File number 61707, are available on all WATROD and FIREBAR screw plug immersion heaters. For additional information, contact a Watlow representative.
To order, specify CSA certified enclosure, process temperature (${ }^{\circ} \mathrm{F}$), maximum working pressure of application (psig), media being heated and heater mounting orientation (horizontal or vertical) and screw plug size.

ASME Pressure Vessel Code Welding

Screw plug assemblies can be provided with an ASME Section VIII, Div. I pressure vessel stamp upon request.

Pilot Light

The optional pilot light gives the operator visual indication of heater on or off power status.
The PL10 pilot light is configured to a maximum 250VAC and supplied with 6 in . (152 mm) leads.
The PL11 pilot light is rated for 480VAC and supplied with 4 in . $(102 \mathrm{~mm}$) leads.
Pilot lights may be attached to either single- or double-pole thermostats with general purpose enclosure only.

Thermostats

To provide process temperature control, Watlow offers optional single-pole, single-throw (SPST) and double-pole, single-throw (DPST) thermostats.
Unless otherwise specified, thermostats are mounted inside the terminal enclosure. Please verify that the thermostat's sensing bulb O.D. is compatible with the screw plug's thermowell I.D.

Thermocouples

Type J or K thermocouples offer extremely accurate sensing of process and/or sheath temperatures. A thermocouple may be inserted into the thermowell or attached to the heater's sheath.
Thermocouples are supplied with 120 in . (3048 mm) leads (longer lead lengths available). Unless otherwise specified, thermocouples are supplied with temperature ranges detailed on the Thermocouple Types chart.
Using a thermocouple requires an appropriate temperature and power controller, these must be purchased separately. Watlow offers a wide variety of temperature and power controllers to meet virtually all applications. Temperature controllers can be configured to accept process variable inputs, too. Contact a Watlow representative for details.
To order, specify Type J or \mathbf{K} thermocouple and lead length. Indicate if the thermocouple is for process temperature sensing or heater sheath high-limit protection. Please specify if the screw plug will be mounted vertical or horizontal in the tank. If vertical, indicate if the housing is on top or bottom.
If the screw plug heater is mounted in an in-line circulation heating application, indicate flow direction relative to the heater's enclosure.

Options (Continued)

Thermocouple Types

$\begin{aligned} & \text { ASTM } \\ & \text { Type } \end{aligned}$	Conductor Characteristics		Recommended Temperature Range	
	Positive	Negative	${ }^{\circ} \mathrm{F}$	$\left({ }^{\circ} \mathrm{C}\right)$
J	Iron (Magnetic)	Constantan (Non-Magnetic)	0 to 1000	(-20 to 540)
K	$\begin{gathered} \text { Chromel }^{\ominus} \\ \text { (non-magnetic) } \end{gathered}$	Alumel ${ }^{\text {® }}$ (Magnetic)	0 to 2000	20 to 1100)

Note: Type J and Type K thermocouples are rated 32 to $1382^{\circ} \mathrm{F}$ and 32 to $2282^{\circ} \mathrm{F}\left(0-750^{\circ} \mathrm{C}\right.$ and $\left.0-1250^{\circ} \mathrm{C}\right)$, respectively. Watlow does not recommend exceeding temperature ranges shown on this chart for the tubular product line.

Wattages and Voltages

Watlow routinely supplies screw plug immersion heaters with 120 to 480VAC as well as wattages from 250 watts to 38 kW . If required, Watlow may configure heaters with voltages and wattages outside these parameters. For more information on special voltage and wattage configurations, contact a Watlow representative.

Sheath Materials

The following sheath materials are available on WATROD and FIREBAR heating elements:
Standard Sheath Materials

WATROD	Alloy 800/840
	316 SS
	Steel
FIREBAR	Alloy 800

Extended Sheath Materials

WATROD	304 and 321 SS Alloy 400 and 600 Titanium Hastelloy C276
FIREBAR	304 SS Alloy 800

External Finishing

Passivation

During the manufacturing process, particles of iron or tool steel may become embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode, produce rust spots and/or contaminate the process. For critical applications, passivation will remove free iron from the sheath. To order, specify passivation.

Other Finishes

Bright annealing available to meet cosmetic demands.

Screw Plug Materials

The following screw plug materials are available: To order, specify screw plug size and material.
Standard Screw Plug Materials

WATROD	316 SS Steel Brass
FIREBAR	304 SS

Extended Screw Plug Materials

WATROD	$\begin{aligned} & \text { 304, } 304 \mathrm{H}, 316 \mathrm{H}, 321 \mathrm{SS} \\ & \text { Titanium } \\ & \text { Alloy } 400 \text { and } 600 \\ & \text { Hastelloy C276 } \\ & \text { Alloy } 800 / 840 \end{aligned}$

Screw Plug Sizes

Including European

- NPT- $3 / 4,1,1$ ¹/4, 2, $21 / 2 \mathrm{in}$.

To order, specify size, style (NPT) and material.

- Gas (Gas Pipe Standard) - G1¼, G1½, G2 in. (brass only)
- BSP (British Standard Pipe) - 11⁄2, 2 in. (stainless steel only)
Contact a Watlow representative for sizes and materials not listed.

Screw Plug to Flange Adapters

Screw plug to flange adapters permit replacing flange heaters with screw plug heaters. To order, specify the appropriate part number.

Screw Plug to Flange Adapter Sizes	Material	Estimated Shipping Wt. lbs (kg)	Delivery	Part Number
11/4 to 3 in.-150\#	Steel	13 (5.9)	RS	125X3SA
21/2 to 3 in.-150\#	Steel	11 (5.0)	RS	250X3SA
21/2 to 4 in.-150\#	Steel	16 (7.3)	RS	250X4SA
$2^{1} / 2$ to 5 in.-150\#	Steel	25 (11.3)	RS	250X5SA
21/2 to 6 in.-150\#	Steel	33 (15.0)	RS	250X6SA

RAPID SHIP
 - RS - Next day shipment

 up to 3 piecesWatlow ${ }^{\oplus}$ and FIREBAR ${ }^{\oplus}$ are registered trademarks of Watlow Electric Manufacturing Company.
WATROD ${ }^{\text {TM }}$ is a trademark of Watlow Electric Manufacturing Company.
UL^{\otimes} is a trademark of Underwriter's Laboratories, Inc.
Alumel ${ }^{\circledR}$ and Chromel ${ }^{\circledR}$ are registered trademarks of Hoskins Manufacturing Company.

To be automatically connected to the nearest North American Technical Sales Office: 1-800-WATLOW2 • www.watlow.com • inquiry@watlow.com

International Technical Sales Offices: Australia, +61 393356449 • China, +86 2135328532 • France, +33 141327970

Attachment G-04

Manufacturers' Submittals and Individual O\&M Manuals

LITHONIA TFA FLOODLIGHTING

FEATURES \& SPECIFICATIONS

INTENDED USE — Use for industrial yards, parking lots, construction sites, and signage.
CONSTRUCTION - NEMA heavy-duty construction. Contoured die-cast aluminum housing and front bezel. Bezel is hinged and latched for fast, easy "no-tool" internal access to optical and electrical compartments.

Finish: Standard finish is dark bronze (DDB) corrosion resistant polyester powder finish with other architectural colors available.
OPTICS - Precision die-formed specular anodized aluminum reflector provides high efficiencies with vertical or horizontal lamp orientation. Premium one-piece silicone gasket seals optical chamber to inhibit entrance of outside contaminants. Lamp support standard with horizontally lamped 1000W units. Lens: heavy-duty, thermal shock-resistant clear tempered glass with no metal-to-glass contact.
ELECTRICAL - Ballast: high power factor constant-wattage autotransformer. Super CWA pulse start ballast required for 200M, 320M, 350M, 750M, 775M \& 875M (SCWA option). Super CWA Pulse Start ballasts, 88\% efficient and EISA legislation compliant, are required for 200-400W (must order SCWA option) for US shipments only. CSA, NOM or INTL required for probe start shipments outside of the US. Ballast is 100% factory-tested. Electrical components are mounted to rear housing for maximum heat dissipation, accessible through front bezel.
Socket: Porcelain, vertically or horizontally-oriented, mogul-base socket with copper alloy, nickel-plated screw shell and center contact. UL listed 1500W, 600V.
INSTALLATION — Front bezel "no-tool" latches are easily operable while wearing heavy work gloves. Corrosion-resistant, heavy-duty painted steel mounting yoke included.
LISTINGS — UL Listed (standard). CSA certified (See Options). NOM certified (See Options). UL listed for $25^{\circ} \mathrm{C}$ ambient and wet locations. IP65 rated.
WARRANTY - 1-year limited warranty. Complete warranty terms located at
www.acuitybrands.com/CustomerResources/Terms and conditions.aspx Note: Specifications subject to change without notice.

Floodlighting TFA

METAL HALIDE: 200W-1000W HIGH PRESSURE SODIUM: 250W -1000W
$\frac{\text { Specifications }}{\text { Overall height: } 24-3 / 8(61.9)}$
Overall width: 24 (61.0)
Depth: 10 (25.4)
*Weight: $65 \mathrm{lbs}(29.5 \mathrm{~kg})$
EPA: $2.6 \mathrm{ft}^{2}$
*Weight as configured in example below.
All dimensions are inches (centimeters) unless otherwise specified.

ORDERING INFORMATION
For shortest lead times, configure product using standard options (shown in bold).
Example: TFA 1000M TA TB LPI

TFA										
Series	Wattage		Distribution		Voltage	Ballast	Mounting			
TFA	Metal halide	$875 \mathrm{M}^{1,5}$		Vertical	120	(blank) Magnetic ballast CWI Constant wattage isolated	Shipped installed	Shipped separately ${ }^{13,14}$		
		$1000 \mathrm{M}^{6}$	TA (7X7)	RE $(4 \times 4)^{8}$	$208{ }^{10}$		(blank) Yoke	FTS	Tenon slipfitter ($2-3 / 8$ " to 2-7/8" 0 D tenon) ${ }^{15}$	
								$\left(2-3 / 8 " \text { to } 2-7 / 8^{\prime \prime}\right.$	FRWB	Radius wall bracket ${ }^{16}$
								OD tenon)	FSAB	Steel angle bracket ${ }^{15}$
									FSPB	Steel square pole bracket ${ }^{16}$
										Wood pole bracket ${ }^{15}$

TFA 1000M TA, 1000W metal halide lamp, 107800 rated lumens, test no. 97121701

TFA 1000M TA2, 1000W metal halide lamp, 110000 rated lumens, test no. LTL11697

ELECTRICAL CHARACTERISTICS						
Wattage/ballast	Primary voltage	(amps) start/operating	dropout voltage	Input watts	Power factor (\%)	Regulation Line $V=$ Lamp lumens
	120	5.90/9.20	70			
	208	3.40/5.30	120			
1000 CWA Peak-lead	240	2.90/4.60	140	1070	90+	$\pm 10 \%= \pm 10 \%$
	277	2.50/4.00	160			
	480	1.50/2.30	280			

Tested to current IES and NEMA standards under stabilized laboratory conditions. Various operating factors can cause differences between laboratory data and actual field measurements. Dimensions and specifications on this sheet are based on the most current available data and are subject to change without notice.

Mounting Height Correction Factor

(Multiply the fc level by the correction factor)
$25 \mathrm{ft} .=1.44$
$35 \mathrm{ft}=.73$
$\left(\frac{\text { Existing Mounting Height }}{\text { New Mounting Height }}\right)^{2}=$ Correction Factor

Notes

1 Photometric data for other distributions can be accessed from the Lithonia Lighting website. (www.Lithonia.com)
2 For electrical characteristics, consult outdoor technical data specifications on www.lithonia.com.

Attachment G-05

Manufacturers' Submittals and Individual O\&M Manuals

QX INTERNAL GEAR PUMPS

Internal Gear Pumps

Series QX

BUCHER
HYDRAULICS
Contents Page
1 General 5
1.1 Product description 5
1.2 Advantages 5
1.3 ATEX compliant explosion protection 5
2 Technical data 5
2.1 General (deviating values according manufacturer's specification) 5
2.2 Main characteristics for pressure range 1 6
2.3 Main characteristics for pressure range 2 7
2.4 Main characteristics for pressure range 3 7
3 Performance graphs 8
3.1 Noise level (Lp) 8
3.2 Efficiency (η) 8
3.3 Operation with variable-speed drives 9
4 Single pumps 10
4.1 Dimensions 10
4.2 Pressure range 1 11
4.3 Pressure range 2 11
4.4 Pressure range 3 12
4.5 Ordering code for single pumps 12
4.6 Standard configuration 12
4.7 Options 12
5 Double pumps 13
5.1 Selection table 13
5.2 Dimensions 14
5.3 Ordering code for double pumps 23
5.4 Standard configuration 23
5.5 Options 23
6 Triple pumps 24
6.1 Selection table 24
6.2 Ordering code for triple pumps 25
6.3 Standard configuration 25
6.4 Options 25
7 Low-flow capability pumps 26
7.1 General 26
7.2 Technical data 26
7.3 Main characteristics 26
7.4 Volumetric efficiency (η) 27
7.5 Single pumps 27
7.6 QX24 pumps combined with other QX-single pumps 28
8 Fluid 29
$9 \quad$ Fluid cleanliness class 29
10 Operational reliability 29
11 Note 29
12 Accessories 30
12.1 Bolt-on valves - SAE J518 code 61 / ISO 6162-1 pattern 30
12.2 Pipe flanges - high pressure type (thread flange) 31
12.3 Pipe flanges - low pressure type (welding flange) 31

1 General

1.1 Product description

The QX pumps are the 5th generation of Bucher internal gear pumps, which have proven themselves in thity years of service around the world. Numerous improvements have been made to the straightforward and robust design.
Advances in the manufacturing process have made it possible without making higher demands on individual components to build pumps that are considerably lighter and more compact.
A new tooth profile, conceived and optimised with the help of CAE, has yielded another significant reduction in noise levels. Large sealing areas result in higher efficiencies.
The internal ring gear is supported by a hydrodynamic / hydrostatic lubrication film, which allows operation at low viscosities or low and high speeds. QX pumps are therefore suitable for use with variable speed drives, where they can provide variable flow rates.

1.2 Advantages

- extremely long service life
- sound pressure level < $57 \mathrm{~dB}(\mathrm{~A})$
- volumetric efficiency up to 98%
- suitable for use with variable speed drivers
- can be used with fire resistant fluids (HFB, HFC and HFD = QXV), fuels, biodegradable and low-viscosity fluids
- certifications by ATEX 2, ABS, DNV, GL, LR, NK, ...
- low flow and pressure pulsations

1.3 ATEX compliant explosion protection

The internal gear pumps $Q X$ are suitable for application in hazardous areas and complies with the following guidelines:

ATEX directive	94/9/EC
group	II
equipment category	3
atmosphere	G
temperature class	T3 and T4

2 Technical data

2.1 General (deviating values according manufacturer's specification)

Installation attitude	unrestricted
Mounting method (standard)	oval 2-hole flange to ISO 3019/1 (SAE): QX 3-6 oval 2-hole flange to ISO 3019/2 (metric) QX 2+8
Direction of rotation	CW, alternatively CCW (but not reversible)
Pump drive method	in-line, through a flexible coupling
Volumetric efficiency η_{v}	up to 98%
Fluids	HLP mineral oils to DIN 51524, Part 2 HFC fluids to VDMA 24317
Minimum fluid cleanliness	NAS 1638, Class 9 or ISO 4406, code 20/18/15 (see section 9)
Operating viscosity Starting viscosity	$10-100 \mathrm{~mm}^{2} / \mathrm{s}^{*}$ $10-300 \mathrm{~mm}^{2} / \mathrm{s}$ *
Fluid temperature range	HLP-mineral oils $-20^{\circ} \mathrm{C}$ min. $/+80^{\circ} \mathrm{C}$ max. (considering viscosity field) HFC $+50^{\circ} \mathrm{C}$ max.
Inlet pressure maximum minimum	1.5 bar absolute (without external drain connection) 0.5 to 0.98 bar absolute (dependent on pump frame size and speed, see example in section 3.3.2)
Startup against pressure	Max. 20 bar (other values on request)

IMPORTANT: The main characteristics are valid for hydraulic oils DIN 51524 with a viscosity of $20-50 \mathrm{~mm}^{2} / \mathrm{s}$. The operating pressure at the pump outlet side is specified also for fire-resistant fluids (HFC).

2.2 Main characteristics for pressure range 1

Displacement	Flow rate	Maximum speed	Code	Operating pressure at the pump outlet side				Torque	Power consumption
effective	$\begin{gathered} 1450 \mathrm{~min}^{-1} \\ p=0 \text { bar } \end{gathered}$			continuous [bar]		intermittent [bar] ${ }^{2)}$			
[$\left.\mathrm{cm}^{3} / \mathrm{rev}\right]^{1)}$	[$1 / \mathrm{min}$]	[rpm]		Mineral oil	HFC	Mineral oil	HFC	[Nm$]^{3)}$	$[\mathrm{kW}]{ }^{4}$
10,3	14,9	3600	QX21-010	160	130	210	180	26	4,0
12,6	18,3	3600	Q $\times 21$-012	125	100	160	135	25	3,8
15,9	23,0	3600	QX21-016	100	80	125	100	25	3,9
20,0	29,0	3000	Q $\times 31-020$	160	130	210	180	51	7,7
25,3	36,7	3000	Q $\times 31-025$	125	100	160	135	50	7.7
31,2	45,2	3000	Q $\times 31-032$	100	80	125	100	50	7,5
40,7	59,0	3000	QX41-040	160	130	210	180	104	15,7
50,3	72,9	2600	QX41-050	125	100	160	135	100	15,2
64,7	93,8	2300	QX41-063	100	80	125	100	103	15,6
78,6	114	2300	Q $\times 1$ 1-080	160	130	210	180	200	30.4
101,1	146	2100	Q $\times 51$-100	125	100	160	135	201	30,5
127,3	184	1800 5)	QX51-125	100	80	125	100	203	30,8
160,5	232	$1800{ }^{6}$	QX61-160	160	130	210	180	409	62,0
202,1	293	$1800{ }^{6)}$	QX61-200	125	100	160	135	402	61,0
249,7	362	$1800{ }^{6}$)	QX61-250	100	80	125	100	397	60,4
326,0	472	1750 6)	QX81-315	160	130	210	180	830	126,0
402,6	583	1750 6)	QX81-400	125	100	160	135	801	121,6
498,5	722	$1500{ }^{6}$	QX81-500	100	80	125	100	793	120,5

2.2.1 Suction arrangements for pump types QX61 and QX81

[髙
Minimum inlet pressure is 0.95 bar absolute with viscosity $10-100 \mathrm{~mm} 2 / \mathrm{s}$ (other values on request)

Type	Speed 1500 rpm Suction height		Speed 1800 rpm Suction height	
	up to 150 mm	over 150 mm	up to 150 mm	over 150 mm
QX61-160	I	I	I	II
QX61-200	I	I	I	II
QX61-250	I	II	II	II
QX81-315	I	II	II	II
QX81-400	II	I	II	I
QX81-500	II	II	-	-

I = standard pump with one suction port
II = model with two suction ports
All pump types coded II can be used without the second suction port up to 1200 rpm

2.3 Main characteristics for pressure range 2

Displacement	Flow rate	Maximum speed	Code	Operating pressure at the pump outlet side				Torque	Power consumption
effective	$\begin{gathered} 1450 \mathrm{~min}^{-1} \\ p=0 \text { bar } \end{gathered}$			continuous [bar]		intermittent [bar] ${ }^{2)}$			
[$\left.\mathrm{cm}^{3} / \mathrm{rev}\right]^{1)}$	[//min]	[rpm]		Mineral oil	HFC	Mineral oil	HFC	$[\mathrm{Nm}]^{3)}$	[kW] 4)
$\begin{aligned} & 5,1 \\ & 6,3 \\ & 8,0 \end{aligned}$	$\begin{gathered} 7,4 \\ 9,1 \\ 11,5 \end{gathered}$	3600	$\begin{aligned} & \text { QX22-005 } \\ & \text { QX22-006 } \\ & \text { QX22-008 } \end{aligned}$	210	180	250	210	$\begin{aligned} & 17 \\ & 21 \\ & 27 \end{aligned}$	$\begin{aligned} & 2,6 \\ & 3,2 \\ & 4,0 \end{aligned}$
$\begin{aligned} & 10,0 \\ & 12,6 \\ & 15,6 \\ & \hline \end{aligned}$	$\begin{aligned} & 14,5 \\ & 18,3 \\ & 22,6 \\ & \hline \end{aligned}$	3400	$\begin{aligned} & \hline \text { QX32-010 } \\ & \text { QX32-012 } \\ & \text { QX32-016 } \end{aligned}$	210	180	250	210	$\begin{aligned} & 34 \\ & 42 \\ & 52 \end{aligned}$	$\begin{aligned} & 5,1 \\ & 6,4 \\ & 7,9 \end{aligned}$
$\begin{aligned} & 20,4 \\ & 25,1 \\ & 32,4 \end{aligned}$	$\begin{aligned} & 29,5 \\ & 36,4 \\ & 46,8 \end{aligned}$	3200	$\begin{aligned} & \text { QX42-020 } \\ & \text { QX42-025 } \\ & \text { QX42-032 } \\ & \hline \end{aligned}$	210	180	250	210	$\begin{gathered} 68 \\ 84 \\ 108 \end{gathered}$	$\begin{aligned} & 10,4 \\ & 12,7 \\ & 16,5 \end{aligned}$
$\begin{aligned} & 39,3 \\ & 50,6 \\ & 63,7 \end{aligned}$	$\begin{aligned} & 56,9 \\ & 73,2 \\ & 92,1 \end{aligned}$	2800	$\begin{aligned} & \hline \text { QX52-040 } \\ & \text { QX52-050 } \\ & \text { QX52-063 } \end{aligned}$	210	180	250	210	$\begin{aligned} & 132 \\ & 170 \\ & 213 \end{aligned}$	$\begin{aligned} & 19,9 \\ & 25,7 \\ & 32,3 \end{aligned}$
$\begin{gathered} 80,2 \\ 101,0 \\ 124,8 \end{gathered}$	$\begin{aligned} & 116 \\ & 146 \\ & 181 \end{aligned}$	$\begin{aligned} & 2500^{77} \\ & 2300^{77} \\ & 2000^{7)} \end{aligned}$	$\begin{aligned} & \text { QX62-080 } \\ & \text { QX62-100 } \\ & \text { QX62-125 } \end{aligned}$	210	180	250	210	$\begin{aligned} & 268 \\ & 338 \\ & 417 \end{aligned}$	$\begin{aligned} & 40,7 \\ & 51,2 \\ & 63,4 \end{aligned}$
$\begin{aligned} & 163,0 \\ & 201,3 \\ & 249,2 \end{aligned}$	$\begin{aligned} & 236 \\ & 291 \\ & 361 \end{aligned}$	$\begin{aligned} & 1800^{7)} \\ & 1750^{7)} \\ & 1500^{7)} \end{aligned}$	$\begin{aligned} & \text { QX82-160 } \\ & \text { QX82-200 } \\ & \text { QX82-250 } \end{aligned}$	210	180	250	210	$\begin{aligned} & 544 \\ & 672 \\ & 833 \end{aligned}$	$\begin{gathered} 82,7 \\ 102,1 \\ 126,5 \end{gathered}$

2.4 Main characteristics for pressure range 3

Displacement	Flow rate	Maximum speed	Code	Operating pressure at the pump outlet side				Torque	Power consumption
effective	$\begin{gathered} 1450 \mathrm{~min}^{-1} \\ \mathrm{p}=0 \mathrm{bar} \end{gathered}$			continuous [bar]		intermittent [bar] ${ }^{2)}$			
[$\left.\mathrm{cm}^{3} / \mathrm{rev}\right]^{1)}$	[$/ / \mathrm{min}$]	[rpm]		Mineral oil	HFC	Mineral oil	HFC	[Nm$]^{3}$)	$[\mathrm{kW}]^{4)}$
$\begin{aligned} & \hline 5,1 \\ & 6,3 \\ & 8,0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 7,4 \\ 9,1 \\ 11,5 \\ \hline \end{gathered}$	3600	$\begin{aligned} & \text { QX23-005 } \\ & \text { QX23-006 } \\ & \text { QX23-008 } \end{aligned}$	320	280	400	350	$\begin{aligned} & 26 \\ & 32 \\ & 41 \end{aligned}$	$\begin{aligned} & 4,0 \\ & 4,9 \\ & 6,2 \end{aligned}$
$\begin{aligned} & 10,0 \\ & 12,6 \\ & 15,6 \end{aligned}$	$\begin{array}{r} 14,5 \\ 18,3 \\ 22,6 \\ \hline \end{array}$	3400	$\begin{aligned} & \text { QX33-010 } \\ & \text { Q } \times 33-012 \\ & \text { QX33-016 } \end{aligned}$	320	280	400	350	$\begin{aligned} & 51 \\ & 64 \\ & 80 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 7,7 \\ 9,7 \\ 12,1 \\ \hline \end{array}$
$\begin{aligned} & 20,4 \\ & 25,1 \\ & 32,4 \\ & \hline \end{aligned}$	$\begin{aligned} & 29,5 \\ & 36,4 \\ & 46,8 \\ & \hline \end{aligned}$	3200	$\begin{aligned} & \text { QX43-020 } \\ & \text { QX43-025 } \\ & \text { QX43-032 } \\ & \hline \end{aligned}$	320	280	400	350	$\begin{aligned} & \hline 104 \\ & 128 \\ & 165 \end{aligned}$	$\begin{aligned} & 15,8 \\ & 19,4 \\ & 25,0 \end{aligned}$
$\begin{aligned} & 39,3 \\ & 50,6 \\ & 63,7 \end{aligned}$	$\begin{aligned} & 56,9 \\ & 73,2 \\ & 92,1 \end{aligned}$	2800	$\begin{aligned} & \text { QX53-040 } \\ & \text { QX53-050 } \\ & \text { QX53-063 } \end{aligned}$	320	280	400	350	$\begin{aligned} & 200 \\ & 258 \\ & 321 \end{aligned}$	$\begin{aligned} & 30,4 \\ & 39,1 \\ & 49,3 \end{aligned}$
$\begin{aligned} & \hline 80,2 \\ & 101,0 \\ & 124,8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 116 \\ & 146 \\ & 181 \end{aligned}$	$\begin{aligned} & 2500{ }^{77} \\ & 2300^{77} \\ & 2000^{77} \end{aligned}$	$\begin{aligned} & \text { QX63-080 } \\ & \text { QX63-100 } \\ & \text { QX63-125 } \end{aligned}$	320	280	400	350	$\begin{aligned} & 409 \\ & 514 \\ & 636 \end{aligned}$	$\begin{aligned} & 62,0 \\ & 78,1 \\ & 96,5 \end{aligned}$
$\begin{aligned} & 163,0 \\ & 201,3 \\ & 249,2 \end{aligned}$	$\begin{aligned} & 236 \\ & 291 \\ & 361 \end{aligned}$	$\begin{aligned} & 1800^{77} \\ & 1750^{7)} \\ & 1500^{77} \end{aligned}$	$\begin{aligned} & \text { QX83-160 } \\ & \text { QX83-200 } \\ & \text { QX83-250 } \end{aligned}$	320	280	400	350	$\begin{gathered} 830 \\ 1025 \\ 1270 \end{gathered}$	$\begin{aligned} & 126,0 \\ & 155,7 \\ & 192,7 \end{aligned}$

1) Due to manufacturing tolerances, there may be slight variations in the dis placement
2) max 20 second and not more than 10% of the duty cycle
3) theoretical value at the max. permitted continuous pressure for mineral oil 4) theoretical value at the max permitted continuous pressures for mineral oil at $n=1450 \mathrm{rpm}$
4) for speeds $>1450 \mathrm{rpm}$, the min. permissible inlet pressure is 0.95 bar absolute For HFC application a second suction port may be required
5) max. speed only possibile with a second suction port, see section 221
7)) for speeds $>1450 \mathrm{rpm}$, the min. permissible inlet pressure is 0.95 bar absolute.

3 Performance graphs

The performance graphs shown are valid for the specified pump models.
For other pump sizes, contact Bucher Hydraulics GmbH.

3.1 Noise level $\left(L_{p}\right)$

3.2 Efficiency (η)

measured at speed 1450 rpm , viscosity $42 \mathrm{~mm}^{2} / \mathrm{s}$
3.2.1 Pressure range 1

Volumetric efficiency

intermittent operating pressure as a function of displacement (see section2.2)

3.2.2 Pressure range 2

Volumetric efficiency

measured to DIN 45635, Part 26, in Stuttgart University's low-echo noise measurement chamber;
measurement distance 1 m ; speed $\mathrm{n}=1500 \mathrm{rpm}$; viscosity $=42 \mathrm{~mm}^{2} / \mathrm{s}$

Hydromechanical efficiency

intermittent operating pressure

3.2.3 Pressure range 3

Hydromechanical efficiency

3.3 Operation with variable-speed drives

[窖
IMPORTANT: The following main characteristics are to be understood as examples only. They are valid only for the specified pump models and parameters. We would be very happy to advice you on the layout of your drive. QX pumps with variable-speed drive all contain an external drain port.

3.3.1 Typical loading cycle for a QX pump with variable-speed drive

Pump QX53-063 with viscosity $20 \mathrm{~mm}^{2} / \mathrm{s}$

3.3.2 Minimum pressure at suction port as a function of speed

Pump QX53-063 measured: with viscosity $42 \mathrm{~mm}^{2} / \mathrm{s}$ p [bar]. Inlet presure absolute

3.3.3 Minimum speed as a function of pressure

Pump QX53-063 measured with viscosity $42 \mathrm{~mm}^{2} / \mathrm{s}$
p [bar]

1 | 1 | $\begin{array}{l}\text { pressure-holding operation } \\ \mathbf{Q}=0 \mathrm{I} / \mathrm{min} \text { for up to } 60 \mathrm{~s}\end{array}$ |
| :--- | :--- |

4 Single pumps

4.1 Dimensions

Frame size		2			3			4			5			6			8		
Pressure range		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Suction port: to SAE J518 ${ }^{11}$	S	$\begin{aligned} & \text { G1" }{ }^{\text {3) }} \\ & \text { thread } \end{aligned}$			G1 $1 / 4^{\prime \prime}$) thread			1 1/2"			$2 "$			$21 / 2^{\prime \prime}$			$3 "$		
Pressure port: to SAE J518 ${ }^{1)}$	P	$\begin{aligned} & \mathrm{G} 1 / 2^{3)^{4)}} \\ & \text { thread } \end{aligned}$			$\begin{aligned} & \text { G3/4" 3) 4) } \\ & \text { thread } \end{aligned}$			$1 "$			$1^{1 / 4 "}$			$11 / 2^{\prime \prime}$			$2 "$		
External drain port (option 06)	(1)	G1/4"			G1/4"			G1/4"			G1/4"			G3/8 "			G1/2"		
Mounting: oval 2-holeflange to ISO 3019/1 (SAE)	A	118			132			170			212			267			330		
	B (SAE)	-			106			146			181			229			-		
	B (mer)	100			109			140			180			224			280		
	C	9			11			14			18			22			26		
$\underset{\text { (metric) }}{\text { ISO 3019/2 }}$	N (SAE)	\cdot			$82.55-0,05$			101,6-0,05			127-0,05			152,4-0,05			-		
	N (Metr)	63 h 8			80 h 8			100 h 8			125 h8			160 h 8			200 h 8		
	0	8,5			8,5			10,5			12,5			16,5			20		
	V	6			6			7			7			7			9		
4-hole flange ISO 3019/2	X (metr)	9			9			12			14			18			22		
	Y (mer)	85			103			125			160			200			250		
Shaft end: parallel, to ISO/R775 ${ }^{\text {2) }}$	D	20 j 6			25 j6			32 j6			40 j6			50 j6			63 j6		
	E	36			42			58			82			82			105		
	F	6			8			10			12			14			18		
	G	22,5			28			35			43			53.5			67		
	1	45			50			68			92			92			117		
Housing	K	38			44			52			60			74			90		
	L	136	118	153	164	144	189	202	176	232	242	2120	280	288	248	338	361	331	446
	M	-	55	90	-	70	114	-	87	143	-	102	172	-	119	209	-	151	266
	T1	43			54			67			89			107	110		137	138	
	T2	43			$54 \quad 60$			67 70			89			107	7110		137138		
	Z	100			120			125			156			195197			250		
	W	80			100			136			165			203			256		
Weight	kg	5	5	6,5	10	9,5	12,5	18	17	22	33	31	40	64	60	76	130	\| 120	160

[^0]
4.2 Pressure range 1

1	external drain port - see special feature 06
2	special model: 4-hole flange ISO $3019 / 2$

3	depending on operating conditions, a second
suction port may be required on QX61 (SAE 2")	
and QX81 (SAE 2 1/2") - see section 2.2.1	

4.3 Pressure range 2

1 external drain port - see special feature 06
2 special model: 4-hole flange ISO 3019/2

4.4 Pressure range 3

4.5 Ordering code for single pumps

		$Q, \times 5$	$-0,4,0$ R *,*		
Series	= QX				
Frame size	$=2 / 3 / 4 / 5 / 6 / 8$				
Pressure range	$=1 / 2 / 3$				
Displacement [$\mathrm{cm}^{3} / \mathrm{rev}$]	$=005-500$				
Rotation (viewed from shaft end)	right (CW) $=\mathrm{R}$ (standard) left $(C C W)=L$				
Option	see section 4.7				

Ordering example:

Required:
Displacement: Continuous pressure: for use with mineral oil

Ordering code:
single pump
$40 \mathrm{~cm}^{3} / \mathrm{rev}$
300 bar

QX53-040R

4.6 Standard configuration

- direction of rotation - right (CW)
- 2-hole mounting flange to ISO 3019/1 (SAE): sizes QX 3-6
- 2-hole mounting flange to ISO 3019/2 (metr.): sizes QX 2+8
- Nitrile seals
- cylindrical shaft end to ISO R775
- black priming, flange without priming

4.7 Options

$-\mathrm{O}=$ without priming
$06=$ external drain port in the pump rear cover QX 2-5 = G1/4", QX $6=\mathrm{G} 3 / 8^{\prime \prime}, \mathrm{QX} 8=\mathrm{G} 1 / 2^{\prime \prime}$
$09=$ Viton seals and without priming
12 = 2-hole mounting flange to ISO 3019/2 (metric): size QX 3-6
$29=$ for HFB and HFC fluids, frame sizes 2-5, without priming
$66=4$-hole mounting flange to ISO 3019/2 (metric)
83 = second suction port on:
QX61 = SAE 2", QX81 = SAE 2 1/2"
$86=$ for HFB and HFC fluids, frame sizes 6+8, without priming
117 = pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for frame size $2+3$ with pressure ranges $2+3$
Further options on request.

5 Double pumps

QX double pumps consist of two single pumps mounted on a common drive shaft. Hydraulically, the two pumps operate independently of one another but they share a common suction port in the pump's centre section. The larger pump of the combination is situated at the shaft end (the drive side) and is referred to as Pump 1. With equal frame sizes, the pump with the larger displacement is situated at the drive side.

Double pumps can be combined as shown in the following table. If a letter is shown at the intersection point of the two pumps, the letter identifies the page in section 5.2 that contains the relevant dimensional drawing. If there is no letter at the intersection point, then that pump combination is not possible.

5.1 Selection table

5.2 Dimensions

A Double pumps QX.1/.1

1	S = common suction port
2	shaft and mounting dimensions see section 4

3 depending on operating conditions, a second

Typ	L	L1	K	M1	M2	Q1	Q2	1	Z	W1	W2	S	P1	P2
QX21/21	296	251	141	18	18	-	-	45	100	80	80	G 1 1/4" ${ }^{1)}$	G 1/2" ${ }^{1)^{2)}}$	G 1/2" ${ }^{1)^{2)}}$
QX31/21	343	293	171	26	30			50	120	100	80	G $11 / 2^{\prime \prime}$)	G $3 / 4^{\prime \prime}{ }^{1)}$ 2)	
QX31/31	358	308			26					100	100			G $\left.3 / 4^{\prime \prime} 1\right)^{2)}$
QX41/21	396	328	201	19	35	15		68	125	136	80	SAE 2"	SAE $1^{\prime \prime}$	G 1/2" 1) ${ }^{\text {2) }}$
QX41/31	411	343			33		15			136	100			G 3/4"1) ${ }^{\text {2) }}$
QX41/41	449	381	208	26	26	23	23			136	136			SAE 1"
QX51/21	468	376	241	23	43	15	-	92	156	165	80	SAE 2 1/2"	SAE 1 1/4"	G 1/2"112)
QX51/31	483	391			39		15			165	100			G 3/4"1) ${ }^{\text {2) }}$
QX51/41	521	429	249	30	32	28	23			165	136	SAE 3"		SAE $1^{\prime \prime}$
QX51/51	547	455			30		28			165	165			SAE $11 / 4^{\prime \prime}$
QX61/31	541	449	287	24	47	17	14	92	195	203	100		SAE 1 1/2"	G 3/4" ${ }^{1 / 2)}$
QX61/41	564	472		27	39	26	27			203	136			SAE 1"
QX61/51	601	509	292	32	40	35	28			203	165	SAE 3 1/2"		SAE 11/4"
QX61/61	628	536			32		35			203	203			SAE $11 / 2^{\prime \prime}$
QX81/41	679	562	359	35	51	25	25	117	250	250	136		SAE 2"	SAE 1"
QX81/51	705	588			47		30			250	165			SAE $11 / 4^{\prime \prime}$
QX81/61	732	615		38	45	40	35			250	203	SAE 4"		SAE 1 1/2"
QX81/81	774	657			38		40			256	256			SAE 2"

1) threaded port to DIN 3852, Part 2
2) pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for pressure ranges $2+3$

B Double pumps QX.1/.2

1	$\mathrm{~S}=$ common suction port
2	shaft and mounting dimensions see section 4

3 depending on operating conditions, a second suction port may be required - see section 2.2.1, QX61 SAE 2", QX81 SAE 2 1/2"

Typ	L	L1	K	M1	M2	Q1	1	Z1	Z2	W	S	P1	P2
QX21/22	278	233	141	18	67	-	45	100	100	80	G $11 / 4^{17}$	G 1/2" ${ }^{1)}{ }^{2)}$	G 1/2" ${ }^{11}{ }^{2)}$
QX31/22	325	275	171	26	79		50	120		100	G $11 / 2^{\prime \prime}$)	(3/4" 1) ${ }^{\text {2) }}$	
QX31/32	338	288			87				120				G 3/4" 1) ${ }^{2)}$
QX41/22	378	310	201	19	84	15	68	125	100	136	SAE 2"	SAE ${ }^{\prime \prime}$	G 1/2"11)
QX41/32	391	323			92				120				G 3/4" ${ }^{1)^{2 /}}$
QX41/42	423	355	208	26	111	23			125				SAE 1"
QX51/22	450	358	241	23	92	15	92	156	100	165	SAE 2 1/2"	SAE $11 / 4^{\prime \prime}$	G 1/2" 11) ${ }^{\text {2) }}$
QX51/32	463	371			100				120				G 3/4"11) ${ }^{\text {2) }}$
QX51/42	495	403	249	30	118	28			125		SAE $3^{\prime \prime}$		SAE 1"
QX51/52	515	423			127				156				SAE $11 / 4^{\prime \prime}$
QX61/32	521	429	287	24	112	17	92	195	120	203	SAE 3		G 3/4"1) ${ }^{\text {2) }}$
QX61/42	538	446		27	123	26			125				SAE $1^{\prime \prime}$
QX61/52	569	477	292	32	137	35			156			AE $11 / 2$	SAE $11 / 4^{\prime \prime}$
QX61/62	588	496			149				197		SAE $31 /{ }^{\prime \prime}$		SAE 1 1/2"
QX81/42	653	536	359	35	141	25	117	250	125	256	E	SAE ${ }^{\prime \prime}$	SAE 1"
QX81/52	673	556			150				156				SAE $11 / 4^{\prime \prime}$
QX81/62	692	575		38	162	40			197		SAE 4"		SAE $11 / 2^{\prime \prime}$
QX81/82	724	607			179				250				SAE 2"

1) threaded port to DIN 3852, Part 2
2) pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for pressure ranges $2+3$

C Double pumps QX.1/.3

1	$S=$ common suction port
2	shaft and mounting dimensions see section 4

3 depending on operating conditions, a second suction port may be required - see section 2.2.1. QX61 SAE 2", QX81 SAE 2 1/2"

Typ	L	L1	K	M1	M2	Q1	1	Z1	Z2	W	S	P1	P2
QX21/23	313	268	141	18	102	-	45	100	100	80	G 1 1/4"1)	G 1/2"1) ${ }^{\text {2) }}$	G 1/2"1) ${ }^{2)}$
QX31/23	360	310	171	26	114					100	G 1 1/2"1)	G $\left.3 / 4^{\prime \prime}\right)^{2)}$	
QX31/33	383	333			132		50	120	120				G 3/4"1) ${ }^{\text {2) }}$
QX41/23	413	345	201	19	119	15	68	125	100	136	SAE 2"	SAE 1"	G 1/2" ${ }^{1 / 2)}$
QX41/33	436	368			137				120				G 3/4"1) ${ }^{1}$
QX41/43	479	411	208	26	167	23			125				SAE $1^{\prime \prime}$
QX51/23	485	393	241	23	127	15	92	156	100	165	SAE 2 1/2"	SAE 1 1/4"	G 1/2" ${ }^{112}$ 2)
QX51/33	508	416			145				120				G 3/4"1) ${ }^{\text {2) }}$
QX51/43	551	459	249	30	174	28			125		SAE 3"		SAE 1"
QX51/53	585	493			197				156				SAE 1 1/4"
QX61/33	566	474	287	24	157	17	92	195	120	203	SAE 3		G 3/4"1) ${ }^{1 /}$
QX61/43	594	502		27	179	26			125			SAE $11 /{ }^{\prime \prime}$	SAE 1"
QX61/53	637	545	292	32	207	35			156		SAE 3 1/2"	SAE 1 1/2	SAE 1 1/4"
QX61/63	678	586			239				197				SAE 1 1/2"
QX81/43	709	592	359	35	197	25	117	250	125	256		SAE 2"	SAE 1"
QX81/53	743	626			220				156				SAE $11 / 4 "$
QX81/63	782	665		38	252	40			197		SAE 4"		SAE 1 1/2"
QX81/83	839	722			294				250				SAE 2"

2) pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for pressure ranges $2+3$

D Double pumps QX.2/. 1

$\left.3$| 3 | $\begin{array}{l}\text { depending on operating conditions, a second } \\ \text { suction port may be required - see section }\end{array}$ |
| :--- | :--- |
| 2.2.1, QX61 SAE 2" | | \right\rvert\,

Typ	L	L1	K	M1	M2	Q2	1	Z1	Z2	W	S	P1	P2
QX32/21	323	273	151	87	30	-	50	120	120		G 1 1/2" ${ }^{11}$	G 3/4 ${ }^{\prime \prime}$ 1) ${ }^{\text {2) }}$	G 1/2" 11 2)
QX42/21	370	302	175	103	35		68	125	125	80	SAE 2"	SAE $1^{\prime \prime}$	G $1 / 2$)
QX42/31	385	317			33	15				100			G 3/4"1) ${ }^{\text {2) }}$
QX52/21	436	344	209	120	43	-	92	156	156	80	SAE 2 1/2"	SAE 1 1/4"	G 1/2" 1) ${ }^{\text {2 }}$
QX52/31	451	359			39	15				100			G 3/4"1) ${ }^{\text {2) }}$
QX52/41	489	397	217	127	32	23				136	SAE 3"		SAE 1"
QX62/31	501	409	247	144	47	14	92	195	197	100		SAE $11 / 2^{\prime \prime}$	G 3/4" ${ }^{12)}{ }^{2 /}$
QX62/41	524	432			39	27				136			SAE 1"
QX62/51	561	469	252	149	40	28				165	SAE 3 1/2"		SAE $11 / 4^{\prime \prime}$
QX82/41	629	512	309	179	51	25	117	250	250	136		SAE 2'	SAE 1"
QX82/51	655	538			47	30				165			SAE $11 / 4{ }^{\prime \prime}$
QX82/61	682	565			45	35				203	SAE 4"		SAE 1 1/2"

1) threaded port to DIN 3852, Part 2
2) pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for pressure ranges $2+3$

E Double pumps QX.2/.2

$1 \mid S=$ common suction port
2 shaft and mounting dimensions - see section 4

Typ	L	L1	K	M1	M2	1	Z1	Z2	Z3	S	P1	P2
QX22/22	260	215	123	67	67	45	100		100	G $11 / 4^{\prime \prime} 1$)	G 1/2" ${ }^{1)^{2)}}$	G 1/2" ${ }^{112)}$
QX32/22	305	255	151	87	79	50	120			G 1 1/2" ${ }^{1)}$	G 3/4 ${ }^{\text {¹ }}{ }^{1}{ }^{2)}$	
QX32/32	318	268			87				120			G 3/4 $\mathbf{4}^{112)}$
QX42/22	352	284	175	103	84	68	125		100	SAE 2"	SAE 1"	G 1/2"1) ${ }^{\text {2) }}$
QX42/32	365	297			92				120			G 3/4"1) ${ }^{\text {2) }}$
QX42/42	397	329	182	111	111				125			SAE ${ }^{1 \prime}$
QX52/22	418	326	209	120	92	92	156		100	SAE 2 1/2"	SAE $11 / 4^{\prime \prime}$	G 1/2"1) ${ }^{\text {2) }}$
QX52/32	431	339			100				120			G 3/4"1) ${ }^{\text {2) }}$
QX52/42	463	371	217	127	118				125	SAE ${ }^{\prime \prime}$		SAE 1"
QX52/52	483	391			127				156			SAE $11 / 4^{\prime \prime}$
QX62/32	481	389	247	144	112	92	195	197	120		SAE 1 1/2"	G 3/4"1) ${ }^{\text {2) }}$
QX62/42	498	406			123				125			SAE $1^{\prime \prime}$
QX62/52	529	437	252	149	137				156	SAE $31 / 2^{\prime \prime}$		SAE $11 / 4^{\prime \prime}$
QX62/62	548	456			149				197			SAE $11 / 2^{\prime \prime}$
QX82/42	603	486	309	179	141	117	250		125		SAE 2"	SAE ${ }^{\prime \prime}$
QX82/52	623	506			150				156			SAE $11 / 4^{\prime \prime}$
QX82/62	642	525			162				197	SAE 4"		SAE $11 / 2^{\prime \prime}$
QX82/82	674	557			179				250			SAE ${ }^{\prime \prime}$

1) threaded port to DIN 3852, Part 2
2) pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for pressure ranges $2+3$

F Double pumps QX.2/. 3

$1 \mid S=$ common suction port $\quad 2 \quad$ shaft and mounting dimensions - see section 4

Typ	L	L1	K	M1	M2	1	Z1	Z2	Z3	S	P1	P2
QX32/23	340	290	151	87	114	50	120		100	G $11 / 2^{\prime \prime} 1$)	G 3/4" ${ }^{12)}$	G 1/2"11) ${ }^{2 /}$
QX42/23	387	319	175	103	119	68	125			SAE 2"	SAE $1^{\prime \prime}$	
QX42/33	410	342			137				120			G 3/4"1) ${ }^{\text {2) }}$
QX52/23	453	361	209	120	127	92	156		100	SAE $21 / 2^{\prime \prime}$	SAE $11 / 4^{\prime \prime}$	G 1/2" ${ }^{112)}$
QX52/33	476	384			145				120			G $\left.3 / 4^{\prime \prime 1}\right)^{2)}$
QX52/43	519	427	217	127	174				125	SAE $3^{\prime \prime}$		SAE 1"
QX62/33	526	434	247	144	157	92	195	197	120		SAE 1 1/2"	G 3/4 ${ }^{\prime \prime} 1{ }^{\text {2) }}$
QX62/43	554	462			179				125			SAE 1"
QX62/53	599	507	252	149	207				156	SAE 3 1/2"		SAE $11 / 4^{\prime \prime}$
Q $\times 82 / 43$	659	542	309	179	197	117	250		125		SAE 2"	SAE 1"
QX82/53	693	576			220				156			SAE 1 1/4"
QX82/63	732	615			252				197	SAE 4"		SAE $11 / 2^{\prime \prime}$

1) threaded port to DIN 3852 , Part 2
2) pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for pressure ranges $2+3$

G Double pumps QX.3/. 1

Typ	L	L1	K	M1	M2	Q2	1	Z1	Z2	W	S	P1	P2
QX33/21	368	318	196	132	30		50	120	120		G 1 1/2" ${ }^{17}$	G 3/4 ${ }^{\text {1) }}$) ${ }^{\text {2) }}$	(1/2" 12)
QX43/21	426	358	231	159	35		68	125	125	8	SAE 2"	SAE 1"	G
QX43/31	441	373			33	15				100			G 3/4" 1) ${ }^{\text {2) }}$
QX53/21	506	414	279	190	43	-	92	156	156	80	SAE 2 1/2"	SAE 1 1/4"	G 1/2" 1) ${ }^{2)}$
QX53/31	521	429			39	15				100			G 3/4" 1) ${ }^{2)}$
QX53/41	559	467	287	197	32	23				136	SAE 3"		SAE 1"
QX63/31	591	499	337	234	47	14	92	195	197	100		SAE $11 / 2^{\prime \prime}$	G 3/4"1) ${ }^{\text {2) }}$
QX63/41	614	522			39	27				136			SAE 1"
QX63/51	651	559	342	239	40	28				165	SAE 3 1/2"		SAE $11 / 4^{\prime \prime}$
QX83/41	744	627	424	294	51	25	117	250	250	136		SAE 2"	SAE 1"
QX83/51	770	653			47	30				165			SAE $11 / 4^{\prime \prime}$
QX83/61	797	680			45	35				203	SAE 4"		SAE $11 / 2^{\prime \prime}$

1) threaded port to DIN 3852, Part 2
2) pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for pressure ranges 2+3

1 S = common suction port
2 shaft and mounting dimensions - see section 4

Typ	L	L1	K	M1	M2	1	21	Z2	23	S	P1	P2
QX23/22	295	250	158	102	67	45		0	100	G $11 / 4^{\prime \prime}$)	G 1/2" ${ }^{1 /}{ }^{2 /}$	G 1/2in ${ }^{\text {1 }}$ 2)
QX33/22	350	300	196	132	79	50	120			G 1 1/2" ${ }^{1)}$	G 3/4" ${ }^{1 / 2)}$	
QX33/32	363	313			87				120			G 3/4"1) ${ }^{\text {2) }}$
QX43/22	408	340	231	159	84	68	125		100	SAE 2"	SAE 1"	G 1/2" 1) ${ }^{\text {2) }}$
QX43/32	421	353			92				120			G 3/4"1)2)
QX43/42	453	385	238	167	111				125			SAE 1"
QX53/22	488	396	279	190	92	92	156		100	SAE 2 1/2"	SAE 1 1/4"	G 1/2" 1) ${ }^{\text {2) }}$
QX53/32	500	408			100				120			G 3/4"1) ${ }^{\text {2 }}$
QX53/42	533	441	287	197	118				125	SAE $3^{\prime \prime}$		SAE 1"
QX53/52	553	461			127				156			SAE $11 / 4^{\prime \prime}$
QX63/32	571	479	337	234	112	92	195	197	120		SAE 1 1/2"	G $3 / 4{ }^{\prime \prime}{ }^{1)}$
QX63/42	588	496			123				125			SAE 1"
QX63/52	619	527	342	239	137				156	SAE 3 1/2"		SAE $11 / 4{ }^{\prime \prime}$
QX63/62	638	546			149				197			SAE $11 / 2^{\prime \prime}$
QX83/42	718	601	424	294	141	117	250		125		SAE 2"	SAE 1"
QX83/52	738	621			150				156			SAE 1 1/4"
QX83/62	757	640			162				197	SAE 4"		SAE $11 / 2^{\prime \prime}$
QX83/82	789	672			179				250			SAE ${ }^{\prime \prime}$

1) threaded port to DIN 3852, Part 2
2) pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for pressure ranges 2+3

1 Double pumps QX.3/3

2 shaft and mounting dimensions - see section 4

Typ	L	L1	K	M1	M2	1	Z1	Z2	Z3	S	P1	P2
Q $\times 23 / 23$	330	285	158	102	102	45	100		100	G $\left.11 / 4^{\prime \prime 1}\right)^{2)}$	G 1/2" ${ }^{1)^{2)}}$	G $1 / 2^{\prime \prime}{ }^{17)}$
QX33/23	385	335	196	132	114	50	120			G $11 / 2^{\prime \prime}{ }^{1 / 2)}$	G 3/4" ${ }^{1 / 2)}$	
QX33/33	408	358			132				120			G 3/4 ${ }^{\text {11) }}$ 2)
QX43/23	442	374	231	159	119	68	125		100	SAE 2"	SAE $1^{\prime \prime}$	G 1/2" ${ }^{11)}$
QX43/33	466	398			137				120			G 3/4" ${ }^{1)}$
QX43/43	509	441	238	167	167				125			SAE 1"
QX53/23	523	431	279	190	127	92	156		100	SAE 2 1/2"	SAE 1 1/4"	G 1/2" ${ }^{112)}$
QX53/33	546	454			145				120			G 3/4" ${ }^{12)}$
QX53/43	589	497	287	197	174				125	SAE 3"		SAE 1"
QX53/53	623	531			197				156			SAE 1 1/4"
QX63/33	616	524	337	234	157	92	195	197	120		SAE $11 / 2^{\prime \prime}$	G 3/4 ${ }^{112)}$
QX63/43	644	552			179				125			SAE $1^{\prime \prime}$
QX63/53	689	597	342	239	207				156	SAE $31 / 2^{\prime \prime}$		SAE $11 / 4{ }^{\prime \prime}$
QX63/63	728	636			239				197			SAE 1 1/2"
QX83/43	774	657	424	294	197	117	250		125		SAE 2"	SAE 1"
QX83/53	808	691			220				156			SAE $11 / 4^{\prime \prime}$
QX83/63	847	730			252				197	SAE 4"		SAE 1 1/2"
QX83/83	904	787			294				250			SAE ${ }^{\prime \prime}$

1) threaded port to DIN 3852 , Part 2
2) pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for pressure ranges 2+3

5.3 Ordering code for double pumps

Ordering example:

Required:	double pump
Pump 1	
Displacement:	$80 \mathrm{~cm}^{3} / \mathrm{rev}$
Continuous pressure:	300 bar
Type:	$63-080$
Pump 2	
Displacement:	$20 \mathrm{~cm}^{3} / \mathrm{rev}$
Continuous pressure:	160 bar
Type:	$31-020$
for use with mineral oil	
Ordering code:	QX63-080/31-020R

5.4 Standard configuration

- direction of rotation - right (CW)
- 2-hole mounting flange to ISO 3019/1 (SAE): sizes QX 3-6
- 2-hole mounting flange to ISO 3019/2 (metr.): sizes QX 2+8
- Nitrile seals
- parallel shaft end to ISO/R775
- Black priming, flange without priming

6 Triple pumps

The following table shows the triple-pump combinations that can be supplied (other triple-pumps on request). The individual pumps 1, 2 and 3 must be specified in accordance with the main characteristics shown in section 2 .

The largest pump of the combination is situated at the shaft end and is referred to as Pump 1. For equal frame sizes, the pump with the larger displacement is situated at the drive side. Pumps 2 and 3 have a common suction port.

6.1 Selection table

Frame size of Pump 1

QX2.	QX3.	QX4.	QX5.	QX5.	QX6.	QX8.
QX21/21/21	QX31/21/21	QX41/21/21	QX51/22/23	QX52/52/31	QX61/31/33	QX81/42/23
QX21/21/22	QX31/21/22	QX41/21/23	QX51/23/23	QX52/52/42	QX61/41/21	QX82/42/43
QX21/21/23	QX31/21/23	QX41/22/22	QX52/23/23	QX52/52/43	QX61/41/42	QX82/51/53
QX21/22/22	QX31/22/22	QX41/23/23	QX53/22/22	QX52/52/52	QX61/42/23	QX83/51/53
QX21/22/23	QX31/22/23	QX42/22/22	QX51/31/33	QX52/52/53	QX61/42/43	QX81/61/61
QX21/23/23	QX31/23/22	QX43/22/22	QX51/33/33	QX52/53/31	QX61/43/43	QX81/62/63
QX22/22/22	QX31/23/23	QX43/23/22	QX51/41/23	QX52/53/53	QX62/41/22	QX81/63/33
QX22/22/23	QX32/22/22	QX43/23/23	QX51/41/42	QX53/53/23	QX62/42/42	QX82/61/61
QX23/23/23	QX32/22/23	QX41/31/33	QX51/41/43	QX53/53/33	QX62/43/43	QX82/62/62
	QX32/23/23	QX41/33/22	QX51/42/22		QX63/43/22	QX82/63/31
	QX33/21/22	QX41/33/33	QX51/42/43		QX61/52/53	QX83/61/61
	QX33/21/23	QX42/31/32	QX51/43/21		QX61/53/23	QX83/63/43
	QX33/23/23	QX42/32/32	QX51/43/22		QX61/53/31	QX83/63/61
	QX31/31/21	QX42/33/32	QX51/43/23		QX62/52/32	QX81/81/61
	QX31/31/22	QX43/31/31	QX51/43/43		QX62/52/52	QX81/81/81
	QX31/31/23	QX43/33/33	QX52/42/23		QX62/53/22	QX82/82/52
	QX31/31/31	QX41/41/33	QX52/42/42		QX62/53/23	QX82/82/62
	QX31/31/33	QX41/42/21	QX52/43/22		QX62/53/31	Q X82/82/63
	QX31/32/22	QX41/42/23	QX52/43/23		QX62/53/33	QX83/83/53
	QX31/33/33	QX41/42/42	QX52/43/43		QX63/51/51	
	QX32/32/22	QX41/43/21	QX53/41/22		QX63/53/53	
	QX32/32/23	QX41/43/22	QX53/41/23		QX61/61/31	
	QX32/32/32	QX41/43/23	QX53/42/22		QX61/61/33	
	QX32/32/33	QX42/42/22	QX53/42/43		QX61/61/41	
	QX33/33/23	QX42/42/23	QX53/43/23		QX61/61/53	
	QX33/33/33	QX42/42/31	QX51/51/21*		QX61/62/42	
		QX42/42/32	QX51/51/32		QX61/62/63	
		QX42/42/33	QX51/51/33		QX61/63/32	
		QX42/42/42	QX51/52/32		QX61/63/33	
		QX42/42/43	QX51/52/33		QX61/63/41	
		QX43/43/43	QX51/52/42		QX61/63/42	
			QX51/52/43		QX62/62/33	
			QX51/53/22		QX62/62/43	
			QX51/53/23		QX62/62/53	
			QX51/53/31		QX62/62/62	
			QX51/53/33		QX62/62/63	
			QX51/53/41		QX62/63/63	
			QX51/53/43		QX63/63/32	
			QX51/53/52		QX63/63/43	
			QX52/52/23		QX63/63/53	
65	130	260	520	520	1050	2100

[^1]
6.2 Ordering code for triple pumps

E㝑
Triple pumps can only be supplied after consulting Bucher Hydraulics GmbH.

Ordering example:

Required:	triple pump
Pump 1	
Displacement:	$125 \mathrm{~cm}^{3} / \mathrm{rev}$
Continuous pressure:	80 bar
Type:	$51-125$
Pump 2	
Displacement:	$80 \mathrm{~cm}^{3} / \mathrm{rev}$
Continuous pressure:	150 bar
Type:	$51-080$
Pump 3	
Displacement:	$12 \mathrm{~cm}^{3} / \mathrm{rev}$
Continuous pressure:	125 bar
Type:	$21-012$

For use with mineral oil
Referring to the selection table in sect. 6.1,
QX51/51/21 is an obtainable combination.
Ordering code:
QX51-125/51-080/21-012R

6.3 Standard configuration

- direction of rotation - right (CW)
- 2-hole mounting flange to ISO 3019/1 (SAE): sizes QX 3-6
- 2-hole mounting flange to ISO 3019/2 (metr.): sizes QX 2+8
- nitrile seals
- parallel shaft end to ISO/R775
- black priming, flange without priming

6.4 Options

$-\mathrm{O}=$ without priming
$06=$ external drain port in the pump rear cover QX 2-5 = G1/4", QX $6=$ G3/8", QX $8=\mathrm{G} 1 / 2^{\prime \prime}$
$09=$ Viton seals and without priming
12 = 2-hole mounting flange to ISO 3019/2 (metric): size QX 3-6
$29=$ for HFB and HFC fluids, frame sizes 2-5, without priming
$66=4$-hole mounting flange to ISO 3019/2 (metric)
$83=$ second suction port on:
QX61 = SAE 2", QX81 = SAE 2 1/2"
$86=$ for HFB and HFC fluids, frame sizes 6+8, without priming
117 = pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for frame size $2+3$ with pressure ranges $2+3$
Further options on request.

7 Low-flow capability pumps

7.1 General

The QX24 internal gear pump is a further development of the Bucher internal gear pump. With displacements from

3,3 to $8 \mathrm{~cm}^{3} / \mathrm{rev}$, it extends the low-flow capability of the QX range.

7.2 Technical data

Mounting attitude	unrestricted
Mounting method (standard)	oval 2-hole flange to ISO $3019 / 2$ (metric)
Direction of rotation	right, alternatively left (but not reversible)
Pump drive method	in-line, by flexible coupling
Fluids	HLP mineral oils to DIN 51524, Part 2 HFC fluids to VDMA 24317 other fluids - consult Bucher Hydraulics GmbH
Minimum fluid cleanliness	NAS 1638, class 9 or ISO 4406, code $20 / 18 / 15$
Operating viscosity	$20-100 \mathrm{~mm}^{2} / \mathrm{s}^{*}$ Starting viscosity
Fluid temperature	HLP mineral oils min. $-20^{\circ} \mathrm{C}$, max $.80^{\circ} \mathrm{C} . \mathrm{HFC} 50^{\circ}{ }^{\circ} \mathrm{C}$ max. Range for max. long life cycle $+30-+60^{\circ} \mathrm{C}$ (considering viscosity field)
Minimum inlet pressure	0.85 bar absolute
Maximum pressure at drain port	1.5 bar absolute

7.3 Main characteristics

Effective displacement	Flow rate 1)	Maximum speed	Type	Operating pressure at the pump outlet side				Torque	Power consumption
effective	$1450 \mathrm{~min}^{-1}$			continuous [bar]		Intermittent ${ }^{2)}$ [bar]			
[$\mathrm{cm}^{3} / \mathrm{rev}$]	[$1 / \mathrm{min}$]	[rpm]		Mineraloil	HFC	Mineraloil	HFC	$[\mathrm{Nm}]^{3}$	[kW] ${ }^{\text {4 }}$
3,3	4,8	3600	QX24-003	320	400	280	350	17	2,6
4,2	6,2	3600	QX24-004	320	400	280	350	21,5	3,2
5,1	7,4	3600	QX24-005	360	400	320	350	30	4,5
6,3	9,1	3600	QX24-006	360	400	320	350	36	5,5
8,0	11,5	3600	QX24-008	360	400	320	350	46	7,0

[^2][^3]
7.4 Volumetric efficiency (η)

7.5 Single pumps

7.5.1 Dimensions

1 external drain port G1/4"

7.5.2 Ordering code

7.5.3 Standard configuration

- direction of rotation "right "
- 2-hole mounting flange to ISO 3019/2 (metric)
- nitrile seals
- cylindrical shaft end to ISO R775
- separate drain port G $1 / 4$ in rear cover of the pump
- black priming, flange without priming

7.6 QX24 pumps combined with other QX-single pumps

7.6.1 Dimensions

1	external drain port G $1 / 4^{\prime \prime}$
2	dimensions see section 4

3 dimension A depends on the driving QX pump model (2)

7.6.2 Ordering code

-㬢 see section 4.7 for a selection

Ordering example:

Required:	Double pump	Pump 2 Dump 1	
Displacement:	$4 \mathrm{~cm}^{3} / \mathrm{rev}$		
Displacement:	$40 \mathrm{~cm}^{3} / \mathrm{rev}$	Continuous pressure:	250 bar
Continuous pressure:	160 bar	Type:	$24-004$
Type:	$41-040$		For use with mineral oil:

8 Fluid

QX pumps require fluid with a minimum cleanliness level of NAS 1638, Class 9 or ISO 4406, code 20/18/15.

HLP hydraulic oils to DIN 51524, Part 2, can be used without any special restriction as long as they remain within the specified temperature and viscosity ranges. HFC fire-resistant fluids to DIN 51502 can be used. Note that all fire-resistant fluids require special versions of the pumps or motors and must be approved by Bucher Hydraulics GmbH. We recommend the use of fluids that contain anti-wear additives for mixed-friction operating conditions. Fluids without appropriate additives can reduce the service life of pumps and motors. The user is responsible for maintaining, and regularly checking, the fluid quality. Bucher Hydraulics recommends a load capacity of $\geq 30 \mathrm{~N} / \mathrm{mm}^{2}$ to Brugger DIN 51347-2.

9 Fluid cleanliness class

Cleanliness class (RK) onto ISO 4406 and NAS 1638

Code ISO 4406	Number of particles/100 mI			
	$\leq 4 \mu \mathrm{~m}$	$\leq 6 \mu \mathrm{~m}$	$\leq 14 \mu \mathrm{~m}$	NAS 1638
$23 / 21 / 18$	8000000	2000000	250000	12
$22 / 20 / 18$	4000000	1000000	250000	-
$22 / 20 / 17$	4000000	1000000	130000	11
$22 / 20 / 16$	4000000	1000000	64000	-
$21 / 19 / 16$	2000000	500000	64000	10
$20 / 18 / 15$	1000000	250000	32000	9
$19 / 17 / 14$	500000	130000	16000	8
$18 / 16 / 13$	250000	64000	8000	7
$17 / 15 / 12$	130000	32000	4000	6
$16 / 14 / 12$	64000	16000	4000	-
$16 / 14 / 11$	64000	16000	2000	5
$15 / 13 / 10$	32000	8000	1000	4
$14 / 12 / 9$	16000	4000	500	3
$13 / 11 / 8$	8000	2000	250	2

10 Operational reliability

To guarantee the reliable operation and a long service life of the pump, a maintenance schedule must be prepared for the power unit, machine or system. The maintenance schedule must make sure that the provided or permissible operating conditions of the pump are adhered to over the period of use.
In particular, compliance with the following operating parameters must be ensured:

- required oil cleanliness
- operating temperature range
- fluid level

Moreover, the pump and the system must be inspected at regular intervals for changes in the following parameters:

- Vibration
- Noise
- Differential temperature of pump - fluid in the tank
- Foaming in the tank
- Leak tightness

Changes in these parameters indicate wear of components (e.g. drive motor, coupling, pump, etc.). The cause must be immediately pinpointed and eliminated.
To provide high operational reliability of the pump in the machine or system, we recommend continuous, automatic checks of the above parameters and an automatic shutdown in the case of changes that exceed the usual fluctuations within the provided operating range.

11 Note

This catalogue is intended for users with specialist knowledge. The user must check the suitability of the equipment described here in in order to ensure that all of the conditions necessary for the safety and proper functioning of the system are fulfilled. If you have any doubts or questions concerning the use of these pumps, please consult Bucher Hydraulics GmbH.

12 Accessories

12.1 Bolt-on valves - SAE J518 code 61 / ISO 6162-1 pattern

12.1.1 Examples for Bolt-on valves, mounted on QX Internal Gear Pumps

1) Rohrllansche siehe Kapitel LEERER MERKER
2) Pipe flange see section 12.2
3) Please ask Bucher Hydraulics GmbH for check valves
[^4]
12.2 Pipe flanges - high pressure type (thread flange)

- Max. operating pressure 420 bar
- Flange size SAE J518 code 61 / ISO 6162-1

Threaded pipe flanges are spot-faced for DIN 2353 pipe fittings Material: ST37 / for Viton seals, contact Bucher Hydraulics GmbH

Orderingnumber	Ordering code	Size	D \varnothing	E	F	H	L	R	X	Y	Viton seal 90 Shore A	Retaining screws DIN912-12.9 / [Nm]	
100037000	RF 01-R08	G 1/2"	12,5	16	27	13	54	23	17.5	38	20,24×2,62	M8×30	30
100037010	RF 02-R10	G 3/4"	20	18	30	12	65	26	22,2	47,6	$26,65 \times 2,62$	M10x30	60
100037020	RF 03-R11	G 1"	25	20	34	13	70	29	26,2	52,4	$32,99 \times 2,62$	M10×35	60
100037030	RF 04-R12	G $11 / 4^{\prime \prime}$	32	22	38	14	80	36	30,2	58,6	$40,86 \times 3,53$	M10x40	60
100037040	RF 05-R13	G 1 1/2"	38	24	41	19	94	41	35.7	70	$44,04 \times 3,53$	M12x45	120
100037050	RF 06-R14	G 2'	50	26	45	20	102	48	42,9	77,8	59,92×3,53	M12 $\times 50$	120
100055470*	RF 07-R16	G $21 / 2^{\prime \prime}$	63	30	50	18	114	57	50,8	89	72,62x3,53	M12x45	120

* at RF07 only to 210 bar be allowed

12.3 Pipe flanges - low pressure type (welding flange)

- Max. operating pressure 16 bar
- Flange size SAE J518 code 61 / ISO 6162-1

Material: HST37 / for Viton seals, contact Bucher Hydraulics GmbH

Ordering number	Ordering code	SAE flange Size	D	K	F	H	L	R	X	Y	Viton seal 90 Shore 'A'	Retaining screws DIN 912-8.8 Torque $[\mathrm{Nm}]$	pipe ${ }^{1)}$ O/dia. ap- prox.	
100062450	RN 07-S	$21 / 2^{\prime \prime}$	63	75	35	14	120	57	51	89	$69,44 \times 3,53$	$\mathrm{M} 12 \times 30$	70	75
100063880	RN 08-S	$3^{\prime \prime}$	76	88			140,5	68	62	106,5	$85,32 \times 3,53$	$\mathrm{M} 16 \times 40$	180	88
100063890	RN 09-S	$31 / 2^{\prime \prime}$	89	100	40	19	158,5	73	70	120,3	$98,02 \times 3,53$	$\mathrm{M} 16 \times 40$	180	100
100063900	RN 10-S	$4^{\prime \prime}$	103	115			168	79	78	130	$110,72 \times 3,53$	$\mathrm{M} 16 \times 40$	180	115

1) We recommend the use of seamless precision steel tube to DIN 2391 with wallthick max 6 mm

Attachment G-06

Manufacturers' Submittals and Individual O\&M Manuals

ROTEX MOTORS

ROTEX ${ }^{\circledR}$

Torsionally flexible coupling

Table of contents

ROTEX ${ }^{\text { }}$
Torsionally flexible coupling 17
Coupling description 19
Coupling selection 20
Misalignments and installation 22
Spider types - Materials, characteristics and properties 23
Technical data 24
ROTEX ${ }^{\circledR}$ part numbers 25
Shaft coupling - cast materials 30
Shaft coupling - material steel 31
Clamping ring hubs 32
Steel cross clamp hubs 33
Flange designs AFN and BFN 34
Drop-out center coupling design A-H 35
Flange designs CF, CFN, DF and DFN 36
Double-cardanic spacer design ZS-DKM-H 37
Double-cardanic spacer design DKM 38
Intermediate shaft design ZWN and ZR 39
Design BTAN with brake drum/design SBAN with brake disc 40
Design AFN-SB special with brake disc 41
Design SD (shiftable at standstill) 42
Additional designs 43
Additional designs with torque limiter 44
Hub designs 45
Weights and mass moment of inertia 46

Coupling description

General description

ROTEX ${ }^{6}$ couplings are designed to transmit torque between drive and driven components via curved jaw hubs and elastomeric elements commonly known as spiders. The combination of these components provides dampening and accommodation for misalignments. This product is available in a variety of metals, elastomers and mounting configurations to meet your specific needs.

Function and Design

ROTEX ${ }^{\overline{5}}$ - couplings suitable for horizontal or vertical applications are constructed from a variety of materials and geometries providing a torsionally flexible platform optimizing the balance between inertia, coupling performance and application requirements. The machined concaved jaws provide a pocket for the crowned spider legs, allowing the hubs to articulate freely while accommodating misalignment, minimizing restoring forces, dampening shock and vibration while providing failsafe torque transmission. The symmetrical relationship of the hubs allows for a variety of accessories to accommodate different shaft distances. Together with the curved jaw, the crowned design reduces edge loading of the ROTEX ${ }^{\circledR}$ spider while compensating for misalignment and providing system dampening. The unique geometry of the coupling, in addition to a variety of spider materials and durometers, contribute to the dampening characteristics of the system, In contrast to other flexible couplings with elastomeric elements in shear, ROTEX ${ }^{8}$ coupling spiders are in compression, defining the torque of the coupling. This design characteristic results in a maximum torsional angle of 5° and minimizes spider expansion due to deformation at excessive speed/loads as illustrated.
Interlocking curved jaws with a variety of standard clamping options accommodates shafts up to 7.875 inches and a maximum nominal torque of $309,750 \mathrm{lb}$-in while still accommodating blind assembly. As defined by the spider, ROTEX couplings are suitable for moderate industrial temperature ranges. Together these features reduce the maintenance required during the life-cycle of the coupling.

Explosion-proof use

ROTEX ${ }^{\Omega}$ couplings are suitable for power transmission in hazardous areas. The couplings are certified and conform to EC standard 94/9/EC (ATEX 95) as units of category 2G/2D and are suitable for use in hazardous areas of zone 1, 2, 21 and 22. Please read through our information included in our Type Examination Certificate and the operating and installation instructions at

Deformation with load
 wnw.ktr.com.

Spiders
Intended for normal operating temperatures of -40° to $+212^{\circ} \mathrm{F}$, with transient temperature peaks up to $+298^{\circ} \mathrm{F}$ the standard spider material reduces required coupling maintenance. Continuous improvement of these materials has resulted in a standard spider of 92 Shore A which offers various advantages over other polyurethane materials. For higher torques, it is also possible to use a 95/98 Shore A or 64 Shore D-F when appropriate. The spiders are extremely resistant to wear, oil, ozone and aging as well as hydrolysis (ideal for tropical climates). The curve geometry of the spider and material contribute to the internal damping characteristics which help to protect the drive against dynamic overload.

Coupling selection

The ROTEX coupling is selected in accordance with DIN 740 part 2. The coupling must be dimensioned in a way that the permissible coupling load is not exceeded in any operating condition. For this purpose, the actual loads must be compared to the permissible parameters of the coupling.

1 Drives without periodical torsional vibrations
e. g. centrifugal pumps, fans, screw compressors, etc.

The coupling is selected taking into account the rated torques $T_{K N}$ and maximum torque $\mathrm{T}_{\mathrm{Kmax}}$.
1.1 Load produced by rated

torque

$\mathrm{T}_{\mathrm{KN}} \geq \mathrm{T}_{\mathrm{N}} \cdot \mathrm{S}_{\mathrm{t}}$

Taking ambient
temperature into
consideration, the
permissible rated

torque T_{KN} of the coupling
must correspond at least
to the rated torque T_{N} of
the machine.
1.2 Load produced by torque shocks

$$
T_{\text {Knax }} \geq T_{S} \cdot S_{z} \cdot S_{1}+T_{N} \cdot S_{1}
$$

The permissible maximum torque of the coupling must correspond with the total of peak torque T_{S} and the rated torque T_{N} of the machine, taking into account the shock frequency Z and the ambient temperature.

Drive-sided shock
$\mathrm{T}_{\mathrm{S}}=\mathrm{T}_{\mathrm{AS}} \cdot M_{A} \cdot \mathrm{~S}_{\mathrm{A}}$
Load-sided shock
$\mathrm{T}_{\mathrm{S}}=\mathrm{T}_{\mathrm{LS}} \cdot M_{\mathrm{L}} \cdot \mathrm{S}_{\mathrm{L}}$
$\mathrm{M}_{\mathrm{A}}=-\mathrm{J}_{\mathrm{A}}+J_{\mathrm{L}} \quad M_{\mathrm{L}}=-\frac{J_{A}}{\mathrm{~J}_{\mathrm{A}}+J_{L}}$

This applies in case if the rated torque T_{N} of the machine is at the same time subject to shocks.
Knowing the mass distribution, shock direction and shock mode, the peak torque T_{S} can be calculated.
For drives with A. C.-motors with high masses on the load side we would recommend the calculation of the peak driving torque with the help of our simulation program.
2. Drives with periodical torsional vibrations. For drives subject to high torsional vibrations, e. g. diesel engines, piston compressors, piston pumps, generators, etc., it is necessary to perform a torsional vibration calculation to ensure safe operation. If requested, we will perform the torsional vibration calculation and the coupling selection for you. For details please contact KTR Engineering.
2.1 Load produced by rated torque

$$
\mathrm{T}_{\mathrm{KN}} \geq \mathrm{T}_{\mathrm{N}} \cdot \mathrm{~S}_{\mathrm{t}}
$$

Taking ambient temperature into consideration, the permissible rated torque T_{KN} of the coupling must correspond with the rated torque T_{N} of the machine.
2.2 Passing through the resonance range

```
T
```

Taking ambient temperature into consideration, the peak torque T_{S} arising when the resonance range is run through must not exceed the maximum torque $T_{\text {Kmax }}$ of the coupling.
2.3 Load produced by vibratory torque shocks

$$
T_{K W} \geq T_{W} \cdot S_{t}
$$

Taking ambient temperature into consideration, the permissible vibratory torque $T_{K W}$ of the coupling must not be exceeded by the highest periodical vibratory torque T_{W} with operating speed, For higher operating frequencies $f>10$, the heat produced by damping in the elastomer part is considered as damping power P_{W}.
The permissible damping power
$P_{\text {KW }}$ of the coupling depends on
$P_{K W} \geq P_{W}$
the ambient temperature and must not be exceeded by the damping power produced.

Description	Symbol	Definition or explanation
Rated torque of coupling	T_{KN}	Torque that can continuously be transmitted over the entire permissible speed range
Maximum torque of coupling	$T_{\text {Kmax }}$	Torque that can be transmitted as dynamic load $\$ 10^{5}$ times or 5×10^{4} as vibratory load, respectively, during the entire operating life of the coupling
Vibratory torque of coupling	T_{kw}	Torque amplitude of the permissible periodical torque fluctuation with a frequency of 10 Hz and a basic load of $\mathrm{T}_{\text {KN }}$ or dynamic load up to T_{KN}, respectively
Damping power of coupling	P_{KW}	Permissible damping power with an ambient temperalure of $+86^{\circ}$.
Rated torque of coupling	T_{N}	Stationary rated torque on the coupling
Peak torque of the machine	Ts	Peak torque on the coupling
Peak torque on the driving side	$\mathrm{T}_{\text {AS }}$	Peak torque with torque shock on the driving side, e. g. breakdown torque of the electric motor

Description	Symbol	Definition or explanation
Peak torque of load side	$\mathrm{T}_{\text {LS }}$	Peak torque with torque shock on load side, e. g. braking
Vibratory torque of machine	${ }_{\text {w }}$	Amplitude of the vibratory torque effective on the coupling
Damping power of the machine	${ }^{\text {w }}$	Damping power which is effective on the coupling due to the load produced by the vibratory torque
Moment of inertia of driving side	J_{A}	Total of moments of inertia existing on the driving or load side referring to the coupling
Moment of inertia of load side	J_{L}	
Rotational inertia coefficient of driving side	$\mathrm{M}_{\text {A }}$	Factor taking into account the mass distribution with shocks and vibrations produced on the driving or load side
Rotational inertia coefficient of load side	M_{L}	$M_{A}=-\frac{J_{L}}{J_{A}+J_{L}} \quad M_{L}=-\frac{J_{A}}{J_{A}+J_{L}}$

Coupling selection

Service Factor $\mathrm{S}_{\mathbf{t}}$ for Temperature ${ }^{\circ} \mathrm{F}$				
	$\begin{gathered} -22{ }^{\circ} \mathrm{F} \\ 86^{\circ} \mathrm{F} \end{gathered}$	$104^{\circ} \mathrm{F}$	$140{ }^{\circ} \mathrm{F}$	$176{ }^{\circ} \mathrm{F}$
s_{t}	1.0	1.2	1.4	1,8

Service Factor $\mathrm{S}_{\mathbf{Z}}$ for Starting Frequency				
slarting frequency/h	100	200	400	800
$\mathrm{~S}_{\mathrm{Z}}$	1.0	1.2	1.4	1.6

Service factor $S_{A} / S_{\mathcal{L}}$ for shocks	
	$S_{\mathcal{A}} / S_{\mathrm{L}}$
gentle shocks	1.5
average shocks	1.8
heay shocks	2.5

Allowable load on key of the coupling hub

The shaft-hub-connection has to be verified by the customer. Allowable surface pressure according to DIN 6892 (method C).

Cast iron EN-GJL-250 (GG 25)	$32,633 \mathrm{psi}$
material nodular iron EN-GJS-400-15 (GGG 40)	$32,633 \mathrm{psi}$
material steel S355J2G3 (St 52.3)	$36,259 \mathrm{psi}$
for other steel materials $\mathrm{p}_{\text {zul }}=$	$0,9 \cdot \mathrm{R}_{\mathrm{e}}\left(\mathrm{R}_{\text {p0.2 }}\right)$

Example of selection:

Given: Details of driving side

A. C. motor
Motor output
Speed
Moment of inertia driven side
Start-up frequency
Ambient temperature

Given: Details of load side

Screw compressor

Rated torque of load side
Moment of inertia of load side

$$
\begin{aligned}
& 449 T S \quad S_{A}=1.8 \\
& P=300 \mathrm{HP} \\
& \mathrm{n}=1,750 \mathrm{rpm} \\
& \mathrm{~J}_{A}=25.7 \mathrm{lb} \text { in sec}{ }^{2} \\
& z=6^{1 / \mathrm{h}} \quad \\
& =+140^{\circ} \mathrm{F}=1.0 \\
& \mathrm{~S}_{\mathrm{t}}=1.4
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{LN}}=8,230 \mathrm{lb}-\mathrm{in} \\
& \mathrm{~J}_{\mathrm{L}}=60.2 \mathrm{lb} \mathrm{in} \mathrm{sec}
\end{aligned}
$$

Calculation

- Rated driving torque

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{AN}}[\mathrm{lb}-\mathrm{in}]=63,025 \frac{\mathrm{P}(\mathrm{HP})}{n_{\mathrm{AN}}[\mathrm{rpm}]} \\
& \mathrm{T}_{\mathrm{AN}}=63,025=\frac{300 \mathrm{HP}}{1,750 \mathrm{rpm}}=10,804 \mathrm{lb}-\mathrm{in}
\end{aligned}
$$

Coupling selection:

- Load produced by rated torque:

$$
T_{K N} \geq T_{L N}-S_{t}
$$

$$
\mathrm{T}_{\mathrm{KN}} \geq 8,230 \mathrm{lb} \text {-in } \cdot 1.4=11,522 \mathrm{lb} \text {-in }
$$

Selected: ROTEX² Size 90-spider 92 Shore A with:

$$
\begin{aligned}
& T_{K N}=21,240 \mathrm{lb}-\mathrm{in} \\
& T_{K \text { max }}=42,480 \mathrm{lb}-i n
\end{aligned}
$$

Load produced by torque shocks:

$T_{S}=21,608 \mathrm{lb}-i n \cdot 0.7 \cdot 1.8=\underline{27,226} \mathrm{lb}-\mathrm{in}$
$T_{K \text { max }} \geq 27,226 \mathrm{lb}-i n \cdot 1 \cdot 1.4=\underline{38,117 \mathrm{lb}-i n}$
$T_{K \text { max }}$ with $42,480 \mathrm{lb}$-in $\geq 38,117 \mathrm{lb}$-in

Misalignments and installation

Misalignments

Axial misalignment $\Delta \mathrm{Ka}$

$\mathrm{L}_{\text {max. }}=\mathrm{L}+\Delta \mathrm{Ka}$

Angular misalignment $\Delta \mathrm{Kw}$ [degrees]

$\Delta K w\left[\right.$ in] $=L_{\text {max }}-L_{\text {min }}$

Misalignments																	
ROTEX ${ }^{*}$ Size	14	19	24	28	38	42	48	55	65	75	90	100	110	125	140	160	180
Max, axial misalignment Δ Ka [in]	$\begin{gathered} -0.02 \\ +0.04 \end{gathered}$	$\begin{aligned} & -0.02 \\ & +0.05 \end{aligned}$	$\begin{aligned} & -0.02 \\ & +0.06 \end{aligned}$	$\begin{aligned} & -0.03 \\ & +0.06 \end{aligned}$	$\begin{aligned} & -0.03 \\ & +0.07 \end{aligned}$	$\begin{aligned} & -0.04 \\ & +0.08 \end{aligned}$	$\begin{aligned} & -0.04 \\ & +0.08 \end{aligned}$	$\begin{aligned} & -0.04 \\ & +0.09 \end{aligned}$	$\begin{aligned} & -0.04 \\ & +0.10 \end{aligned}$	$\begin{aligned} & -0.06 \\ & +0.12 \end{aligned}$	$\begin{aligned} & -0.06 \\ & +0.13 \end{aligned}$	$\begin{array}{r} -0.06 \\ +0.15 \end{array}$	$\begin{aligned} & -0.08 \\ & +0.17 \end{aligned}$	$\begin{aligned} & -0.08 \\ & +0.18 \end{aligned}$	$\begin{aligned} & -0.08 \\ & +0.20 \end{aligned}$	$\begin{aligned} & -0.10 \\ & +0.22 \end{aligned}$	$\begin{array}{r} -0.12 \\ +0.25 \end{array}$
Max, parallel misalignment at $\mathrm{n}=1,800 \mathrm{rpm} \Delta \mathrm{Kr}_{[}[\mathrm{in}]$	0.006	0.007	0.008	0.009	0.010	0.011	0.013	0,014	0.015	0.017	0.018	0.019	0.020	0,021	0.022	0.022	0.024
Max. angular misalignment at $\mathrm{n}=1,800 \mathrm{rpm} \Delta K \mathrm{Kw}$ (degree]	1.1	1.0	0.8	0,9	0.9	1,0	1.1	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2
$\Delta K w[i n]$	0.024	0.029	0031	0.039	0.051	0.067	0.079	0.090	0.102	0.126	0.161	0.181	0.213	0.248	0.256	0.303	0.354

The above misalignment figures for ROTEX ${ }^{\overline{1}}$ couplings are standard values, taking into account the load of the coupling up to the rated torque $T_{K N}$ and an operating speed $n=1,800$ RPM along with an ambient temperature of $+86^{\circ} \mathrm{F}$.
For other operating parameters, please ask for KTR-Norm 20240 on misalignments for ROTEX® . The maximum angular and parallel misalignments must not be used concurrently. For example; 70% of the maximum parallel value allows 30% of the maximum angular value. Also, care should be taken to accurately maintain the distance dimension " E ", allowing for axial clearance of the coupling while in operation. In case of an axial thrust, the dimension "L" must be taken as a minimum dimension in order to keep the spider free from pressure against the face.
Detailed installation instructions are available at www.ktr.com.

Installation

Maximum shaft size includes standard keyway which can extend into the spider bore $\varnothing \mathrm{d} \mathrm{W}$

Dimensions for assembly																	
ROTEX ${ }^{3}$ Size	14	19	24	28	38	42	48	55	65	75	90	100	110	125	140	160	180
Distance dimension E	0.51	0.63	0.71	0.79	0.94	1.02	1.10	1.18	1.38	1.57	1.77	1.97	2.17	2.36	2.56	2.95	3.35
Dimension d_{H}	0.394	0.709	1.063	1.181	1.496	1,811	2,008	2.362	2,677	3.150	3.937	4.449	5.000	5.787	6.496	7.480	8.661
Dimension dw	0.276	0.500	0.750	0.875	1.125	1.375	1.500	1.875	2,125	2.500	3.125	3.625	3.875	4.500	5.250	6.000	7.000

Spider types - Materials, characteristics and properties

Standard spiders						
Spider type hardness (Shore)	Color	Malerial	Temperature range (${ }^{\circ} \mathrm{F}$)		Available for coupling size	Typical applications
			Continuous temperalure	Intermittent temperature		
92 Sh A	yellow	polyurethane	- 40 to +194	-58 to +248	size $14-180$	- for all applications in general engineering and hydraulics - Standard applications with average elasticity
$95 / 98 \mathrm{Sh}$ A	red	polyurelhane	- 22 to +194	- 40 to +248	size 14-180	- good torque Iransmission with good damping properties
64 Sh D-F	white with green lips	polyurethane	- 22 to + 230	- 22 to + 266	size 14-180	- high air moisture, resistant to hydrolysis - displacement of critical speeds

Spiders for special applications					
Typical applications	Spider type hardness (Shoro)	Identification color	Material	Perm. temperalure range (${ }^{\circ} \mathrm{F}$)	
				Continuous temperature	Max. temperature short time
For high dynamic load, high air moisture/resislant to hydrolysis	94 Sh A-T	blue with yellow lips	polyurethane	-58 to +230	-76 to +266
Drives with higher loads, small twisting angles torsionally rigid, high ambienl temperatures	64 Sh D-H	green	hytrel	$-5810+230$	$-7610+302$
Small twisling angles and high torsion spring stiffness, high ambient temperature, good resistance to chemicals	polyamide	*	PA	-4 to +266	-22 to + 302
Small twisting angles and high torsion spring stifness, very high ambient temperalure, good resistance to chemicals, resistant to hydrolysis	PEEK	light grey	PEEK	up to +482 (ATEX up lo max +320)	to +482

${ }^{1)}$ Properties dependent on compound

Technical data

$\begin{array}{c\|} \hline \text { ROTEX } \\ \text { SI2es } \\ \text { for all } \\ \text { designs } \\ \text { and } \\ \text { materials } \end{array}$	Max. speed [rpm] with $V=$		Twisting angle with		Torque [lb-in]			$\begin{gathered} \text { Damping } \\ \text { power } \\ \text { [W] } \\ \text { with }+86{ }^{\circ} \mathrm{F} \\ \text { P KW }^{2} \end{gathered}$	$\begin{aligned} & 1.00 \\ & \mathrm{~T}_{\mathrm{KN}} \end{aligned}$	Torsion 0.75 T_{KN}	$\begin{aligned} & s s C_{\text {dyy }} \\ & \left.\frac{b-i n}{i n}\right] \\ & \begin{array}{c} 0.50 \\ T_{K N} \end{array} \end{aligned}$	$\begin{aligned} & 0.25 \\ & T_{K N} \end{aligned}$
Polyurethane 92 Shore A spider; color yellow												
14	19,000	-	$6.4{ }^{\circ}$	10°	66	130	18	-	3.4	2.7	2.1	1.2
19	14,000	19.000	3.2°	5°	89	170	29	4.8	11.3	9.3	7.1	4.2
24	10,600	14.000			300	610	81	6.6	43.0	35.2	26.6	15.8
28	8,500	11,800			840	1,680	220	8.4	96.5	79,1	59.8	35.5
38	7.100	9,500			1,680	3,360	430	10.2	186.3	152.8	115.5	68.5
42	6.000	8,000			2,340	4,690	610	12,0	210.1	172,3	130,3	77.3
48	5,800	7,100			2,740	5,480	710	13.8	324,8	266.3	201.4	119.4
55	4,750	6,300			3.620	7.250	940	15.6	448,9	368.1	278.4	165.0
65	4,250	5,600			5,530	11,060	1,440	18.0	859.7	705.0	5э3.0	316.0
75	3.560	4,750			11,320	22,650	2,940	21.6	1,003.0	822.4	621.9	388.6
90	2,800	3,750			21,240	42,480	5,520	30.0	1,682,5	1,379,6	1,043,2	618.3
100	2,500	3,350			29,200	58,410	7.590	36.0	2,240.0	1,836,8	1,388.8	823.2
110	2.240	3.000			42,480	849,600	11,040	42.0	2,758.1	2,261.6	1,710.0	1,013.6
125	2,000	2,650			58,850	117,710	15,300	48.0	4,203.0	3,446,5	2,605.8	1,544.6
140	1,800	2,360			75,670	151,350	19,670	54.6	5,846.0	4.793 .7	3,624.5	2,148.4
160	1,500	2,000			113,290	226,580	29.450	75.0	7,880.6	6,462.1	4,886.0	2,696.1
180	1,400	1,800			165,070	330,140	42,910	78.0	22,734.3	18,642,2	14,095.3	8,954,9

Polyurethane 98 Shore A spider; color red												
14	19,000	-	$6.4{ }^{\circ}$	10°	110	220	29	-	5.0	4.1	3.1	1.9
19	14,000	19,000			150	300	39	4.8	25.8	21.2	16.0	0.5
24	10,600	14,000			530	1,060	140	6.6	87.9	72.0	54.5	32.3
28	8,500	11,800			1,410	2.830	370	8.4	236.9	194.3	146.9	87.1
38	7,100	9,500			2,870	5,750	750	10.2	429.9	352,5	266,5	158.0
42	6,000	8.000			3.880	7,960	1,030	12.0	482.4	395.6	299.1	177.3
48	5,600	7.100			4,640	9,290	1.210	13.8	577.9	473.9	358.3	212.4
55	4,750	6,300			6.060	12,120	1,570	15.6	840.6	689.3	521.1	308.9
65	4.250	5,600	$3.2{ }^{\circ}$	5°	8,310	16,630	2,150	18.0	1.146 .3	940,0	710.7	421.3
75	3,550	4,750			16,990	33,980	4,410	21.6	1,748.1	1,433.4	1,083.8	642.4
90	2,800	3,750			31,860	63,720	8,280	30.0	2,763,3	2,265,9	1.713 .2	1,015.5
100	2,500	3,350			43,810	87,620	11,390	36.0	3,392,2	2,781.6	2,109.2	1,246.7
110	2,240	3,000			63,720	127,450	16,560	42.0	6.107.7	5,008, 3	3,766.8	2,244.6
125	2,000	2,650			88,510	177,020	23,010	48,0	11,892.6	0,751.9	7,373.4	4,370.5
140	1,800	2,360			113,290	226,580	29,450	54,6	12,609,0	10,339,4	7.817 .6	4.633.9
160	1,500	2,000			169,930	339,870	44,180	75.0	21,970.2	18,015.6	13,621.5	8,074,
180	1,400	1,800			247,820	495,650	64,430	78.0	31,522.4	25,848.5	19,543.9	11,584.5

Polyurethane 64 Shore D-F spider; color white with green tips ${ }^{1)}$												
14	19.000	-	45°	7.0°	140	280	37	9.0	67	5.5	4.2	2.5
19	14,000	19,000			180	370	49	7.2	47.4	38.9	29.4	17.4
24	10,600	14,000			660	1,320	170	9.9	1337	1097	8.9	49.1
28	8,500	11,800			1.770	3,540	460	12.6	243.5	199, 8	151,0	89.6
38	7,100	9,500			3,580	7,160	920	15.3	620.9	509.1	384.9	228.2
42	6,000	8,000			4,950	9,910	1.290	18.0	706.9	579.7	438.3	259.8
48	5.600	7.100			5790	11.590	1.500	207	845.4	693,2	524.2	3107
55	4,750	6,300			7.300	14.600	1.900	23.4	855.2	783.3	592.2	351,0
65	4.250	5.600	$2.5{ }^{\circ}$	$3,6^{\circ}$	10,390	20,790	2700	270	1,337.3	1,096.6	829.2	491.5
75	3.550	4.750			21,240	42.480	5,520	32.4	2.1970	1,801,5	1,362.2	807.4
90	2.800	3.750			39,820	79,650	10.350	45.0	5.970 .2	4.895.6	3.701 .5	2.194 .1
100	2.500	3.350			54,740	109,480	14.230	54.0	7,622.2	6,250.2	4,725,8	2,801,2
110	2,240	3.000			79,650	159,310	20.710	63.0	10.077 .7	8.263 .6	6.248 .1	3.703 .5
125	2,000	2.650			110,630	221,270	28,760	72.0	12.704 .5	10,417.7	7,876.8	4.688 .9
140	1,800	2.360			141,610	283,230	36,820	81.9	15,761.2	12.924.2	9,771.9	5,792,3
160	1,500	2.000			212,420	424.840	55,230	113	27,223,9	22,323.6	16,878,9	10,004,8
180	1,400	1.800			309,790	619,570	80,540	117	53,206,0	43,629,0	32,987,8	19,553.2

Unless specified, Shore hardness 92 A (yellow) are standard
For peripheral speeds exceeding $V=115 \mathrm{ft} / \mathrm{sec}$ dynamic balancing of steel or nodular iron hubs is required.
${ }^{1)}$ Hub material: EN-GJS-400-15 (GGG 40); steel

Polyurethane spider	92 Shore \mathbf{A}	95/98 Shore \mathbf{A}	64 Shore D-F
Relative Damping $\psi[-]$	0.60	0.80	0.75
Resonance factor $\mathrm{V}_{\mathrm{R}}[-]$	7.90	7.90	8.50

ROTEX ${ }^{\circledR}$
Torsionally flexible coupling

ROTEX ${ }^{\text {® }}$ part numbers
Part Number Pages to follow

Notes:

ROTEX ${ }^{\oplus}$ part numbers

ROTEX Hub－Part numbers by product size and standard material							
Inch Sizes Bore Keyway		14	10	24	29	98	42
		Sintered Metal	Aluminum			Cast Iron	
1／4	No Key	BA020142170611	BA020196070611				
$5 / 16$	No Key	BA020142170711	BA020196070711				
$3 / 8$	No Key	BA020142170911	BA020196070911				
$3 / 8$	3／32	BA020142170902	BA020196070902	BA020246070902			
3／8	1／8	BA020142170903	BA020196070903	BA020246070903			
7／16	No Key	BA020142171111	BA020196071111	BA020246071111	BA020286071111		
$7 / 16$	3／32	BA020142171101	BA020196071101	BA020246071101	BA020286071101		
7116	1／8	BA020142171102	BA020196071102	BA020246071102	BA020286071102		
1／2	No Key	BA020142171211	BA020196071211	BA020246071211	BA020286071211	BA020383071211	
$1 / 2$	$1 / 8$	BA020142171200	BA020196071200	BA020246071200	BA020286071200	BA020383071200	
$9 / 16$	No Key	BA020142171411	BA020196071411	BA020246071411	BA020286071411	BA020383071411	BA020423071411
9／16	1／8	BA020142171400	BA020196071400	BA020246071400	日A020286071400	BA020383071400	BA020423071400
5／8	No Key	BA020142171511	BA020196071511	BA020246071511	BA020286071511	BA020383071511	BA020423071511
5／8	5／32	BA020142171503	BA020196071503	BA020246071503	BA020286071503	BA020383071503	BA020423071503
5／8	3／16	BA020142171500	BA020196071500	BA020246071500	BA020286071500	BA020383071500	BA020423071500
11／16	3／16		BA020196071700	BA020246071700	BA020286071700	BA020383071700	BA020423071700
3／4	No Key		BA020196071911	BA020246071911	BA020286071911	BA020383071911	BA020423071911
3／4	1／8		BA020196071901	BA020246071901	BA020286071901	BA020383071901	BA020423071901
3／4	3／16		BA020196071900	BA020246071900	BA020286071900	BA020383071900	BA020423071900
13／16	3／16		BA020196172000	BA020246072000	BA020286072000	BA020383072000	BA020423072000
$7 / 8$	No Key		BA020196172211	BA020246072211	日A0202日6072211	BA020383072211	BA020423072211
$7 / 8$	3／16		BA020196172200	BA020246072200	BA020286072200	BA020383072200	BA020423072200
7／8	1／4		BA020196172202	BA020246072202	BA020286072202	BA020383072202	BA020423072202
15／16	1／4		BA020196172300	日A020246072300	BA020286072300	BA020383072300	BA020423072300
1	1／4			BA020246172500	BA020286072500	BA020383072500	BA020429072500
1	3／16			BA020246172502	BA020286072502	BA020383072502	BA020423072502
$11 / 16$	1／4			BA020246172600	BA020286072600	BA020383072600	BA020429072600
$11 / 8$	$1 / 4$			BA020246172800	BA020286072日00	BA020383072800	BA020423072800
$13 / 16$	1／4				BA020286173000	BA020983073000	BA020423073000
$11 / 4$	1／4				BA020286173100	BA020383073100	BA020423073100
$11 / 4$	5／16				BA020286173102	BA020383073102	BA020423073102
$15 / 16$	5／16				BA020286173300	BA020383073300	BA020423073300
$13 / 8$	5／16				BA020286173400	BA020383073400	BA020423073400
$13 / 8$	3／8				BA020286173401	BA020383073401	BA020423073401
$17 / 16$	3／8				BA020286173600	BA020383073600	BA020423073600
$11 / 2$	5／16				BA020286173802	BA020383073802	BA020423073802
$11 / 2$	3／8				BAO20286173800	BA020383173800	BA020423073800
$19 / 16$	3／8					BA020383173900	BA020423073900
$15 / 8$	3／8					BA020383174100	BA020423074100
111／16	3／8					BA020383174200	BA020423074200
$13 / 4$	3／8					BA020383174400	BA020423174400
$13 / 4$	$7 / 16$					BA020383174402	BA020423174402
113／16	$1 / 2$					BA020383174600	BA020423174600
$17 / 8$	$1 / 2$						BA020423174700
$115 / 16$	1／2						BA020423174900
2	$1 / 2$						BA020423175000
$21 / 16$	$1 / 2$						BA020423175200
$21 / 8$	$1 / 2$						BA020423175300

[^5]Inch bores machined to AGMA Class 1

ROTEX ${ }^{\circledR}$ part numbers

ROTEX Hubs - Part numbers by product size and standard material							
$\begin{aligned} & \text { Metric Siees } \\ & \text { Bore } \quad \text { Keyway } \end{aligned}$		14	19	24	28	38	42
		Sintered Metal	Aluminum			Cast Iron	
6	2	BA020142100600	BA020196000600				
8	2	BA020142100800	BA020196000800				
9	3	BA020142100900	BA020196000900	BA020246000900			
10	3	BA020142101000	BA020196001000	BA020246001000	BA020286001000		
11	4	BA020142101 100	BA020196001 100	BA020246001 100	BA020266001100		
12	4	BA020142101200	BA020196001200	BA020246001200	BA020286001200	BA020383001200	
14	5	BA020142101400	BA020196001400	BA020246001400	BA020286001400	BA020383001400	BA020423001400
15	5	BA020142101500	BA020196001500	BA020246001500	BA020286001500	BA020383001500	BA020423001500
16	5	BA020142101600	BA020196001600	BA020246001600	BA020286001600	ВА020383001600	BA020423001600
18	6		BA020196001800	BA020246001800	BA020286001800	BA020383001800	BA020423001800
19	6		BA020196001900	BA020246001900	BA020286001900	BA020383001900	BA020423001900
20	6		BA020196102000	BA020246002000	BA020286002000	BA020383002000	BA020423002000
22	6		BA020196102200	BA020246002200	BA020286002200	ВА020383002200	BA020423002200
24	8		BA020196102400	BA020246002400	BAO20286002400	BA020383002400	BA020423002400
25	8			BA020246102500	BAO20286002500	BA020383002500	BA020423002600
28	8			BA020246102800	BA020286002800	BA020383002800	BA020423002800
30	8				BA020286103000	BA0203¢3003000	BA020423003000
32	10				BA020286103200	BA020383003200	BA020423003200
35	10				BA020286103500	BA020383003500	BA020423003500
38	10				BA020286103800	BA020383003800	BA020423003800
40	12					BA020383004000	BA020423004000
42	12					BA020383104200	BA020423004200
45	14					BA020363104500	BA020423004500
48	14					BA020383104800	BA020423104800
50	14						BA020423105000
55	16						BA020423105500

All hubs supplied standard with one setscrew
Non standard bores available. Consult KTR Engineering
Metric bores machined to H 7 or G7 if greater than 55 mm
ROTEX Spiders - Part numbers by product size and material

Type / Hardness	Color	Material	14	18	24	28	98	
92 SH A	Yellow	Polyurethane	020141000001	020191000001	020241000001	020281000001	020391000001	020421000001
$95 / 98$ SH A	Red	Polyurethane	020141000002	020191000002	020241000002	020281000002	020381000002	020421000002
64 SH D-F	White w/ green tips	Polyurethane	020141000015		020241000015	020281000015	020381000015	020421000015
94 SH A-T	Blue w/ yellow lips	Polyurethane		020191000044	020241000044	020281000044	020381000044	020421000044
64 SH D-H	Green	Hytrel		020191000025	020241000025	020281000025	020381000025	020421000025
Polyamide	White	PA		020191000088	020241000088	020281000088	020381000088	
PEEK	Light gray	PEEK		020191000075	020241000076	020281000075	020381000073	020421000079

SAE Splines

ROTEX Hubs - Part numbers by product size and standard material									
Teeth	Pilch	SAE	Major Diameter	MinorDiameter	Shafi Diameter	24	28	38	42
						Steel			
$\overline{9}$	16132	A	0.651	0.509	0.625	BA020245141601	BĀ0̄20205141601	BA020385041601	
11	16/32		0.776	0.631	0.750	EAAO20245141901	BA020285141901	BA020385041901	BA020425041901
13	16/32	B	0.901	0.754	0,875	BA020245142201	BA020285142201	BA020385042201	BA020425042201
15	16/32	BB	1.026	0.877	1.000		BA020285142601	BA020385042601	BA020425042601
14	12/24	C	$1 . \overline{203}$	1.0 㫛	1.250		BA020285143201	BA020385043201	BA020425043201
21	16/32		1.401	1.250	1,375			BAO203058042101	В A O 20425043501
17	12/24	CC	1.533	1.334	1.500			BA020385043801	BA020425043801
23	16/32		1.526	1.375	1.500				BA020425043802
13	8/16	D. $\overline{\mathrm{E}}$	1.798	1.506	1.750				BA020425044501

All hubs supplied slandard with cross clamp
Additonal splines available. Consult KTR Enginearing

ROTEX ${ }^{\circledR}$ part numbers

ROTEX Hubs - Part numbers by product size and standard material						
		48	55	65	75	90
Bore	Keyway	Cast Iron				
5/8	No Key	BA020483071511				
5/8	5/32	BA020483071503				
5/8	3/16	BA020483071500				
11/16	11/16	BA020483071700				
3/4	No Key	BA020483071911				
$3 / 4$	1/8	BA020483071901				
3/4	3/16	BA020483071900				
13/16	3/16	BA020483072000	BA020553072000			
7/8	No Key	BA020483072211	BA020553072211	BA020653072211		
718	3/16	BA020483072200	BA020553072200	BA020653072200		
7/8	1/4	BA020483072202	BA020553072202	BA020653072202		
15/16	1/4	BA020483072300	BA020563072300	BA020653072300		
1	1/4	BA020483072500	BA020553072500	BA020653072500		
1	$3 / 16$	BA020483072502	BA020553072502	BA020653072502		
$11 / 16$	1/4	BA020483072600	BA020553072600	BA020653072600		
$11 / 4$	$1 / 4$	BA020483072800	BA020553072800	BA020653072800		
13/16	1/4	BA020483073000	BA020553073000	BA020653073000	BA020753073000	
$11 / 4$	1/4	BA020483073100	BA020553073100	BA020653073100	BA020753073100	
$11 / 4$	5/16	BA020483073102	BA020553073102	BA020653073102	BA020753073102	
15/16	5/16	BA020483073300	BA020553073300	BA020653073300	BA020753073300	
$13 / 6$	5/16	BA020483073400	BA020553073400	BA020653073400	BA020753073400	
$13 / 8$	3/8	BA020483073401	BA020553073401	BA020653073401	BA020753073401	
$17 / 16$	3/8	BA020483073600	BA020553073600	BA020653073600	BA020753073600	
$11 / 2$	5/16	BA020483073802	BA020553073802	BA020653073802	BA020753073802	
$11 / 2$	$3 / 8$	BA020483073800	BA020553073800	BA020653073B00	BA020753073800	
$19 / 16$	3/8	BA020483073900	日A020553073900	BA020653073900	BA020753073900	
$15 / 8$	3/8	BA020483074100	BA020559074100	BA020653074100	BA020753074100	BA020903074100
111/16	3/8	BA020483074200	BA020553074200	BA020653074200	BA020753074200	BA020903074200
$13 / 4$	3/8	BA020483074400	BA020553074400	BA020653074400	BA020753074400	BA020903074400
$13 / 4$	$7 / 16$	BA020483074402	BA020553074402	BA020653074402	BA020753074402	BA020903074402
119/16	1/2	BA020483074600	BA020553074600	BA020653074600	BA020753074600	BA020903074600
$17 / 8$	1/2	BA020483074700	BA020553074700	BA020653074700	BA020753074700	BA020903074700
$115 / 16$	1/2	BA020483174900	BA020553074900	BA020653074900	BA020753074900	BA020903074900
2	1/2	BA020483175000	BA020553075000	BA020653075000	BA020753075000	BA020903075000
$21 / 16$	1/2	BA020483175200	BA020553075200	BA020653075200	BA020753075200	BA020903075200
$21 / 8$	1/2	BA020483175300	BA020553075300	BA020653075300	BA020753075300	BA020903075300
$23 / 16$	1/2	BA020483175500	BA020553075500	BA020653075500	BA020753075500	BA020903075500
$21 / 4$	1/2	BA020483175700	BA020553075700	BA020653075700	BA020753075700	BA020903075700
$23 / 8$	5/8	BA020483176000	BA020553176000	BA020653076000	BA020753076000	BA020903076000
$25 / 8$	5/6		BA020553176600	BA020653076600	BA020753076600	BA020903076600
$27 / 8$	3/4				BA020753077300	BA020903077300
$215 / 16$	3/4				BA020753077400	BA020903077400
3	3/4				BA020753077600	BA020903077600
$31 / 8$	3/4					BA020903077900
$31 / 4$	3/4					BA020903078200
$33 / 8$	7/8					BA020903078500
$31 / 2$	7/8					BA020903078800
$35 / 8$	$7 / 8$					BA020903079200
$33 / 4$	3/4					BA020903079500

All hubs supplied standard with one setscrew
Non standard bores available. Consult KTR Engineering
Inch bores machined to AGMA Class 1

ROTEX ${ }^{\circledR}$ part numbers

ROTEX Hubs - Part numbers by product size and standard material						
Bore Metric Sizee Keyway		48	55	85	75	90
		Cast Iron				
15	5	BA020483001500				
16	5	BA020483001600				
18	6	BA020483001800				
19	6	BA020483001900				
20	6	BA020483002000	BA020553002000			
22	6	BA020483002200	BA020553002200	BA020653002200		
24	8	BA020483002400	BA020553002400	BA020653002400		
25	8	BA020483002500	BA020553002500	BA020653002500		
28	8	BA020483002800	BA020553002800	BA020653002800		
30	8	BA020483003000	BA020553003000	BA020653003000	BA020753003000	
32	10	BA020483003200	BA020553003200	BA020653003200	BA020753003200	
35	10	BA020483003500	BA020553003500	BA020653003500	BA020753003500	
38	10	BA020489003800	BA020553003800	BA020653003800	BA020753003800	
40	12	BA020483004000	BA020553004000	BA020659004000	BA020753004000	BA020903004000
42	12	BA020483004200	BA020553004200	BA020653004200	BA020753004200	BA020903004200
45	14	BA020483004500	BA020553004500	BA020653004500	BA020753004500	BA020903004500
48	14	BA020483004800	BA020553004800	BA020653004800	BA020753004800	BA020903004800
50	14	BA020483005000	BA020553005000	BA020653005000	BA020753005000	BA020903005000
55	16	BA020483105500	BA020553005500	BA020653005500	BA020753005500	BA020903005500
60	18	BA020483106000	BA020553006000	BA020653006000	BA020753006000	BA020903006000
65	18		BA020553106500	BA020653006500	BA020753006500	BA020903006500
70	20		BA020553107000	BA020653007000	BA020753007000	BA020903007000
75	20				BA020753007500	BA020903007500
80	22				BA020753008000	BA020903008000
85	22					BA020903008500
90	25					BA020903009000

All hubs supplied standard with one setscrew
Non standard bores available. Consult KTR Engineering
Metric bores machined to H 7 or G 7 if greater than 55 mm

ROTEX Spiders - Part numbers by product size and material							
Type / Hardness	Color	Material	48	55	66		
g2 SH A	Yellow	Polyurethane	020481000001	020551000001	020651000001	020751000001	020901000001
$95 / 98$ SH A	Red	Polyurethane	020481000002	020551000002	020651000002	020751000002	020901000002
64 SH D-F	White w/ green tips	Polyurethane	020481000015	020551000015	020651000015	020751000015	020901000015
94 SH A-T	Blue w/ yellow tips	Polyurethane	020481000044	020551000044	020651000044	020751000044	020901000044
64 SH D-H	Green	Hytrel	020481000025	020551000025			020751000025
Polyamide	White	PA		020551000088	020651000088	020751000088	
PEEK	Light gray	PEEK	020141000072	020551000075	020651000075	020751000084	020901000098

SAE Splines

ROTEX Hubs - Part numbers by product size and standard material										
Teeth	Pitch	SAE	$\begin{gathered} \text { Major } \\ \text { Diameter } \end{gathered}$	Minor Diameter	Shaft Diameter	48	55	65	75	90
						Steel				
13	16/32	\bar{B}	0.901	0.754	0.875	BA020485042201	BA020555042201			
15	16/32	旳	1.026	0.877	1.000	EA020485042601	BA020555042601			
14	12/24	\bar{C}	1.283	1.087	1.250	BÁ020485043201	BA020555043201	BA020655043201		
21	16/32		1.401	1.250	1.375	EAO20485043501	BA020555043501	BAOO20655043503		
17	12/24	CC	1.533	1.334	1.500	EṘOTOU				
23	16/32		1.526	1,375	1.500	BA020485043802	BA020555043802	BA020655043803	BA020755043804	
13	8/16	$\overline{\mathrm{D}, \mathrm{E}}$	1.798	1.506	1.750	BA020485044501	BA020555044501	BA020655044501	BA020755044501	BA020905044501
15	8/16	F	2.048	1,753	2.000		BA020555045201	BA020655045201	BA020755045201	BA020905045201

All hubs supplied standard with cross clamp
Additonal splines available. Consult KTR Engineering

Shaft coupling standard design - cast materials

- Failsafe, reduced maintenance, blind assembly
- Torsionally flexible / vibration-damping
- Machined jaws - good dynamic properties and reduced spider wear
- Low weight cast aluminum hubs up to size 28
- Cast and nodular iron hubs from size 38 up to size 180
- 气㐅>> Certified to EC Standard 94/9/EC (Cast and Nodular Iron materials)
- Installation instructions available at www.ktr.com

ROTEX ${ }^{\text {c }}$ Aluminium Diecast (AI-D)																			
Size	Component	Spider (part 2) ${ }^{11}$ Rated Iorque [lb-in]			$\begin{array}{r} \text { Bore } \square d \\ (\text { min-max }) \end{array}$	Dimensions [in]													
					General	Setscrews													
		$92 \mathrm{Sh} A$	98 Sh A	64 Sh D		L	$\mathrm{I}_{1}: \mathrm{l}_{2}$	E	b	1	D_{H}	D_{7}	${ }_{\mathrm{d}}^{\mathrm{H}}$	D; D_{1}	N	G	t	$r_{A}[16-i n)$	
14	1 a	66	110	-		0,250-0,625	1.38	0.43	0.51	0.39	0.06	1.18	-	0.39	1,18	-	M4	0.20	13
19	1	89	150	-	0.250-0.750	2,60	0.98	0.63	0.47	0.08	1.61	-	0.71	1.26	0.79	M5	0.39	18	
1	1 a	8	150	-	0.750-0.938									1.61					
24	1	300	530	-	0.375-0.938	3,07	1,18	0.71	0.55	0,08	2,20	-	1.06	1.57	0,79	M5	0,39	18	
	1a				0.875-1.125									2.20					
28	1	840	1,410	-	0,438-1,125	3,54	1.38	0.78	0.59	0.10	2.60	-	1.18	1.89	1,10	M8	0.59	89	
	1 a				1.125-1.438									2.60					

ROTEX ${ }^{\text { }}$ Cast iron EN-GJL-250 (GG 25)																		
	1	1,680	2,870	3,580	0.500-1.500	4.49	1.77	0.94	0.71	0.12	3.15	-	1.50	2,60	1.46	M ${ }^{\text {a }}$	0.59	89
38	1 a				1.500-1.813									3.07				
	1b				0.500-1,813	6,46	2.76								2.44			
	1	2,340	3,980	4,950	0.563-1.688	4.96	1.97	1.02	0.79	0.12	3.74	-	1.81	2,95	1.57	M8	0.59	89
42	Ja				1.688-2.125									3.70				
	1b				0,563-2,125	6.93	2,95								2.56			
	1	2,740	4,640	5,790	0.625-2.000	5.51	2.20	1,10	0,83	0.14	4.13	-	2,01	3.35	1.77	M8	0,59	89
48	1a				1.938-2.375									4.09				
	1b				0.625-2.375	7.40	3.15								2.72			
55	1	3,620	6,060	7,300	0,813-2,313	6,30	2.56	1.18	0.87	0.16	4.72	-	2.36	3,86	2,05	M10	0.79	150
	1 a				2.168-2.813									4.65				
65	1	5,530	8,310	10,390	0.875-2.625	7.28	2.95	1.38	1.02	0.18	5.31	-	2.68	4.53	2.40	M10	079	150
75	1	11,320	16,990	21,240	1.188-3.000	8,27	3.35	1.57	1.18	0.20	6.30	\checkmark	3.15	5,31	2.72	M10	0.98	150
90	1	21,240	31,860	39,820	1,625-3.750	9.65	3.94	1.77	1.34	0,22	7.87	8,58	3,94	6.30	3.19	M12	1.18	354

ROTEX ${ }^{\text {® }}$ Nodular iron EN-GJS-400-15 (GGG 40)																		
100	1	29,200	43,800	54,730	2.000-4.375	10.63	4.33	1.97	1.50	0.24	8.86	9.69	4.45	7.09	3.50	M12	1.18	354
110	1	42,480	63,720	79,650	2.375-4.813	11.61	4,72	2,17	1.65	0,26	10.04	10.87	5.00	7.87	3,78	M16	1.38	708
125	1	58,850	88,500	110,620	2.375-5.563	13.39	5.51	2.36	1.81	0.28	11.42	12.40	5.79	9.06	4.41	M16	1.57	708
140	1	75,660	113,280	141,600	2,375-6.188	14.76	6,10	2,56	1,97	0.30	12,60	13,58	6.50	10,04	4.88	M20	1.77	1,239
\$160	1	113,280	169,920	212,400	3.188-7.125	16.73	6.89	2.95	2.24	0.35	14.57	15.75	7.48	11.42	5.51	M20	1.97	1,239
180	1	165,050	247,800	309,750	3.375-7.68B	18.70	7.68	3.35	2,52	0,41	16.54	17.72	8.66	12.80	6.14	M20	1,97	1,239

(1) II material is not specified on the order, the seleclion/order will be based on the standard material listed above

1) Maximum torque of the coupling $\mathrm{TK}_{\max }=$ rated torque of the coupling $\mathrm{T}_{K N} \times 2$
2) Material $\mathrm{Al}-\mathrm{H}$ (machined aluminum).

Inch bores machined to AGMA Class 1. Metric bores machined to H7

Shaft coupling standard design - steel materials

- Failsafe, reduced maintenance, blind assembly
- Torsionally flexible / vibration-damping
- Machined jaws - good dynamic properties and reduced spider wear
- Steel hubs, for high shock applications, (e.g. steel mills, elevator drives, spline hubs, etc.)
- Ex Certified to EC Standard 94/9/EC
- Installation instructions available at www.ktr.com

Standard hub

Spider

Steel (thread on the keyway)

ROTEX ${ }^{\text {dit }}$ steel																	
Size	Compo- nent	Spider (part 2) ${ }^{13}$ Rated torque [\|b-in]			Dimensions [in]												
					$\begin{gathered} \text { Bore } \\ \emptyset \mathrm{d}(\text { min-max }) \end{gathered}$	General									Setscrews		
		92 Sh A	98Sh A	64 Sh D		L	$\mathrm{I}_{1}: \mathrm{I}_{2}$	E	b	s	D_{H}	d_{H}	D	N	G	t	TA ${ }_{\text {A }}[\mathrm{lb}-\mathrm{in}]$
14	1a	66	110	-	0.625	1.38	0.43	0.51	0.39	0.06	1.18	0.39	1.18	-	M4	0.20	13
	1b					1.97	0.73										
19	1 a	89	150	-	1.000	2.60	0.98	0,63	0,47	0,00	1.57	0.71	1,57	-	M5	0.39	18
	1b					3.54	1.46										
24	1 a	300	530	-	1.313	3,07	1.18	0.71	0.55	0.08	2.17	1.06	2.17	-	M5	0.39	18
	1b					4,65	1.97										
28	1 a	840	1,410	-	1,500	3,54	1.38	0.79	0.59	0.10	256	1,18	2.56	\checkmark	M8	0.59	89
	1b					5.51	2.36										
38	1	1,680	2,870	3,580	1.813	4.49	1.77	0,94	0.71	0,12	3,15	1.50	276	1.06	M8	0.59	89
	1b					6.46	2,76						3.15	.			
42	1	2,340	3,980	4,950	2.125	4.96	1.97	1,02	0,79	0.12	3.74	1.81	3.35	1.10	M8	0,59	89
	1b					6.93	2.95						3.74	-			
48	1	2,740	4,640	5,790	2,375	551	2.20	1.10	0.83	0.14	4.13	2.01	3.74	1.26	M8	0.59	89
	1 b					7,40	3.15						4.13	-			
55	1	3,620	6,060	7,300	2.813	6.30	2.56	1,18	0.87	0.16	4.72	2.36	4.33	1.46	M10	0.79	150
	16					8.27	3.54						4.72	\cdots			
65	1	5,530	8,310	10.390	3.000	7.28	2.95	1.38	1.02	0.18	5.31	2.68	4.53	1.85	M10	0.79	150
	1 b					9.25	3.94						5.31	-			
75	1	11,320	16,990	21,240	3.625	8.27	335	1.57	1,10	0.20	6.30	3.15	5.31	2.09	M10	0.79	150
	1b					10.24	4.33						6,30	-			
90	1	21,240	31,860	39,820	4,250	9.65	3.94	1.77	1.34	0.22	7.87	3.94	6.30	2.44	M12	1.18	354
	1b					11.61	4.92						7.87	\bigcirc			

ROTEX ${ }^{\text {® }}$ sintered steel																
Size	Component	Spider (part 2) ") Raled torque [lb-in]		Dimensions [in]												
				Bore Dd	General									Selscrews		
		92 Sh-A	$98 \mathrm{Sh}-\mathrm{A}$		L	$\mathrm{I}_{1} ; \mathrm{l}_{2}$	E	b	s	D_{H}	d_{H}	D	N	G	1	TA [lb-in]
14	1a	66	111	unbored	1.38	0,43	0,51	0.39	0.06	1.18	0,39	1.18	\cdots	M4	0.20	13
19	1 a	89	150	unbored/.500 /.625 / 750 /	2,60	0,98	0,63	0.47	0,08	1.57	0.71	1.57	\cdots	M5	0,39	18

= If material is not specilied on the order, the selection/order will be based on the slandard material listed above

1) Maximum torque of the coupling $\mathrm{TK}_{\text {max }}=$ rated torque of the coupling $\mathrm{T}_{\text {KN }} \times 2$ unch bores max $=$ rated torque of the coupling $T_{K N} \times 2$
Inch bores machined to AGMA Class 1, Metric bores machined to H^{7}

- ROTEX ${ }^{5}$ 19-48 stainless steel are available
-ROTEX 19, 28 and 42 - hub material X10CPNiS 18-9 standard number 1.4305 (V2A) DIN 17440
- ROTEX 24,38 and 48 - hub material X6CNIMoTi17-12-2 standard number 1.4571 (V4A) DIN 17440

Order form:

ROTEX $^{2}-38$	St	92	$1-$	$\varnothing 45$	$1-$	$\varnothing 25$
Coupling size	Material	Spider hardness Shore A]	Hub design	Bore	Hub design	Bore

Clamping ring hubs

Same advantages as the standard ROTEX:

- Integrated frictional clamping design
- High frictional torque capacity
- Easy installation with fasteners in the jaw pocket
- (Ex) Certified to EC Standard 94/9/EC (review the selection for explosion protection use)
- Installation instructions available at www.ktr.com

Components

Inch bores machined to AGMA Class 1, Metric bores machined to H7 or G7 if greater than 55mm

Size	Torques [lb-in] ${ }^{1 /}$				Dimensions [in]								Fasleners				Weight per hub with max. bore [lbs]	Mass moment of inertia per hub with max bore $\left[\times 10^{3} \mathrm{lb}-\mathrm{in} \mathrm{sec}{ }^{2}\right]$
	92 Sh A		98 Sh A															
	TKN	$\mathrm{T}_{\mathrm{Kmax}}$	T_{KN}	${ }^{T} K_{\text {max }}$	OH^{3}	${ }^{\text {d }} \mathrm{H}$	L	$\mathrm{I}_{1}: \mathrm{I}_{2}$	I_{3}	E	b	5	M	Quant	$\mathrm{TA}_{A}([\mathrm{l}-\mathrm{m}]$	M_{1}		
Hub and clamping ring material - Steel (St-H)																		
19	89	170	150	300	1.57	0.71	2.60	0.98	0.71	0.63	0.47	0.08	M4	6	36	M4	0.39	0.389
24	300	610	530	1,060	2.17	1.06	3.07	1.18	0.87	0.71	0.55	0.08	M5	4	75	M5	0.88	1.690
28	840	1,680	1,410	2,830	2.56	1.18	3.54	1.38	1.06	0.79	0.59	0.10	M5	8	75	M5	1.31	3.699
38	1,680	3,360	2,870	5,750	315	1.50	4,49	1.77	1,38	0.94	0.71	0.12	M6	8	124	M6	2.70	11.42
42	2,340	4,690	3,980	7,960	3.74	1.81	4.96	1.97	1.38	1.02	0.79	0.12	M8	4	310	M8	5.07	28.05
48	2,740	5,480	4,640	9,290	4.13	2.01	5.51	2.20	1.61	1,10	0.83	0.14	M10	4	611	M10	6.79	46.02
55	3,310	6,630	6,060	12,120	4.72	2.36	6.30	2.56	1.77	1.18	0.87	0,16	M10	4	611	M10	10.3	91.16
65	\checkmark	\checkmark	8,310 ${ }^{21}$	16,630 ${ }^{21}$	531	2.68	7.28	2.95	2.17	1,38	1.02	0,18	M12	4	1,062	M12	14.8	168.0
75	-	-	16,990 ${ }^{27}$	38,9802]	6.30	3.15	8.27	3.35	2.48	1.57	1.18	0.20	M12	5	1,062	M12	21,8	351.2

${ }^{12}$ 2) Please note coupling selection on pages 121 and 122
${ }^{\text {2) }}$ 2) Figures for $95 \mathrm{Sh} \mathrm{A}-\mathrm{GS}$
${ }^{3)}$ Add 0.08 in to $0 \mathrm{D}_{\mathrm{H}}$ at higher speeds for expansion of spider
Inch bores machined to AGMA Closs 1, Metric bores machined to H 7
Bores Ødi/Ød2 and the corresponding transmittable friction torques T_{R} of clamping ring hub in [lb-in] ${ }^{\text {T }}$

for transmittable torques of the clamping connection consider the max, Iolerance lo the shaft fit $\mathrm{k} 6 /$ bore H 7 , from $055 \mathrm{~mm} \mathrm{~m} 6 / \mathrm{G7}$. With bigget, shatts with larger tolerances the torque is reduced.
To calculate slifiness of the shalt/hollow shatt requesI KTR standard 45510

Order form:	ROTEX GS 24	98 Sh A	$6.0-024$	6.0	Hub Coupling size	Spider hardness
		Bore	Hub design			

Steel cross clamp hubs

Same advantages as the standard ROTEX ${ }^{\mathbb{E}}$ in addition:

- Ideal clamping design for splined shafts
- Static balanced
- Suitable for reversing applications
- §x. certification to EU standard 94/9/EC (acceptable for hub designs 2.1 and 2.3 , hub design 2.0 only to category 3)
- Installation instructions available at www.ktr.com

Components

ROTEX푸 19-28
ROTEX ${ }^{\text {¹ }} 38$-90

ROTEX ${ }^{\text {P }}$ with clamping hubs																
Size	Dimensions [in]															
	$\mathrm{d}_{\text {max }}$	L	$1{ }_{1}{ }^{1} 2$	1 min	E	b	s	D_{H}	D	d_{H}	M	$\overline{\mathrm{D}}_{\mathrm{K}}$	t_{1}	12	e	$\mathrm{T}_{\mathrm{A}}[\mathrm{lb-in}]$
19	0.813^{17}	2.60	0.98	0.79	0.63	0.47	0.08	1.57	*	0.71	M6	1.81	0.47	-	0.57	124
24	1.125	3.07	1.18	0.98	0.71	0.55	0.08	2.17	\checkmark	1.06	M6	226	0.47	\bullet	0.79	124
28	1.438	3.54	1.38	1.18	0.79	0.59	0.10	2.56	-	1.18	M8	2.87	0.55^{27}	-	0.98	310
3B	1.563	4.49	1.77	1,38	0.94	0.71	0.12	3.15	2.76	1.50	M8	3.05	0.75	-	1.04	310
42	1.875	4.96	1.97	1.65	1.02	0.79	0.12	3.74	3.35	1.81	M10	3.68	$0.71{ }^{\text {® }}$	-	1.26	611
48	2.125	5.51	2,20	1,81	1,10	0,83	0.14	4.13	3.74	2.01	M12	4.13	$0.83{ }^{2)}$	-	1.42	1.062
55	2.563	6.30	256	1.97	1.18	0.87	0.16	4.72	4.33	2.36	M12	4.70	1.02	$2.01{ }^{\text {² }}$	$1.67{ }^{\text {g }}$	1,062
65	2,625	7.28	2.95	2.17	1.38	1.02	0.18	5.31	4.53	2.68	M12	5.22	1.30	$2.40^{2)}$	$1.97{ }^{\text {9) }}$	1.062
75	3.000	8.27	3.35	2,56	1.57	1.18	0.20	6.30	5.31	3.15	M16	6.22	1.42	2.68^{27}	$2.24{ }^{7}$	2.611
90	3,438	9,65	3.94	3.15	1.77	1.34	0.22	7.87	6.30	3,94	M20	7.76	1.57	3.15 ${ }^{\text {2) }}$	$2.89{ }^{33}$	5,133

Bore Dd and the corresponding transmittable friction torques [lb-in] of ROTEX ${ }^{\text {® }}$ clamping design 2.0																											
Size	0.313	0.375	0.500	0.825	0.750	0.875	1.000	1.125	1.250	1.375	1.500	1.625	1.750	1.875	2000	2.125	2.250	2375	2.500	2.625	2.750	2.875	3.000	3,125	3.250	3.375	3.500
19	352	384	415	447	478																						
24		493	525	556	588	620	651																				
28			1,207	1,268	1,329	1,390	1,451	1,512	1,574	1.635	1,696																
38			1,265	1,326	1,387	1.448	1,509	1,570	1,691	1.692	1,754	1,815															
42					2.547	2.644	2,741	2,839	2.936	3,034	3.131	3,228	3.326	3.423													
48							4.364	4,506	4.648	4,791	4,933	5,075	5.217	5,380	5,502	5,644											
55								5.069 .	5.231	5.373	5.515	5.658	5.800	5.942	6.084	6,227	6.369	6.511	6,653	6,796							
65										6.045	6,187	6,330	6.472	6,614	6,756	6.899	7,041	7,183	7,325	7.468	7.610						
75												25353	25.861	28369	26887	27405	22823	28.441	29969	29,477	20,956	30.513	31.031	31549			
90												46301	42004	47887]	[48.681]	49,474	50268	51,061	51080	52,648	53442	54.738	550088	55872	56615	57409	58,202

With design 21 dmax 0.625
2) Wilh reduced hubs the dimension t_{1} varies or the number of fasteners changes from qty-2 to qty-1
3)) i_{1} and t_{2} have a different e dimensions

Inch bores machined to AGMA Class 1, Melric bores machined to $\mathrm{H7}$

Design 2.0
clamping hub,
single slit,
without keywa

Design 21
clamping hub, single slit, single keyway
with

Design 23
clamping hub with spline

Order form:

ROTEX 24	98 Sh-A	2.1	-	$\varrho 24$	2.0
Coupling size	Spider hardness	Hub design	Bore	Hub design	B 20
					Bore

Flange designs AFN and BFN

Same advantages as the standard ROTEX ${ }^{\text {© }}$ in addition:

- Double flange design AFN and single flange design BFN
- Reduced maintenance, eliminates the need to move components (e.g. motor and pump)
- AFN design allows spider replacement while coupling is installed
- Flange component materials: 4N Steel 3Na Nodular Iron EN-GJS-400-15 (GGG 40)
- Ex> certified to EC Standard 94/9/EC
- Installation instructions available at www.ktr.com

Design AFN

ROTEX ${ }^{\text {a }}$ AFN (No. 002) and BFN (No. 004)																		
Size	Bore [d; D: D_{1}	Component 4 N bore Id 1	Dimensions [in]												Fasteners ${ }^{3}$)DIN EN ISO 4762-12,9			
			D_{H}	D_{F}	D_{4}	d_{H}	$I_{1}: I_{2}$	E	E_{1}	8	b	$\mathrm{I}_{3} \mathrm{I}_{4}$	LafN	LBFN	Mx\|	z	Pitch ${ }^{27}$	$T^{4} A / f$-in]
24		0.938	2.17	1,42	1,77	1.06	1,18	0.71	1,30	0,08	0.55	1,20	3.70	3.39	M5x16	8	$8 \times 45^{\circ}$	89
28		1.125	2,56	1,65	2,13	1,18	1,38	0.79	1.54	0,10	0,59	1.40	4.33	3,94	M6x20	8		150
38		1.438	3,15	2.05	2.60	1.50	1.77	0.94	1,69	0,12	0.71	1.79	5.28	4.88	M8x22	8		363
42		1.563	3.74	2.44	3,15	1.81	1.97	1.02	1.89	0.12	0.79	2.01	5.91	5.43	M8x25	12	$16 \times 22.5^{\circ}$	363
48		1.813	4,13	2.76	3.54	2.01	2.20	1.10	1.97	0.14	0.83	2.24	6,46	5.98	M8x25	12		363
55		2.125	4.72	3,15	4.02	2,36	2.56	1,18	2,36	0,16	0,87	2.60	7.56	6,93	M10x30	8	8x45 ${ }^{\circ}$	735
65		2,500	5.31	3.70	4,57	2,68	2.95	1.38	2.56	0,18	1.02	2.99	8.54	7.91	M10x30	12	$16 \times 22.5^{\circ}$	735
75		2.813	6.30	4.25	5.35	3.15	3.35	1.57	2.95	0.20	1.18	3.41	9.76	9.02	M12 $\times 40$	15	$20 \times 18^{\circ}$	1.062
90		3.875	7.87	5,59	6.77	3,94	3,94	1.77	3.23	0.22	1.34	4.00	11.22	10.43	M16x40	15		2.611
100		4.250	8,86	6.22	7.68	4,45	4.33	1.97	382	0.24	1.50	4.39	12.60	11.61	M16x50	15		2,611
110		4,813	10,04	7.01	B,58	5.00	4.72	2.17	4.06	0.26	1.65	4.80	13,66	12.64	M20x50	15		5,133
125		5.563	11.42	8,11	9.92	5.79	5.51	2.36	4.57	0.28	1.81	5.59	15.75	14.57	M20x60	15		5,133
140		6.375	12.60	9.25	11.10	6.50	6.10	2.56	5.04	0.30	1.97	6.20	17.44	16.10	M20x60	15		5,133
160		7.313	14,57	10.63	12.80	7.48	6,89	2,95	5.75	0.35	2.24	6.99	19.72	18,23	M24x70	15		8,850
180		6,500	16.54	12.40	14.76	8.66	7.68	3.35	6.26	0.41	2.52	7.80	21.85	20.28	M24x80	18	$24 \times 15^{\circ}$	B,850

${ }^{12}$ Fastener tightening torque $T_{A}[l b$ in $]$.
2) Thread in drive flange belween jaws.
2) Thread in drive flange belween jaws.
${ }^{3)}$ Coupling is shipped unassembled.
Inch bores machined to AGMA Class 1. Metric bores machined to H 7

Order form	ROTEX ${ }^{51} 38$	AFN	92 Sh A	4N -	$\emptyset 38$	4N -	035
	Coupling size	Type	Spider hardness	Component	Bore	Component	Bore

Drop-out center coupling design A-H

Same advantages as the standard ROTEX ${ }^{\mathbb{1}}$ in addition:

- Complete installation and removal using only 4 fasteners
- Reduced maintenance by not having to move components (e.g. motor and pump)
- Keyed and frictional hub combinations can be installed radially (dimension E_{1} for design $\mathrm{AFN}=$ dimension E_{1} for $\mathrm{A}-\mathrm{H}$)
- Ex> certified to EC Standard 94/9/EC (design 7.8 clamping hub without key only to category 3)
- Installation instructions available at www.ktr.com
Components

Design A-H

ROTEX* Design A-H															
Size	Componen t	$\begin{aligned} & \text { Bore } \\ & \text { Dd } \left.\mathrm{max}^{\text {ma }} \text { [} \mathrm{n}\right] \end{aligned}$	Dimension [in]											Fastener DIN EN ISO 4762	
			L	$\mathrm{I}_{1}: \mathrm{I}_{2}$	E	b	s	D_{H}	D	$\mathrm{D}_{\mathrm{K} 1}$	$\mathrm{D}_{\mathrm{K} 2}$	x_{1} / x_{2}	E_{1}	MxI	T_{A} [lb-in]
19	1H	0.813	2.60	0.98	0.63	0.47	0.08	1.57	-	1.81	-	0.69	1.22	M6x16	124
24	1H	1.125	3.07	1.18	0.71	0.55	0.08	2.17	-	2.26	-	0.89	1.30	M6x20	
28	1 H	1.438	3.54	1,38	0.79	0.59	0,10	256	-	2.87	-	1.00	1.54	M8x25	310
38	1 H	1.688	4.49	1.77	0.94	071	0.12	3.15	-	3.29	-	1.40	1.69	M8x30	
42	1H	1.875	4.96	1,97	1.02	0.79	0.12	3.74	3.35	-	3.68	1.54	1,89	M10x30	611
		2.125							-	3,82	-			M10x35	
48	1H	2.125	5.51	2.20	1.10	0.83	0.14	4.13	3.74	-	4.13	177	1.97	M1 2x35	1,062
		2,313							-	4.27	0.00			M1 2×40	
55	1 H	2.500	6.30	2,56	1.18	0.87	0.16	4.72	4.33	-	4.70	1.97	236	M1 2x40	1,062
		2.625							-	4.80	-			M1 2×45	
65	1H	2.625	7.28	2.95	1.38	1.02	0.18	5.31	4.53	-	4.86	2.36	256	M12 $\times 40$	1.062
		3.000							-	5.22	-			M12x45	
75	$1{ }^{1}$	3.000	8.27	3.35	1.57	1.18	0.20	6.30	5.31	-	5.81	2.66	2.95	M16x50	2.611
		3.438							-	6.22	-				
90	1H	3.438	9,65	3.94	1.77	1.34	0.22	7.87	6.30	-	6.93	3.21	3.23	M20x60	5,133
		4.250							-	7.76	-				
100 1)	1H	4.250	10.63	4.33	1.97	1.50	0.24	8.86	7.09	-	7.30	3.31	4.02	M16 $\times 50$	2,611
1101)	1 H	4.625	11.61	4.72	2,17	1.65	0.26	10.04	7.87	-	8.19	3.54	4.69	M20x60	5,133
125 1)	1H	5.375	13.39	5.51	2,36	1.81	0.28	11.42	9.06	-	0.55	4.13	5.12	M24x70	8,850

Wilh maximum bore the keyways are offset by approx, 5°.
Hub materials up to size 90 S355J2G3

$$
\text { from size } 100 \quad \text { EN-GJ5-400-15 }
$$

" From size 100: 4 fasteners for each clamping hub.
Inch bores machined to AGMA Class 1, Metric bores machined to H7

Order form	ROTEX ${ }^{\text {c }} 38$	A-H	98 Sh A	$1 \mathrm{H}-$	$\emptyset 38$	1H -	030
	Coupling size	Design	Spider hardness	Compnent	Bore	Component	Bore

Flange designs CF, CFN, DF and DFN

Same advantages as the standard ROTEX ${ }^{\circledR}$ in addition:

- CF and CFN - flange to shaft connection
- DF and DFN - double flange design, allows radial installation without moving components
- CFN and DFN - small outside diameters
- DF and DFN - compact design
- Flange material part 3b: Nodular Iron EN-GJS-400-15 (GGG 40)
- Ex/certified to EC Standard 94/9/EC
- Installation instructions available at www.ktr.com

ROTEX ${ }^{\text {® }}$ CF; CFN (No. 005) and DF; DFN (No. 006)																							
Si	dd	General dimension (in)								Dimensions CF and DF (in)							Dimensions CFN and DFN (in)						
	D_{1}	D_{H}	d_{H}	I_{1}	E	s	b	I_{5}	17	D_{A}	D_{3}	D_{4}	z	d_{2}	LCF	LDF	DN_{3}	DN_{4}	M	z	Pitch ${ }^{2}$	4 CFN	LDFN
24		2.17	1.06	1.18	0.71	0.08	0.55	0.06	0.31	3.15	2.17	2.56	0.20	0.18	2.20	1.34	1.42	1.77	M5	8	$8 \times 45^{\circ}$	2.20	1,34
28		2.56	1.18	1.38	0,79	0.10	0.59	0.06	0,39	3.94	2.56	3.15	0.24	0.26	2.56	1.57	1.73	2,13	M6			2.56	1.57
38		3,15	1.50	1.77	0.94	0.12	0,71	0.06	0.39	4.53	3.15	3.74	0.24	0.26	3.11	1.73	2.13	2.60	M ${ }^{\text {B }}$			3,11	1.73
42		3.74	1.81	1.97	1.02	0.12	0.79	0.08	0.47	5.51	3.74	4.53	0.24	0.35	3.46	1.97	2.56	3.15	MB	12	$16 \times 22.5{ }^{*}$	3.46	1.97
48		4.13	2.01	2.20	1,10	0.14	0.83	0.08	0.47	5.91	4.13	4.92	0.31	0.35	3.78	2.05	2.95	3.54	M ${ }^{\text {P }}$			3.78	2.05
55		4.72	2.36	2.56	1.18	0.16	0,87	0.08	0.63	6.89	4.72	5.71	0.31	0.43	4.37	2.44	3.31	4.02	M10	8	$8 \times 45^{\circ}$	4.37	2.44
65		5.31	2.68	2.95	1.38	0.18	1.02	0.08	0.63	7.48	5.31	8.30	0.39	0.43	4.96	2.64	3.78	457	M10	12	16x22.5*	4.96	2.64
75		6.30	3,15	3.35	1.57	0.20	1.18	0.10	0.75	8.46	6,30	7.28	0,39	0.53	5.67	3.07	4,41	5,35	M12	15	20×180	5,67	3.07
90		7.87	3.94	3.94	1.77	0.22	1,34	0.12	0.79	10,24	7.87	8,86	0.47	0.53	6.50	3.35	5.71	6.77	M16			6.50	3.35
100		8.86	4.45	4.33	1.97	0.24	1.50	0.16	0.98	11.22	8.86	9.84	0.47	0.53	7.28	3.94	6.50	7.68	M16			7.28	3.94
110		10,04	5.00	4.72	2.17	0.26	1.65	0.16	1.02	12.99	10.04	11.42	0,47	0.71	7.91	4.21	7.09	8.58	M20			7.91	4.21
125		11.42	5.79	5.51	2.36	0.28	1.81	0.20	1.18	14,57	11.42	12.80	0.63	0.71	9.06	4.72	8.46	9.92	M20			9.06	4.72
140		12.60	6.50	6.10	2,56	0,30	1.97	0.20	1.34	16.14	12,60	14.17	0.63	0.87	10.00	5.24	9.65	11.10	M20			10.00	5.24
160		14.57	7.48	6.89	2.95	0.35	2.24	0.20	1.50	18.11	14.57	16.14	0.63	0.87	11.34	5.94	11.02	12.80	M24			11.34	5.94
180		16.54	8.66	7.68	3.35	0.41	252	0.22	1.57	20.47	16.54	18.31	0.63	1.02	12.60	6.50	12.99	14.78	M24	18	$24 \times 15^{\circ}$	12.60	6.50

See Page 34 for additional flange dimensions
Inch bores machined to AGMA Class 1, Metric bores machined to H7

Additional designs: ROTEX ${ }^{\circledR}$ CF-H
Drop-out center flange coupling
Please request sheet M412069

Order form:	ROTEX 38	CF	92 Sh A	$1-$ EN-GJL-250 - Ø 20
	Coupling size	Design	Spider hardness	Compo- material nent

Double-cardanic spacer design ZS-DKM-H

Same advantages as the standard ROTEX ${ }^{\bar{\pi}}$ in addition:

- Standard spacers up to 9.84" shaft gap
- Complete installation and removal using only 4 fasteners
- Accommodates high shaft misalignments while remaining torsionally symmetric
- Restoring forces are reduced to a minimum
- § $\underbrace{}_{x}$ Certified to EC Standard 94/9/EC (design 7.5 clamping hub without key according to category 3)
- Installation instructions available at www.ktr.com

Design ZS-DKM-H

1) Maximum lorque of the coupling $\mathrm{TK}_{\text {max }}=$ rated torque of the coupling $\mathrm{T}_{\mathrm{KN}} \times 2$

Size 24 to 75 spider type $95 / 98$ Sh A-GS; at size 90 spider type 95 Sh A with inner ring
ZS-DKM-H: transmiltable torque according to 92 Sh A-GS
2) Calculated to max, bore

Inch bores machined to AGMA Class 1, Metric bores machined to H 7
NOTE: The standard is only for horizontal design. Vertical design on request.

| Order form | ROTEX 38 ZS-DKM-H 140 98 Sh A
 Coupling size Design Shaft distance
 dimension L Spider hardness Bore | Bore |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Double-cardanic spacer design DKM

Same advantages as the standard ROTEX ${ }^{\aleph}$ in addition:

- Greater shaft misalignments
- 3-part double cardanic design eliminating the need for bearing support
- Restoring forces are reduced to a minimum
- Ex) certified to EC Standard 94/9/EC (Explosion Certificate ATEX 95)
- Installation instructions available at www.ktr.com

Components

Design DKM

ROTEX ${ }^{*}$ DKM (No. 018)															
Size	$\begin{gathered} \varnothing d \\ \varnothing D \\ \emptyset D_{1} \end{gathered}$	Spider (part 2) Nominal torque [lb-in]		Dimensions [in]									Max misalignments at $\mathrm{n}=1800 \mathrm{rpm}$		
		$92 \mathrm{Sh}-\mathrm{A}$	$98 \mathrm{Sh}-\mathrm{A}$	D_{H}	d_{H}	$11: 1_{2}$	111	112	E	s	b	LDKM	Parallel [in]	Angular ["]	Axial [in]
19		88	150	1.57	0.71	0.98	0.38	1.65	0.63	0.08	0.47	3.62	0.02	0,9	+0.05/-0.04
24		300	530	2,17	1.06	1,18	0.63	2.05	0.71	0.08	0,55	4,41	0.02	0,9	+0,061-0,04
28		840	1,410	2.56	1.18	1.38	0.71	2.28	0.79	0.10	0.59	5.04	0.02	0.9	+20.06/-0.06
38		1.680	2,870	3.15	1.50	1.77	0.79	2.68	0.94	0.12	0,71	6.22	0.03	09	+0.071-0.06
42		2.340	3,980	3.74	1.81	1.97	0.87	2.91	1.02	0,12	0.79	6.86	0.03	0.9	+0.08/-0.08
48		2,740	4,640	4.13	2,01	220	0.94	3,15	1.10	0.14	0,83	7.56	0.03	0.9	+0.081-0.08
55		3,620	6,060	4.72	2.36	2.56	1.10	3.46	1.18	0.16	0.87	8.58	0.04	0.9	+0.09/-0.08
65		5,530	8,310	5.31	2.68	2.95	1.26	4.02	1.38	0.18	1.02	9.92	0.04	0.9	+0.10\%-0.08
75		11.320	16,990	6.30	3.15	3.35	1.42	4.57	1.57	0.20	1.18	11.26	0.05	0.9	+0.121-0.12
90		21,240	31,860	7.87	3.94	3.94	1.57	5.12	1.77	0.22	1,34	12.99	0.05	0,9	+0.13/-0.12

Inch bores machined to AGMA Class 1. Melric bores machined to H7

Additional design: ZS-DKM1
Please request sheel M369832.

Order form:	ROTEX ${ }^{*} 38$	DKM	EN-GJL-250	98 Sh A	1 -	Ø38	1 -	Ø 30
	Coupling size	Design	Material	Spider hardness	Component	Bore	Component	Bore

Intermediate shaft design ZWN and ZR

Same advantages as the standard ROTEX ${ }^{\bar{s}}$ in addition:

- Connects applications with large shaft gaps
- Compensates for greater parallel misalignments
- Allows radial installation without moving components
- ZWN style - bearing supported intermediate shaft
- ZR style - intermediate shaft coupling with the GS spider can be removed radially
- Installation instructions available at www.ktr.com

ROTEX ${ }^{\text {® }}$ ZWN (Nr. 017) and ZR (Nr. 037)																												
	Bore Ød $\varnothing D$ θD_{1}	Dimensions of ZWN and ZR (in)											Dimensions for ZR (in)															
Size		$\begin{array}{\|c\|} \text { Component } \\ 4 N[S I] \\ \text { bore } \\ B d_{1 \text { max }} \end{array}$	Materials see page 46									L2MW	Tube		Fastener			L										
			D_{H}	D_{F}	d_{H}	$\mathrm{I}_{1}: \mathrm{l}_{2}$	E	5	b	$13: 1_{4}$	17		R_{A}	$\mathrm{C}^{2} 1 \mathrm{~b}-\mathrm{ft}^{2} / \mathrm{rad}$	M_{1}	TA \mid bry												
19 ${ }^{3}$		-	1.57	-	0.71	0,98	0.63	0.08	0.47	-	-	-	3/4x11GA	520	M6	124	$\begin{aligned} & \dot{-} \\ & \text { ì } \\ & + \\ & \underline{\alpha} \\ & \stackrel{\sim}{n} \\ & \stackrel{\alpha}{N} \end{aligned}$	2,60	M6	0.16	0,05	0.9						
24		0.938	2.17	1.42	1.06	1.18	0.71	0,08	0.55	1.20	0.31	$\begin{aligned} & \frac{6}{2} \\ & N \\ & + \\ & 3 \\ & 3 \\ & 3 \\ & z_{j}^{2} \\ & j \end{aligned}$	1×5/32	2.463	M6	124		3.07	M8	0.22	0.06	0,9						
28		1.125	2.56	1.65	1.18	1.38	0.79	0.10	0.59	1.40	0.39		1-3/805/32	4,145	M8	310		3.54	M10	0.28	0.06	0.9						
38		1,438	3,15	2.05	1,50	1.77	0.94	0.12	0.71	1.79	0.39		1-5/86/1/2	6,464	M8	221		4.49	M12	0.33	0.07	0.9						
42		1.563	3.74	2.44	1.81	1.97	1.02	0.12	0.79	2.01	0.47		1-3/455/32	9,523	M10	434		4.96	M12	0.33	0.08	0.9						
48		1.813	4,13	2.76	2.01	2.20	1.10	0.14	0.83	2.24	0.47		2x5/32	13,423	M12	761		5.51	M16	0.47	0.08	0.9						
55		2.125	4.72	3.15	2.36	2.56	1.18	0.16	0,87	260	0.63		2-11895332	21,600	M12	1.062		6,30	M16	0.47	0.09	0.9						
65		2.500	5.31	3.70	2.68	2.95	1.38	0.18	1.02	2.99	0.63		2-1/2x/10	37.212	M12	1.062		7.28	M16	0.47	0.10	0.9						
75		2.813	6,30	4,25	3,15	3.35	1.57	0.20	1.18	3.41	0.75		3x3/16	58,817	M16	2,811		8.27	M16	0.47	0.12	0,9						
90		3,875	7.87	5,59	3.94	3.94	1.77	0.22	1.34	4.00	0.79		Selection indication for design ZR: - Transmiltable torques of keyless clamping hubs have to be observed Please order dimension sheet no, 5020/000/017-757537. - Material on request															
100		4.250	8.86	6.22	4.45	4.33	1.97	0.24	1.50	4.39	0.98																	
110		4.813	10.04	7.01	5.00	4.72	2.17	0.26	1.65	4.80	1.02																	
125		5563	11.42	8,11	5.79	5.51	2.36	0.28	1.81	5.59	1.18																	

${ }^{19}$) Please provide the shaft distance dimension L_{W} or L_{R} in all inquinies and orders along with the maximum speed to review the critical whipping speed,
${ }^{2}$) Torsion spring stiffness when the intermediate tube is 39 in
${ }^{3)}$ Design ZR
Inch bores machined to AGMA Class 1, Melric bores machined to H7
Design ZWNV - for vertical assembly with thrust bearing, please request sheet 5020/000/027-760390.

Order form:	ROTEX* 38	ZWN	1200	St / EN-GJL-250	98 Sh A	4N-	$\bigcirc 38$	4N -	030
	Coupling size	Design	Shaft distance dim. LW	Material	Spider hardness	Component	Bore	Component	Bore

Torsionally flexible coupling

Design BTAN with brake drum/design SBAN with brake disc

Same advantages as the standard ROTEX ${ }^{\mathbb{1}}$ in addition:

- Shaft coupling BTAN designed to be mounted to external brake drums with brake discs to DIN 5431/15435
- Shaft coupling BTAN with disc for brake calipers
- Each coupling design can be combined with several sizes of brake drums (see dimension " N ")
- The brake drum or brake disc must be mounted onto the shaft with the highest mass moment of inertia
- The maximum brake torque must not exceed the maximum coupling torque
- Installation instructions available at www.ktr.com

ROTEX ${ }^{2}$ type BTAN (No. 011) and SBAN (No. 013)																
Size	Cintbore$\varnothing d_{i} \cap \mathrm{D}$$D D_{1}$	Bore max. ${ }_{1}$		Dimensions [in]												
		$\underset{400-15}{\text { EN-GJS- }}$	Steel	D_{H}	D_{2}	D_{4}	${ }^{\text {d }} \mathrm{H}$	z	pitch ${ }^{1)}$	M	T_{A} [lb-in]	$11_{1}: 1_{2}$	E	L	P	$\mathrm{N}_{\text {SBAN }}$
38		-	1.313	3.15	1.97	2.60	1.50	8	$8 \times 45^{\circ}$	M8	363	1.77	0.94	4.49	0.30	1.48
42		-	1.563	3.74	2.36	3.15	1:81	12	$16 \times 22.5{ }^{*}$	M8	363	1.97	1.02	4.96	0.37	1.59
48		-	1.813	4.13	2.68	3.54	201	12		M8	363	2.20	1.10	5.51	0.41	1.79
55		-	2.125	4.72	3,07	4.02	2.36	8	$8 \times 45{ }^{\circ}$	M10	735	2.56	1.18	6.30	0.49	2.07
65		-	2.500	5,31	3.62	4.57	2.68	12	$16 \times 225^{\circ}$	M10	735	2.95	1.38	7.28	0.53	242
75		-	2.813	6.30	4.17	5.35	3,15	15	$20 \times 18^{\circ}$	M12	1062	3,35	1.57	8.27	0.61	2.74
90		-	3.875	7.87	5,51	6.77	3.94	15		M16	2611	3.94	1.77	9.65	0.73	3.21
100		3,875	-	8.86	6,14	7.68	4.45	15		M16	2611	4.33	1.97	10.63	0.81	3.52
110		4,250	-	10.04	6.93	8.58	5.00	15		M20	5139	4,72	2.17	11.61	0.93	3.80
125		5,000	-	11.42	8.03	9.92	5.79	15		M20	5133	5.51	2.36	19,39	1.08	4.43

${ }^{14}$ Thread in the hub between the jaws

Design BTAN												Design SBAN											
Brake drum	ROTEX: BTAN dimension "NBTAN"										$\begin{array}{\|c\|} \hline \text { Speed } \\ \text { spm } / V 1 \\ (98 \mathrm{ft} / \mathrm{s}) \end{array}$	Brake Disc	ROTEX ${ }^{6}$ SBAN coupling/disc brake dimension										$\begin{aligned} & \text { Speed } \\ & \text { pmind } \\ & (98 \mathrm{ft} / \mathrm{s}) \end{aligned}$
	38	42	48	55	65	75	90	100	110	125			38	42	48	55	65	75	90	100	110	125	
160×60	1.22										3,550	200×12.5	x										2,800
200x75	1.42	1.50	1.54	1,61							2,800	250×12.5	\times	x	x								2,240
250x95	173	1.81	1.85	1.93	1.97	2.05					2,240	315×16		x	${ }^{*}$	x	x	x					1.800
315×118		2.17	2.20	2,28	2.32	2.40	2.52				1.800	400×16			\times	x	\times	x	x	x	\times		1.400
400×150		2.68	2.72	2,80	2.83	2.91	3.03	3.11	3.23		1,400	500×16				\star	x	x	x	\times	x	x	1.120
500×190					3,43	3.50	3.62	3.70	3.82	3.98	1.120	630×20					x	x	x	x	\times	x	900
630×236						4.21	4.33	4.41	4.53	4.69	900	710×20					x	x	x	x	x	x	800
710×265								4.84	4.96	5.12	800	800×25							\times	\times	\times	x	710
1300×300										5.67	710	900×25									\times	\times	630

Other sizes available, request sheets:
BTAN:M 380821
SEAN straight: M380822; offset: M370065
FNN hub: M380823
FNN hub: M380823
Inch bores machined to AGMA Class 1, Melric bores machined to H7

Order form:	ROTEX * 38	BTAN	$\varnothing 200 \times 75$	92 Sh A	1Nd -	D 38	1 -	030
	Coupling size	Design	ØBrake drum x witdh of brake drum	Spider hardness	Component	Bore	Component	Bore

Design AFN-SB special with brake disc

Same advantages as the standard ROTEX in addition:

- Shaft coupling AFN-SB special with brake disc for brake calipers
- The brake disc must be mounted onto the shaft with the highest mass moment of inertia
- The maximum brake torque must not exceed the maximum coupling torque
- Installation instructions available at www.ktr.com

ROTEX ${ }^{\text {² }}$ Design AFN-SB special																
Size	Bore $\cap \mathrm{d}$		Dimensions [in]													
	min.	max.	$\overline{\mathrm{D}}_{\mathrm{H}}$	D_{F}		$/_{\text {h7 }}$	D_{4}		dH	E	E_{1}	M	2	Pitch	TA [lb-in]	
65	0.875	2.500	5,31	3.70			4.57		2.68	1.38	2.56	M10	12	$16 \times 22,5^{\circ}$	730	
75	1.188	2.813	6,30	4.25			5.35		3.15	1.57	2.95	M12	15		1,060	
90	1,625	3,875	7.87	5.59			6.77		3.94	1.77	3.23	M16	15		2,610	
100	1.813	4.250	8.86	6.22			7.68		4.45	1.97	3.82	M16	15		2,610	
110	2.375	4.813	10.04	7.01			8.58		5,00	2.17	4.06	M20	15	$20 \times 16^{\circ}$	5,130	
125	2,375	5.563	11.42	8.11			9.92		5.79	2.36	4.57	M20	15		5,130	
140	2.375	6,375	12.60	9,25			11.10		6.50	2.56	5.04	M20	15		5,130	
160	3.188	7.313	14.57	10.63			12.80		7.48	2.95	5.75	M24	15		8,850	
ROTEX ${ }^{3}$ Design AFN-SB special																
Size	Torque ${ }^{\text {] }}$ w/ 95Sh-A		Max. speed [rpm]	Max. ${ }^{\text {I }}$ brake torque [lb-in]		Dimensions [in]										
	TKN	$\mathrm{T}_{\mathrm{K}_{\text {max }}}$				I_{6}		I_{7}		I_{10}	111	$1{ }_{12}$	120	N	L	
65	0,310	16,630	3.450			0,59		0.63		4.43	4.47	6.54	5.31	5.91	13.56	
75	16,990	33,980	3.250			0.79		0.75		5,18	5.24	6.56	5,31	591	14.74	
90	31,860	63,720	3.000			0.79		0.79		6.46	6.52	8.13	6.89	7.48	17.87	
100	43,800	87.610	2,800			0,98		0,98		6,04	6,10	8.13	6,89	7.48	18.05	
110	63,720	127,440	2,600			0.98		1.02		7.93	8.01	8.35	7.09	7.68	20.41	
125	88,500	177.000	2,250			1.18		1.18		7.81	7.89	8.35	7.09	7.68	20.81	
140	113,280	226,560	1,800	226,560		1.18	1.34			9.63	9.72	9.94	8.66	9.25	24.70	
						8.27 \%				9,06 ${ }^{7}$						
160	169,920	339,840	1,500	339,840			1.34	1.50			8.92	9.02	9.94	8.66	9.25	24.70
						$8.27{ }^{\text {2 }}$					9,06 ${ }^{\text {2) }}$					

Selection of ROTEX ${ }^{\text {c }}$ coupling/ brake disc											
Size	Brake disc \varnothing A $\times \mathrm{b}_{1}$										
	355×30	400×30	450×30	500×30	560×30	630×30	710×30	800×30	900×30	900×40	1000×40
65	x	x	x								
75		x	x	\times							
90			\times	x	x	x					
100				x	x	x					
110				\times	\times	x	x				
125						\star	π	x			
140							x	x	x	χ	x
160							\times	*	x	*	x

Order form:	ROTEX ${ }^{\text {P }} 90$	AFN-SB special	$\varnothing 450 \times 30$	95 Sh A	4Nv-	090	4Nx-	$\bigcirc 90$
	Coupling size	Design	\varnothing Disc brake width of disc]	Spider Hardness	Component	Bore	Component	Bore

Design SD (shiftable at standstill)

Same advantages as the standard ROTEX ${ }^{\overline{8}}$ in addition:

- Shiftable coupling for all applications in general industry
- Easy to engage and disengage drive and driven at standstill
- Optional shiftable linkage kit available to ease installation
- Spring and ball detent locking mechanism
- Installation instructions available at www.ktr.com

slip ring and shiftable linkage																			
Size	Shiflable linkage size	Dimensions [in]																	Max. speed n for slip ring [rpm]
		a_{1}	b_{1}	c	d_{2}	d_{3}	d_{5}	e^{60}	${ }_{1}$	F	91	L_{2}	L_{3}	m	$\mathrm{m}_{1} \mathrm{~min}$	In ${ }_{1}$ max.	A	B	
38	1	4.93	1.38	0.71	0.79	0.43	0.47	1.18	0.98	2.76	2.17	12.60	15.75	2.95	7.09	7.48	3.54	4.49	3,280
42	1																		
48	2	5,51	1.57	0.98	0.98	0.53	0.67	1.57	1.06	3.84	2.38	16.93	17.72	3.94	9.45	10.63	4.37	5.94	2,550
55	3				1.18				1.28	4.72	276	19.29	23.62		11.02	12.20	5.51	7.09	2.120
65	3																		
75	3																6.69	8.27	1,710
90	4	6.30	1.77		1,38		0.83	1.97	1.48	5.81	2.76	22.24	29.53	4.72	12.64	14.37	7.87	9,61	1,360
100	4																		
110	4																		
125	5				1.57		0.98		1.81	7.48	3,15	24.80	4205		14.37	16.14	9.84	11.81	855

${ }^{17}$ In case of a extended base plate the dimension "e" of the shiftable linkage size 5 has to be increased by at least 0.4 in.
Inch bores machined to AGMA Class 1, Metric bores machined to H7

Order form:	ROTEX ${ }^{\text {® }} 38$	SD	with 1,1 and 1	92 Sh A	1 -	$\varnothing 38$	11 -	$\square 28$
	Coupling size	Design	with slip ring 1,1 and shiftable linkage 1	Spider hardness	Component	Bore	Component	Bore

Additional designs

ROTEX ${ }^{\text {® }}$ type No． 001 with clamping unit CLAMPEX ${ }^{8}$ KTR 200														
Size	$\begin{gathered} \varnothing d \\ \varnothing D \\ \varnothing 0_{1} \end{gathered}$	$\begin{gathered} \text { Hub } \\ \text { materia } \\ 1 \end{gathered}$	CLAMPEX KTR 200			｜${ }$	Dimensions［in］							
			$\begin{array}{\|c\|} \hline \text { Latgest } \\ \text { poss } \mathrm{kTR} \\ \text { climpingse } \\ \text { don } \end{array}$	$\begin{aligned} & \text { Transmittablo } \\ & \text { torques and } \\ & \text { lorce } \end{aligned}$										
				T［lb－in］	$F_{\text {AX }}[160]$		I_{2}	E	s	b	D_{H}	D	${ }^{\text {d }}$ H	L
42			30×55	6，800	11，460	1.89	1.97	1.02	0.12	0.79	3.74	－	1.81	
48			35×60	10，590	15.280	1，89	2.20	1.10	0.14	0.83	4.13	－	2.01	ิิ
55			45×75	18，870	21，350	2.32	2.56	1.18	0，16	0.87	4.72	－	2.36	은
65		\％	45×75	18，870	21，350	2.32	2.95	1.38	0.18	1.02	5.31	4.53	2.68	言
75	－		50×80	27，960	28，320	2，32	3，35	1.57	0.20	1.18	6.30	5.31	3.15	䃭
90			65×95	36，350	28，320	2，32	3.94	1.77	0.22	1,34	7.87	6，30	3.94	$\stackrel{+}{\text { ¢ }}$
100	\% \% o		65×95	36，350	28，320	2.32	4.33	1.97	0.24	1.50	8.66	7.09	4.45	$\stackrel{+}{ \pm}$
110	－	$\stackrel{10}{1}$	70×110	62.160	45，180	2.76	4.72	2.17	0.26	1.65	10.04	7.87	5.00	$\stackrel{+}{-}$
125	－	¢	80x120	71，090	45，180	2.76	5.51	2，36	0.28	1.81	11.42	9.06	5.79	＂
140	产	$\frac{5}{0}$	95×135	100，660	53，720	2.76	6，10	2，56	0，30	1.97	12，60	10.04	6，50	$\stackrel{5}{6}$
160	\％	交	110×155	142，210	65，640	3，15	6.89	2，95	0.35	2.24	14.57	11.42	7.4	$\stackrel{\square}{\square}$
180	ミ		120x165	193，920	82，050	3.15	7.68	3.35	0.41	2.52	16.54	12.80	8.66	

ROTEX ${ }^{8}$ type No． 001 with clamping unit CLAMPEX ${ }^{8}$ KTR 200																	
$\begin{array}{\|c\|} \hline \text { KTR } 200 \\ \text { Size } \end{array}$	Length	Transmittable torque and axial force		Clamping screw DIN EN ISO 4762 － 129		KTR 200 Size	Length	Transmiltable torque and axial force		Clamping screw DIN ENISO 4762 － 12.9		KTR 200 Size dxD	Length B	Transmittable torque and axial force		Clamping screw DIN ENISO 4762－ 129	
dxD	B	T［lb－in］	$\mathrm{Fax}_{\text {ax［bf］}}$	2xM	TA［llb－in］	dxD	B	T［lb－in］	$\mathrm{F}_{\text {ax }}$［Ibf］	zxM	$\mathrm{T}_{A}[1 \mathrm{lb-in}]$			T［［b－in］	$\mathrm{F}_{\text {ax }}$［b］］	zxM	$\mathrm{T}_{A}(\mathrm{lb}-\mathrm{in}]$
20×47	1.89	4，540	11，460	6xM6	150	38×65	1.89	11，490	15，280	8xM6	150	65×95	2.32	36，340	28，320	8xMB	363
22×47	1.89	4，990	11.460	6xM6	150	40×65	1.89	12，100	15，280	BxM6	150	70×110	2.76	62，150	45，180	BxM10	735
24×50	1.89	5，450	11，460	6xM6	150	42x75	2，32	17，610	21，350	6xM8	363	75×115	276	66，580	45，180	8xM10	735
25×50	1.89	5，670	11，460	6xM6	150	45×75	2.32	18，860	21，350	6xM9	363	80×120	2.76	71，030	45，180	8xM10	735
28×50	1，89	6，350	11，460	6xM6	150	48×80	2.32	26，840	28，320	$8 \times \mathrm{MB}$	363	85×125	2.76	94，330	50，420	$10 \times \mathrm{M} 10$	735
30×55	1.89	6，800	11，460	6xM6	150	50×80	2.32	27，950	28，320	BxM8	363	90x130	2.76	99，880	56，420	10xM10	735
32x60	1，89	9，680	15，280	8xM6	150	55×85	2.32	30，750	28，320	8xM8	363	95×135	2.60	100，650	53，720	10xM10	735
35×60	1.89	10，590	15，280	BxM6	150	60x90	2.32	33，550	28，320	BxM ${ }^{\text {P }}$	363		urther det	ails please	see CLAM	PEX ${ }^{\text {B }}$ cat	

ROTEX ${ }^{3}$ design No． 001 with Taper－loc Bushing														
Size	Taper－ Clamp Busking	Dimensions［in］									Set screw for taper bushing			
		$\mathrm{I}_{1} \mathrm{I}_{2}$	E	s	b	L	N	D_{H}	D_{1}	${ }^{\text {d }} \mathrm{H}$	$\begin{gathered} \text { Size } \\ \text { [Inch] } \end{gathered}$	Length ［in］	Number	$\begin{gathered} T_{A} \\ {[l b-i n]} \end{gathered}$
28	1108	0.91	0.79	0.10	0.59	2.60	－	256	2.56	1.18	$1 / 4{ }^{4}$	$1 / 2^{n}$	2	50
38	1108	0，91	0.94	0.12	0.71	2.76	0.59	3，15	3.07	1.50	$1 / 4^{4}$	$1 / 2^{*}$	2	50
42	1610	1.02	1.02	0.12	0.79	3.07	0.63	3.74	3.70	1.81	$3 / 8{ }^{\text {B }}$	5／8 B^{n}	2	177
48	1615	1.54	1，10	0.14	0.83	4.17	1.10	4，13	4.09	2.01	$3 / 8{ }^{\text {a }}$	5／8 ${ }^{\text {n }}$	2	177
55	2012	1，30	1.18	0，16	0.87	378	0.79	4.72	4.65	2.36	7／16 ${ }^{-1}$	7／6 6°	2	274
75	2517	2.05	1.57	0.20	1.18	5.67	1.42	6.30	5.31	3.15	1／2 ${ }^{\text {²}}$	$1^{\prime \prime}$	2	434
	－3020	2.05	1.57	0.20	1.10	5.67	1.42	6.50			5／8．	$1^{1 / 4^{\prime \prime}}$		814

－Only available for design TB 2
＊1．BSW thread
Coupling design TB 1／1；TB 2／2；TB 1／2 possible
－Please request sheet M373054

Additional designs with torque limiter

Due to the many applications of ROTEX ${ }^{*}$ in several different mounting situations，this coupling system is available with various hub designs．These designs are available for either keyed or frictionally engaged connections．Installation for gear shafts with integrated jaws or similar applications are also available．

Shear torques required with your ordet．
Request sheet 5020／000／009－7603

ROTEX ${ }^{\text {® }}$－RUFLEX ${ }^{8}$－coupling with torque limiter，design No． 070								
ROTEXB Size	$\begin{gathered} \text { RUFLEX } \\ \text { Size } \end{gathered}$	$\underset{\text { torques }[l \mathrm{lb}-\mathrm{In}]}{ }$	Dd	Dd d_{1} max	$\mathrm{D}_{\text {A }}$	l_{1}	L_{R}	$L_{\text {RU }}$
14	00	4－44	$\stackrel{\text { ¢ }}{ }$	0.375	1.73	0.43	1.22	2.32
19	0	18－170		0750	2.48	0.98	1.30	3.07
24	01	44－610	$0{ }_{0}^{0}{ }^{\text {¢ }}$	0.875	3.15	1，18	1.77	3.86
28	1	170－1，770		1.000	386	1.38	2.05	445
38	2	220－3，540	E ${ }^{5}$	1.313	4.72	1.77	2.24	524
48	3	440－7，080	这边	1.683	638	2.20	2.68	6.54
75	4	790－14，160	年	2125	7.28	3.35	3.07	8.07

${ }^{17}$ Shallow key required for shafts above $\varnothing .75$

ROTEX ${ }^{\text {a }}$－KTR－SI－coupling with torque limiter，design No． 070									
$\begin{gathered} \text { ROTEX } \\ \text { Size } \end{gathered}$	KTR－SI design	KTR－SI Size	Ratchet torque［lb－in］	$\varnothing \mathrm{d}$	max $\theta_{d_{1}}$	$\mathrm{D}_{\text {A }}$	l_{1}	Ls	$\mathrm{L}_{\text {SI }}$
29	DK	2	100－1．770		1.313	3.94	1.38	220	4.88
	SR／SGR	0	44－350		0.813	2.17		1.36	4.02
38	DK	3	220－3，980		1688	4.72	1.77	2.87	6.10
	SR／SGR	1	100－880		1.000	323		1.89	5，10
48	DK	4	440－8，850		2.125	5.75	2.20	3.68	7.64
	SR／SGR	2	220－1，770		1，313	3.94		2，20	6.10
55	DK	5	$750 \cdot 17,700$		2.500	6.93	2.56	421	876
	SR／SGR	3	440－3，980		1688	4.72		287	7.32
75	DK	－	\square		－	－	3.35	－	－
	SR／SGR	4	680－17，700		2125	575		368	951
90	DK	－	－		－	－	3.94	－	－
	SR／SGR	5	1500－30，090）		2500	693		4.21	10.85

$$		SYNTEX＇lorque range disc spring［lb－in］				$\begin{aligned} & \text { Max } \\ & \text { bore } \end{aligned}$		D_{A}	D_{H}	d_{H}	E	L	L_{G}	l_{1}	I_{2}	$1{ }_{1}$
		DK ${ }_{1}$	DK2	SK，	SK_{2}	d	d_{1}									
24	20	50－170	1130－260	80－170	170－570	1313	1081	3.15	217	106	0.71	1.77	3.94	1.18	276	
28	25	170－530	390－790	220－570	350－880	1500	1.00	38	256	1.1	0.79	1.9				
38	35	1220－700	660－1，320	260－880	610－1．5	1813	1131	4.72	3.1	1.5	0.8	23		1.77	35	0.51
48	50	530－1，590	154026	700－242	1，410，3540	225	1875	63	4.13	2.01	1.10	27				

Hub designs

Design 1.0 hub with keyway and set screw

Positive hub to shaft connection. Transmittable torque is dependent on surface pressure on the keyway only.

Design 1.3 hub with spline bore
Design 2.0 clamping hub, single slotted, without keyway

Frictionally engaged shaft-hub connection. Transmittable torque depends on the bore size. (Only for ATEX category 3)

Design 2.3 clamping hub with spline bore (page 33)
Design 4.2 with CLAMPEX clamping element KTR 250

Frictionally engaged shaft-hub connection for average torque.

Design 6.0 clamping ring hub (see ROTEX ${ }^{\text {® }}$ G series)

Integrated frictionally engaged shaft-hubconnection for high torque. Fasteners are in the face of the hub. For details about torques and dimensions see page 32. Suitable for high speeds.

Design 7.5 axially split clamping hub without keyway for a

double-cardanic connection
Frictionally engaged shaft-hub connection for radial assembly of couplings. Transmittable torque depends on the bore size (only for ATEX category 3).

Design 7.8 axially split clamping hub without keyway

Frictionally engaged shaft-hub connection for radial assembly of couplings.Transmittable torque depends on the bore size (only for ATEX category 3)

Special hubs on request

Special lengthened hub/shaft with integrated jaws.

Design 1.1 hub without keyway, with setscrew

Positive torque transmission for pressed or glued connections. (No ATEX certification available)

Design 2.1 clamping hub, single slotted, with keyway

Positive torque transmission with additional frictional torque capacity. The additional frictional torque capacity reduces backlash. Surface pressure of the keyway is also reduced.

Design 4.1 w. CLAMPEX ${ }^{\text {E }}$ clamping set $K T R 200 /$ f. KTR 400 design 4.3

Frictionally engaged, zero-backlash shaft-hub connection for high torque. Largest clamping device possible depends on the hub O.D. Clamping device can be mounted on jaw side or back face. For details, see the CLAMPEX ${ }^{\circledR}$ section.

Design 6.5 clamping ring hub

 intermediate shafts (special design).

Design 7.6 axially split clamping hub without keyway for a

double-cardanic connection
Positive power transmission with frictionally engaged operation for radial assembly of couplings. The frictionally engaged operation reduces backlash. Surface pressure of the keyway connection is reduced.

Design 7.9 axially split clamping hub with keyway

Positive torque transmission with keyway for radial assembly of couplings. Positive lock reduces backlash. Surface pressure of the keyway connection is reduced.

Special hub with an external taper for a frictional connection.

Weights and mass moment of inertia

Components

ROTEX ${ }^{\text {R }}$ component values													
Size	Standard hub				Large hub			Spider	Driving flange			Coupling llange	DKM spacer
	Par 1				Part 1a			Part 2	Part 3b	Part 3Na		Part 4N	
	$\begin{gathered} \text { Alu } \\ {[\mathrm{lbs}]} \\ {\left[\mathrm{lb}-1 \mathrm{n}-\mathrm{sec}^{2}\right]} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { EN-G]L- } \\ 250 \\ {[\mathrm{lbs}]} \\ {\left[\mid \mathrm{bb}-\mathrm{in}-\sec ^{2}\right]} \\ \hline \end{array}$	EN-GIS- $400-15$ $[l \mathrm{lbs}]$ $\left[\mathrm{lb-in-sec}^{2}\right]$	$\begin{gathered} \mathrm{S} 1 \\ {[\mathrm{lbs}]} \\ {\left[\mathrm{b}-\mathrm{in}-\mathrm{sec}^{2}\right]} \end{gathered}$	$\begin{gathered} \text { ATu } \\ {[\mathrm{lbs}]} \\ {\left[\mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2}\right]} \end{gathered}$	$\begin{gathered} {[\text { EN-GJL-250 }} \\ {[\mathrm{lbs}]} \\ {\left[\mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2}\right]} \end{gathered}$	$\begin{gathered} \mathrm{St} \\ {[\mathrm{lbs}]} \\ {\left[\mathrm{lb-in-sec}^{2}\right]} \end{gathered}$	$\begin{array}{\|l} \text { Polyurelhana } \\ \text { (Vulkollan) } \\ {[l \mathrm{ls}]} \\ {\left[\mathrm{lb}-\mathrm{n}-5 \mathrm{se} \mathrm{C}^{2}\right]} \\ \hline \end{array}$	$\begin{gathered} \text { EN-GJS- } \\ {[\mathrm{lbs}]} \\ {\left[\mathrm{lb-in}-\mathrm{sec}^{2}\right]} \end{gathered}$	$\underset{\substack{\mathrm{St} \\[\mathrm{lbs}] \\\left[\mathrm{b}-\mathrm{in}-\mathrm{sec}^{2}\right]}}{ }$	EN-GIS- $400-15$ $[\mathrm{lbs}]$ $(\mathrm{lb}-\mathrm{n}-\mathrm{sec} 1]$	$\begin{gathered} \mathrm{SI} \\ {[\mathrm{lbs}]} \\ {\left[\mathrm{lb-in}-\mathrm{sec}^{2}\right]} \end{gathered}$	$\begin{gathered} \text { Alu } \\ {[\mathrm{lbs}]} \\ {\left[\mathrm{lb}-\mathrm{in}-\mathrm{sec}^{2}\right]} \end{gathered}$
14	-	-	-	-	0.0441	-	-	0,0097	-	-	-	-	-
	-	-	-	-	0.0000266	-	-	0.0000044	-	-	-	-	-
19	0.141	-	-	-	0.163	-	0.551	0.012	-	-	-	-	-
	0.000089	-	-	-	0,000177	-	0,000531	0.000009	-	-	-	-	-
24	0.271	-	-	-	0.384	-	1.213	0.031	0.062	0,320	-	0.662	0.309
	0.000354	-	-	-	0,000708	-	0,002036	0,000053	0.002036	0.000620	-	0,000797	0,000531
28	0.441	-	-	-	0.582	-	1.962	0.053	1.191	0.512	-	1.080	0.485
	0.000885	-	-	-	0,001682	-	0.004691	0.000089	0.006195	0.001505	-	0.001770	0,001151
38	0.970	2.56	-	3.31	1.04	2.91	280	0,093	1.61	-	0.690	1.92	0.772
	0.002921	0,007611	-	0.010709	0,004071	0.011948	0.012390	0.000266	0,008850	-	0.003363	0,004425	0,003098
42	1.52	3.86	-	5.56	1.70	452	4.06	0.143	2.78	-	1.34	3.09	1.04
	0.005930	0.015753	-	0.025046	0,009824	0,025754	0.015045	0.000620	0.028320	-	0.007877	0,009735	0.006018
48	1.76	5.38	-	7.36	2.23	6.13	6.04	0.190	3.20	-	1.66	4.23	1.37
	0.097350	0.027258	-	0.041861	0,015399	0.042834	0.046020	0.001151	0.038055	-	0.012018	0.015930	0,009735
55	-	8.11	-	11.14	-	9.00	8.67	0.243	5.69	-	2.74	6.46	1.98
	-	0.054428	-	0.083898	-	0,081951	0.088500	0.002036	0.092925	-	0.025842	0.032745	0.018585
65	-	12.50	-	14.97	-	13.32	12.90	0.375	6,84	-	3.61	9.61	2.89
	-	0.109740	-	0.134166	-	0.158327	0,168150	0.003717	0.131865	-	0.043285	0.061065	0.034515
75	-	19.23	-	23.22	-	21.01	19.98	0.706	9.83	-	554	14.99	4.34
	-	0.233994	-	0.289661	-	0,349221	0.354000	0.010266	0.248685	-	0.092925	0.133635	0.072570
90	-	32.63	-	41.23	-	40.13	37.49	1.26	15.30	-	9.15	28,31	7.61
	-	0.595605	-	0,773667	-	1.335111	1.035450	0.028586	0.576135	-	0,240986	0,396480	0.198240
100	-	-	43.44	-	-	-	-	1.79	22.49	-	14.00	35,63	-
	-	-	1.034919	-	-	-	-	0.052038	1.031025	-	0,466661	0.706230	-
110	-	-	60.42	-	-	-	-	2.62	-	-	18.91	47,08	-
	-	-	1,811153	-	-	-	-	0.097085	-	-	0,807209	2.499240	-
125	-	-	93.27	-	-	-	-	3.59	-	-	27.78	75.70	-
	-	-	3.604340	-	-	-	-	0.174522	-	-	1.546007	2,857665	-
140	-	-	128.1	-	-	-	-	4.65	-	-	38.08	107.4	-
	-	-	5,994902	-	-	-	-	0.276917	-	-	2.588360	4.351545	-
160	-	-	185,7	-	-	-	-	7.08	-	-	58,00	156.7	-
	-	-	11.658017	-	-	-	-	5.595678	-	-	5.260086	8578305	-
180	-	-	261.3	-	-	-	-	11.58	-	-	72.93	241.3	-
	-	-	20.428898	-	-	-	-	1.220327	-	-	8,619369	17,390250	-

Weight and mass moment of inertia each refer to the mid-range bore without keyway.

Weights and mass moment of inertia

ROTEX* complete coupling values												
	AFN		BFN		CF		DF		ZWN ${ }^{\text {² }}$		S0	
Size	Weight [lb]	Mass moment of inertia J [lb-in-sec]	Weight [lbs]	Mass moment of ineria \rfloor [lb-in-sec²]	Weight [lbs]	Mass moment of inertia $\sqrt{ }$ [lb-in-sec ${ }^{2}$]	Weight [lbs]	Mass moment of inertial [lb -in- sec^{2}]	Weight [lbs]	$\begin{aligned} & \text { Mass moment } \\ & \text { of ineria J } \\ & {\left[\mathrm{lb-in}-\mathrm{sec}^{2}\right]} \end{aligned}$	Weight [lbs]	Mass moment of inertia 」 [lb-in-sec²]
19	-	-	-	-	0.97	0.000160	0.84	0.000200	-	-	0.93	0.000080
24	2.16	0.000360	2.43	0.000410	1.85	0.000470	1.26	0.000470	4.85	0,000840	2.43	0.000460
28	3.53	0.000830	3.75	0.000950	3.31	0.001240	2.43	0.001410	7.94	0.001930	4.19	0.001060
38	6.17	0.002090	5.73	0.001930	4.19	0.002170	3.31	0.002590	12.1	0,003930	6.62	0.004350
42	9.92	0.004720	9.04	0.004190	6.84	0.005130	5.73	0.006620	19.0	0.008530	9.70	0.008040
48	13,0	0,007360	12,1	0,006840	8.60	0.007550	6.62	0.008810	24.9	0.013800	13.7	0.002230
55	19.6	0.014800	18.3	0.013690	14.1	0.016920	11.7	0.021310	39.0	0.027900	21.6	0.016600
65	28.4	0.026600	27.1	0.025900	19.6	0.027800	14.1	0.003037	58.0	0.053100	32.9	0.032600
75	45.4	0.060100	42.6	0.057200	29.8	0.055700	20.3	0.057410	91.7	0.117200	51.2	0.070600
90	83,3	0.171800	75.4	0.155100	49.2	0.135600	32.0	0.133300	161	0.317300	89.3	0.189100
100	109	0.306800	99.7	0.273700	68.1	0.240100	46.7	0.239400	218	0.562900	103	0.246700
110	149	0.538500	136	0.479300	94.6	0.432400	65.7	0.444600	298	0,986000	136	0.418600
125	226	1.048500	208	0.941900	142	0.818700	93	0.803100	455	1.937000	213	0.849700
140	311	1.743000	286	1.564000	199	1,422100	138	1,458000	625	3.222000	282	1,368000
160	464	3.517000	421	3.107000	281	2.589000	184	2.480500	922	6.393000	420	2.723000
180	676	6.582000	605	5.668000	386	4,448000	238	4,141000	1327	11.682000	578	4,810000

BTAN/SBAN without drum/disc		
Size	Weight [lbs]	Mass moment of inerlia $]\left[\mathrm{kgm}^{2}\right]$
28	0.90	0.0004
38	2.10	0.0014
42	3.24	0.0031
48	4.41	0.0053
55	6.60	0.0105
65	10.1	0.0209
75	15.4	0.0442
90	27.6	0.1224
100	36.9	0.2074
110	50.9	0.3665
125	79.1	0.7349
140	109	1.2292
160	162	2.4569
180	233	4.4967

Drum for BTAN ${ }^{2)}$		
Brake disc $\varnothing \mathrm{D}_{\mathrm{B}} \times \mathrm{B}$	Weight $[\mathrm{lbs}]$	Mass moment of inertia $\rfloor\left[\mathrm{b}-\mathrm{in}-\mathrm{sec}^{2}\right]$
160×60	4.67	0.08851
200×75	7.61	0.26553
250×95	15.1	0.70808
315×118	33.0	2.47828
400×150	68.8	7.87739
500×190	132	23.8977
630×236	247	70.8965
710×265	355	131.880
800×300	445	240.747

Disc for SBAN 2)		
Brake disc $\varnothing A \times \mathrm{G}_{\mathrm{S}}$	Weight $[\mathrm{lbs}]$	Mass moment of inertia J [lb-in-sec $\left.{ }^{2}\right]$
200×12.5	6.46	0.1360133
250×12.5	10.28	0.9326560
315×16	19.00	0.9897985
400×16	33.58	2.7898883
500×16	52.84	6.8149425
630×20	105.2	21.475704
710×20	134.4	34.652550
800×25	209.3	69.737011
900×25	262.3	111.60305
1000×25	326.9	170.24846

Weights and mass moments of inertia refer to standard hub with mid-range bore without keyway.
${ }^{13}$ Weights and mass moments of inertia without intermediate shaf1.
${ }^{2]}$ Selection of ROTEX ${ }^{ \pm}$brake drum - disc brake see page 40.

Attachment G-07a

Manufacturers' Submittals and Individual O\&M Manuals

CONTROLS

DC Power Supply Modules

Quality

FLEX I/O DC Power Supply Modules

Cat. No. 1794-PS13 and 1794-PS3

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.ab.com/manuals/gi) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment. The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.
Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc. is prohibited.
Throughout this manual we use notes to make you aware of safety considerations.

Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

IMPORTANT	Identifies information that is critical for successful application and understanding of the product.
ATTENTION	Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you:

Environment and Enclosure

This equipment is intended for use in a Pollution Degree 2 industrial environment, in overvoltage Category II applications (as defined in IEC publication 60664-1), at altitudes up to 2000 meters without derating.
This equipment is considered Group 1, Class A industrial equipment according to IEC/CISPR Publication 11. Without appropriate precautions, there may be potential difficulties ensuring electromagnetic compatibility in other environments due to conducted as well as radiated disturbance.
This equipment is supplied as "open type" equipment. It must be mounted within an enclosure that is suitably designed for those specific environmental conditions that will be present and appropriately designed to prevent personal injury resulting from accessibility to live parts. The interior of the enclosure must be accessible only by the use of a tool. Subsequent sections of this publication may contain additional information regarding specific enclosure type ratings that are required to comply with certain product safety certifications.
See NEMA Standards publication 250 and IEC publication 60529, as applicable, for explanations of the degrees of protection provided by different types of enclosure. Also, see the appropriate sections in this publication, as well as the Allen-Bradley publication 1770-4.1 ("Industrial Automation Wiring and Grounding Guidelines"), for additional installation requirements pertaining to this equipment.

FLEX I/O is grounded through the DIN rail to chassis ground. Use zinc plated yellow-chromate steel DIN rail to assure proper grounding. The use of other DIN rail materials (e.g. aluminum, plastic, etc.) that can corrode, oxidize, or are poor conductors, can result in improper or intermittent grounding.

Preventing Electrostatic Discharge
This equipment is sensitive to electrostatic discharge, which can cause internal damage and affect normal operation. Follow these guidelines when you handle this equipment:

- Touch a grounded object to discharge potential static.
- Wear an approved grounding wriststrap.
- Do not touch connectors or pins on component boards
- Do not touch circuit components inside the equipment.
- If available, use a static-safe workstation.

WARNING	If you connect or disconnect wiring while the field-side power is on, an electrical arc can occur. This could cause an explosion in hazardous installations. Be sure that power is removed or the area is nonhazardous before proceeding.

North American Hazardous Location Approval

The following devices are North American Hazardous Location approved: 1794-PS13 and 1794-PS3.

The following information applies when operating this equipment in hazardous locations:		Informations sur I'utilisation de cet équipement en environnements dangereux:	
WARNING	EXPLOSION HAZARD		RISQUE D'EXPLOSION
	- Do not disconnect equipment unless power has been removed or the area is known to be nonhazardous.		- Couper le courant ou s'assurer que 'environnement est classé non dangereux avant de débrancher l'équipement.
	- Do not disconnect connections to this equipment unless power has been removed or the area is known to be nonhazardous. Secure any external connections that mate to this equipment by using screws, sliding latches, threaded connectors, or other means provided with this product.		- Couper le courant ou s'assurer que 'environnement est classé non dangereux avant de débrancher les connecteurs. Fixer tous les conrecteurs externes relies a cet equipement à l'aide de vis, loquets coulissants, connecteurs filetes o autres moyens fournis avec ce produit.
	- Substitution of components may impair suitability for Class I, Division 2.		- La substitution de composants peut rendre cet équipement inadapté a une utilisation en environnement de Classe I, Division 2.
	- If this product contains batteries, they must only be changed in an area known to be nonhazardous.		- S'assurer que l'environnement est classé non dangereux avant de changer les piles.

Power Supply Modules, Cat. No. 1794-PS13 and -PS3

The 1794-PS13 power supply provides sufficient 24 V dc power to operate 4 adapter modules. Do not attempt to operate an entire FLEX I/O system with the 1794-PS13 power supply.

The 1794-PS3 power supply provides sufficient 24 V dc power to operate 10 adapter modules. You can use this 1794-PS3 power supply to operate an entire FLEX I/O system.

Component Identification

1	Power Supply Module
2	Indicator
3	$120 / 230 \mathrm{~V}$ ac ground
4	$120 / 230 \mathrm{~V}$ ac common L2/N connections
5	$120 / 230 \mathrm{~V}$ ac power L1 connections
6	+24 V dc connections
7	24 V dc common connections

Installing Your Power Supply Module

1794-PS13 shown

ATTENTION

During mounting of all devices, be sure that all debris (metal chips, wire strands, etc.) is kept from falling into the module.
 Debris that falls into the module could cause damage on power up.

1. Hook the lip on the rear of the power supply module onto the top of the DIN rail, and rotate the power supply module onto the rail.
2. Press the power supply module down onto the DIN rail until flush. Locking tab C will snap into position and lock the power supply module to the DIN rail.
3. If the power supply module does not lock in place, use a screwdriver or similar device to move the locking tab down while pressing the power supply module flush onto the DIN rail, and release the locking tab to lock the power supply module in place. If necessary, push up on the locking tab to lock.
4. Connect the power supply wiring as shown under "Wiring" later in this document.
Note: For panel/Wall mounting, refer to publication 1794-5.13, "Panel Mounting Kit, Cat. No. 1794-NM1."

Connecting Wiring

Terminals A, B and C are $120 / 230 \mathrm{~V}$ ac supply terminals. Terminals D, E and F are available to daisychain this $120 / 230 \mathrm{~V}$ ac power to other 1794-PS power supply modules. If applying $120 / 230 \mathrm{~V}$ ac power to the power supply, you can also power the corresponding 120/230V ac modules in your FLEX I/O system.

IMPORTANT

When wiring this power supply, torque terminal screws to 7 pound-inches (0.8 Nm).

1. Connect the $120 / 230 \mathrm{~V}$ ac power to the left side terminals on the connectors on the left side of the power supply module as follows:

Connect		To
ac ground	GND	A
$120 / 230 \mathrm{~V}$ ac common	L2/N	B
$120 / 230 \mathrm{~V}$ ac power	L1	C

2. Connect terminal $G(+24 \mathrm{~V}$ dc $)$ to the +24 V dc terminal on the first adapter.
3. Connect terminal $\mathrm{H}(+24 \mathrm{~V}$ dc common) to the +24 V dc common terminal on the first adapter.
4. Connections I and J are used to pass +24 V dc power (G) and -24 V common (H) to the next adapter in the series (if required)
5. Repeat steps 3 and 4 using terminals I and J for the second adapter.

ATTENTION

The total length of wire for terminals H, I, J and G must not exceed $3 \mathrm{~m}(9.8 \mathrm{ft})$. Exceeding the $3 \mathrm{~m}(9.8 \mathrm{ft})$ length can reduce noise immunity.
6. Connections D, E and F are used to pass $120 / 230 \mathrm{~V}$ ac power to adjacent 1794 power supplies, or to power any corresponding $120 / 230 \mathrm{~V}$ ac modules in your FLEX I/O system.

Example of Using a 1794-PS13 Power Supply to

Power 4 Adapter Modules

Diagnostic Indicator

The power supplies have 1 indicator.

The power indicator is on (green) when voltage at the output is between 20.4 V dc and 28 V dc.

Indicator	Description
ON (green)	Output voltage is greater than 20.4V dc, but less than 28V dc
OFF	No power applied to power supply
	Output voltage exceeded 35V dc, and overvoltage protection shut the unit down
	Output current is above 1.4A (1794-PS13) or above 3.2A (1794-PS3)

Specifications

Specifications - Cat. No. 1794-PS13 and 1794-PS3		
	1794-PS13	1794-PS3
Nominal Supply Voltage	120 V ac, $47-63 \mathrm{~Hz}$; 0.6A max. 230 V ac, $47-63 \mathrm{~Hz}$; 0.42 A max.	120 V ac, $47-63 \mathrm{~Hz} ; 1.7 \mathrm{~A}$ max. 230 V ac, $47-63 \mathrm{~Hz}$; 1.1A max.
Voltage Range	$85-265 \mathrm{~V}$ ac	
Input Current	0.7 maximum	1.9A maximum
Inrush Current	40 A typical, 1 ac cycle @ $\mathrm{V}_{\text {in }} 265 \mathrm{~V}$ ac, $55^{\circ} \mathrm{C}$	
Interruption	Output will stay within specification when input drops out for $1 / 2$ cycle @ $47 \mathrm{~Hz}, 85 \mathrm{~V}$ ac with maximum load	
Output Specifications		
Nominal Output	+24V dc	
Voltage Range	20.4-27.6V dc (includes noise and 5\% ac ripple)	
Output Current	1.3A maximum	3A maximum (horizontal mount), 2.8 A all other mounting (See derating curve)
Output Power	31.2W	72W
Output Ripple	1200mV peak-to-peak maximum	
Minimum Load	OmA	50mA
Output Surge	Sufficient to drive 4 adapters	Sufficient to drive 10 adapters
Overvoltage Protection	Output internally limited to 35 V dc. Cycle power to reenergize.	
Leakage Current	0.5 mA rms maximum @ rated input and output	
Isolation Voltage	Tested at 2500 V dc for 1 s	
Overcurrent Protection	1.4A minimum	3.2A minimum
Thermal Dissipation	23.9 BTU/hr	41.0 BTU/hr
Power Dissipation	7W maximum	12W maximum
Dimensions	3.4H x 2.7W $\times 2.7 \mathrm{D}$ inches 87H x 69W x 69D mm	3.4H x 3.7W $\times 2.7 \mathrm{D}$ inches $87 \mathrm{H} \times 94 \mathrm{~W} \times 69 \mathrm{~mm}$

General Specifications	
Environmental Conditions	
Operating Temperature	IEC 60068-2-1 (Test Ad, Operating Cold), IEC 60068-2-2 (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): 0 to $55^{\circ} \mathrm{C}\left(32\right.$ to $131^{\circ} \mathrm{F}$)
Storage Temperature	IEC 60068-2-1 (Test Ab, Un-packaged Non-operating Cold), IEC 60068-2-2 (Test Bb, Un-packaged Non-operating Dry Heat), IEC 60068-2-14 (Test Na, Un-packaged Non-operating Thermal Shock): -40 to $85^{\circ} \mathrm{C}$ (-40 to $185^{\circ} \mathrm{F}$)
Relative Humidity	IEC 60068-2-30 (Test Db, Un-packaged Non-operating Damp Heat): 5 to 95% non-condensing
Vibration	IEC60068-2-6 (Test Fc, Operating): 5 g @ 10-500Hz
Shock	IEC60068-2-27 (Test Ea, Unpackaged shock) Operating 30g Non-operating 50 g
Emissions	CISPR 11: Group 1, Class A (with appropriate enclosure)
ESD Immunity	IEC 61000-4-2: 4 kV contact discharges 8 kV air discharges
Radiated RF Immunity	IEC 61000-4-3: $10 \mathrm{~V} / \mathrm{m}$ with 1 kHz sine-wave $80 \% \mathrm{AM}$ from 30 MHz to 1000 MHz
EFT/B Immunity	IEC 61000-4-4: $\pm 2 \mathrm{kV}$ at 5 kHz on power ports
Surge Transient Immunity	$\begin{aligned} & \text { IEC 61000-4-5: } \\ & \pm 1 \mathrm{kV} \text { line-line(DM) and } \pm 2 \mathrm{kV} \text { line-earth(CM) on ac power ports } \end{aligned}$
Conducted RF Immunity	IEC 61000-4-6: 10 Vrms with 1 kHz sine-wave $80 \% \mathrm{AM}$ from 150 kHz to 80 MHz
Enclosure Type Rating	None (open-style)

Conductors Wire Size Category ${ }^{1}$	22 to 12 AWG $\left(0.34 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}\right)$ stranded copper wire rated at $75^{\circ} \mathrm{C}$ or higher $3 / 64$ inch (1.2 mm) insulation maximum 2
Terminal Screw Torque	7 pound-inches (0.8Nm)
Certifications (when product is marked) ${ }^{2}$	cULus UL Listed Industrial Control Equipment for Class I, Division 2, Groups A, B, C and D Hazardous locations cULus UL Listed Industrial Control Equipment, certified for US and Canada CE 2 European Union 89/336/EEC EMC Directive, compliant with: EN 61000-6-4; Industrial Emissions EN 50082-2; Industrial Immunity EN 61326; Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity European Union 73/23/EEC LVD Directive, compliant with: EN 61131-2; Programmable Controllers C-Tick ${ }^{2}$ - Australian Radiocommunications Act compliant with: AS/NZS CISPR 11, Industrial Emissions
1 You use this category information for planning conductor routing as described in Allen-Bradley publication 1770-4.1, Industrial Automation Wiring and Grounding Guidelines. 2 For the latest up-to-date information, see the Product Certification link at www.ab.com for Declarations of Conformity, Certificates and other certification details. For notification of any additional release notes, refer to www.ab.com/manuals/	

Derating Curve for 1794-PS3 (for any mounting other than
horizontal)

Other Mounting (including Vertical, and Inverted Horizontal Mounting)

Mounting Dimensions

1794-PS13

$\mathbf{A}=$ Mounting hole dimensions for optional mounting kit
$\mathbf{B}=$ DIN rail
C = Secure DIN rail approximately every 200 mm
1794-PS3
Inches
(Millimeters)

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat: 634752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846
Publication 1794-INO69D-EN-P - June 2004

Attachment G-07b

Manufacturers' Submittals and Individual O\&M Manuals

CONTROLS

Digital Input Module

FLEX I/O ac Digital Input Modules

Cat. Nos. 1794-IA8, -IA8K, IA8I, -IA16
(Modules with a K in the last position of the catalog number are conformally coated to meet noxious gas requirements of ISA/ANSI-71.040 1985 Class G3 Environment.)

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.ab.com/manuals/gi) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.
Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc. is prohibited.
Throughout this manual we use notes to make you aware of safety considerations.

Identifies information that is critical for successful application and understanding of the product.

Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you:

- identify a hazard
- avoid a hazard
- recognize the consequence

Environment and Enclosure
This equipment is intended for use in a Pollution Degree 2 industrial environment, in overvoltage Category II applications (as defined in IEC publication 60664-1), at altitudes up to 2000 meters without derating.
This equipment is considered Group 1, Class A industrial equipment according to IEC/CISPR Publication 11. Without appropriate precautions, there may be potential difficulties ensuring electromagnetic compatibility in other environments due to conducted as well as radiated disturbance.
This equipment is supplied as "open type" equipment. It must be mounted within an enclosure that is suitably designed for those specific environmental conditions that will be present and appropriately designed to prevent personal injury resulting from accessibility to live parts. The interior of the enclosure must be accessible only by the use of a tool. Subsequent sections of this publication may contain additional information regarding specific enclosure type ratings that are required to comply with certain product safety certifications.
See NEMA Standards publication 250 and IEC publication 60529, as applicable, for explanations of the degrees of protection provided by different types of enclosure. Also, see the appropriate sections in this publication, as well as the
Allen-Bradley publication 1770-4.1 ("Industrial Automation Wiring and Grounding Guidelines"), for additional installation requirements pertaining to this equipment.

FLEX I/O is grounded through the DIN rail to chassis ground. Use zinc plated yellow-chromate steel DIN rail to assure proper grounding. The use of other DIN rail materials (e.g. aluminum, plastic, etc.) that can corrode, oxidize, or are poor conductors, can result in improper or intermittent grounding.

Preventing Electrostatic Discharge

This equipment is sensitive to electrostatic discharge, which can cause internal damage and affect normal operation. Follow these guidelines when you handle this equipment:

- Touch a grounded object to discharge potential static.
- Wear an approved grounding wriststrap.
- Do not touch connectors or pins on component boards.
- Do not touch circuit components inside the equipment.
- If available, use a static-safe workstation.

North American Hazardous Location Approval

The following input modules are North American Hazardous Location approved: 1794-IA8, -IA8K, -IA8I and 1794-IA16.

The following information applies when operating this equipment in hazardous locations:		Informations sur l'utilisation de cet équipement en environnements dangereux:	
Products marked "CLI, DIV 2, GP A, B, C, D" are suitable for use in Class I Divisision 2 Groups A, B, C, D, Hazardous Locations and nonhazardous locations only. Each product is supplied withmarkings on the rating nameplate indicating the hazardous location temperature code. When combining products within a system, the most adverse temperature code llowest "T" number) may be used to help determine the overall temperature are subject to investigation by the local Authority Having Jurisdiction at the time of installation.		Les produits marqués "CLI, DIV 2, GP A , B, C, D" ne conviennent qua une utilisation en environnements de Classe Division 2 Groupes A, B, C, D dangereux et non dangereux. Chaque produit est livé avec des marquages sur sa plaqued'identification qui indiquent le code de temperature pour le environnements dangereux. Lorsque plusieurs produits sont combinés dans un système, le code de température le plus défavorable (code de température le plus faible) peut être utilisé pour déterminer le code de température global du système. Les combinaisons d'équipements dans le systèmesont sujettes à inspection par les autorités locales qualifiées au moment de l'installation.	
WARNING	EXPLOSION HAZARD	Averitssement	RISQUE D'EXPLOSION
	- Do not disconnect equipment unless power has been removed or the area is known to be nonhazardous.		- Couper le courant ou s'assurer que 'environnement est classé non dangereux avant de débrancher
	- Do not disconnect connections to this equipment unless power has been removed or the area is known to be nonhazardous. Secure any external connections that mate to this equipment by using screws, sliding latches, threaded connectors, or othe meass provided with this product.		- Couper le courant ou s'assurer que I'environnement est classé non dangereux avant de débrancher les connecteurs. Fixer tous les connecteurs externes reliés à cet équipement à Taide de vis, loquets coulissants, connecteurs filetés ou autres moyens fournis avec ce produit.
	- Substitution of components may impair suitability for Class I, Division 2. - If this product contains batteries, they must only be changed in an area known		- La substitution de composants peut rendre cet équipement inadapté à une tilisation en environnement de Classe I, Division 2.
			- S'assurer que l'environnement est classé non dangereux avant de changer es piles.

European Hazardous Location Approval

The following module is European Zone 2 approved: 1794-IA8K.

European Zone 2 Certification (The following applies when the product bears the EEx Marking)
This equipment is intended for use in potentially explosive atmospheres as defined by European Union Directive 94/9/EC.
The LCIE (Laboratoire Central des Industries Electriques) certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of Category 3 equipment intended for use in potentially explosive atmospheres, given in Annex II to this Directive. The examination and test results are recorded in confidential report No. 28 682010.

Compliance with the Essential Health and Safety Requirements has been assured by compliance with EN 50021.

IMPORTANT

Observe the following additional Zone 2 certification requirements.

- This equipment is not resistant to sunlight or other sources of UV radiation.
- The secondary of a current transformer shall not be open-circuited when applied in Class I, Zone 2 environments.
- Equipment of lesser Enclosure Type Rating must be installed in an enclosure providing at least IP54 protection when applied in Class I, Zone 2 environments.
- This equipment shall be used within its specified ratings defined by Allen-Bradley
- Provision shall be made to prevent the rated voltage from being exceeded by transient disturbances of more than 40% when applied in Class I, Zone 2 environments

Installing Your ac Digital Input Module

The module mounts on a 1794 terminal base.
During mounting of all devices, be sure that all debris (metal chips, wire strands, etc.) is kept from falling into the module. Debris that falls into the module could cause damage on power up.

1. Rotate the keyswitch (1) on the terminal base (2) clockwise to position 8 as required for this type of module.
2. Make certain the flexbus connector (3) is pushed all the way to the left to connect with the neighboring terminal base/adapter. You cannot install the module unless the connector is fully extended.
3. Make sure the pins on the bottom of the module are straight so they will align properly with the connector in the terminal base.

WARNING

If you remove or insert the module while the backplane power is on, an electrical arc can occur. This could cause an explosion in hazardous location installations. Be sure that power is removed or the area is nonhazardous before proceeding.
4. Position the module (4) with its alignment bar (5) aligned with the groove (6) on the terminal base.
5. Press firmly and evenly to seat the module in the terminal base unit. The module is seated when the latching mechanism (7) is locked into the module.

Connecting Wiring for the 1794-IA8 and -IA8K

1. For 1794-TB2, -TB3, or -TB3S - Connect individual input wiring to even numbered terminals on the $0-15$ row (A) as indicated in the table below.
For 1794-TBN - Connect individual input wiring to numbered terminals on the 16-33 row (B) as indicated in the table below.
2. For 1794-TB2 - Connect the associated 120 V ac power lead (L1) of the input device to the corresponding odd numbered terminals on the $0-15$ row A for each input as indicated in the table below. (The odd numbered terminals on row A are internally connected to 120 V ac L1.)

For 1794-TB3, or -TB3S - Connect the associated 120 V ac power lead (L1) of the input device to the corresponding odd numbered terminals on the 34-51 row (C) or to the corresponding terminal on row (C) for each input as indicated in the table below. (The odd numbered terminals on row (A) and the terminals of row (C) are internally connected to 120 V ac power L1.)

For 1794-TBN - Connect the associated 120 V ac power lead (L1) of the input device to the corresponding odd numbered terminal on the 34-51 row (C) for each input as indicated in the table below. (The 120 V ac power terminals of row (C) are internally connected together.)
3. Connect 120 V ac power (L1) to terminal 34 on the $34-51$ row (C).
4. Connect 120 V ac common (L2) to terminal 16 on the $16-33$ row (B).
5. If daisychaining power to the next terminal base, connect a jumper from terminal $51(+120 \mathrm{~V}$ ac L1) on this base unit to terminal 34 on the next base unit
6. If continuing ac common to the next base unit, connect a jumper from terminal 33 (120 V common L2) on this base unit to terminal 16 on the next base unit.

Wiring Connections for the 1794-IA8 and -IA8K

Input	1794-TB2,-TB3, -TB3S		1794-TBN	
	Input Terminal	120V ac Supply	Input Terminal	120 V ac Supply
Input 0	A-0	A-1 ${ }^{1 / C-35}$	B-0	$\mathrm{C}-1^{2}$
Input 1	A-2	A-3 ${ }^{1 / C-36}$	B-2	C-3 ${ }^{2}$
Input 2	A-4	A-5 ${ }^{1 / C-37}$	B-4	C-5 ${ }^{2}$
Input 3	A-6	A-7 ${ }^{1} / \mathrm{C}-38$	B-6	C-7 ${ }^{2}$
Input 4	A-8	A-9 ${ }^{1} / \mathrm{C}-39$	B-8	C-92
Input 5	A-10	A-11 $1 / \mathrm{C}-40$	B-10	C-11 ${ }^{2}$
Input 6	A-12	A-13 ${ }^{1}$ C-41	B-12	C-13 ${ }^{2}$
Input 7	A-14	A-15 $/$ C-42	B-14	C-15 ${ }^{2}$
```\(A=\) Input terminals (Even numbered terminals 0 thru 14) \(B=\) Common terminals \(\mathrm{C}=\) Power terminals \(\mathrm{C}-34\) and \(\mathrm{C}-51\) on -TB2; \(\mathrm{C}-34\) thru C-51 on -TB3 and -TB3S)```			$\mathrm{B}=$ Even numbered Input terminals$0-14$ a. common terminals 16 and 33$\mathrm{C}=$ Power terminals $\mathrm{C}-34 \mathrm{and} \mathrm{C}=-1$ andodd numbered input terminals 1 thu 15	
1 A-1, 3, 5, 7, 9, 11, 13 and 15 on the 1794-TB2,-TB3 and -TB3S are internally connected in the module to 120 V ac L 1 .   $2 \mathrm{C}-1,3,5,7,9,11,13$ and 15 on the $1794-\mathrm{TBN}$ are internally connected in the module to 120 V ac L1.				

1794-TB2, -TB3 and -TB3S Terminal Base Wiring for 1794-IA8, IA8K and -IA16

$\mathbb{P}$				
$\begin{array}{lllllllllllllllll}16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32\end{array}$				
$\bigcirc \mathbb{Q}$				
L2 Commons L2				
L1 Voltage L1				
Connect 120V ac L1 power to terminal C-34				
Connect 120V ac common L2 to terminal B-16				
Use B-33 and C-51 for daisychaining to the next terminal base unit (Terminals $\mathrm{C}-35$ thru $\mathrm{C}-50$ not available on the 1794-TB2.)				

## 1794-TBN Terminal Base Wiring for 1794-IA8, IA8K

 and -IA16
$\mathrm{L} 1=120 \mathrm{~V}$ ac - Connect to terminal $\mathrm{C}-34$
$\mathrm{L} 2=120 \mathrm{~V}$ ac common - Connect to terminal B-16
Use B-33 and C-51 for daisychaining to the next terminal base unit

## Connecting Wiring for the 1794-IA16

1. For 1794-TB3, or -TB3S - Connect individual input wiring to numbered terminals on the $0-15$ row (A) as indicated in the table below .
For 1794-TBN - Connect individual input wiring to even numbered terminals on the 16-33 row (B), and to the odd numbered terminals on the $34-51$ row (C) as indicated in the table below.
2. For 1794-TB3, or -TB3S - Connect the associated 120 V ac power lead (L1) of the input device to the corresponding terminals on the 34-51 row (C) for each input as indicated in the table below. (The 120 V power terminals of row $(\mathrm{C})$ are internally connected together.)

For $\mathbf{1 7 9 4}-\mathrm{TBN}$ - An external terminal strip is needed to distribute 120 V ac power (L1) to each device.
3. Connect 120 V ac power (L1)to terminal 34 on the $34-51$ row (C).
4. Connect 120 V ac common (L2) to terminal 16 on the $16-33$ row (B).
5. If daisychaining power to the next terminal base, connect a jumper from terminal $51(+120 \mathrm{~V}$ ac L1) on this base unit to terminal 34 on the next base unit.
6. If continuing ac common to the next base unit, connect a jumper from terminal 33 ( 120 V common L2) on this base unit to terminal 16 on the next base unit.

Terminal Base Wiring for 1794-IA16

Input Channel	Input Terminal 1794-TB3, -TB3S	$\begin{gathered} \hline \text { Input Terminal } \\ 1794-T B N \end{gathered}$	$\begin{array}{\|l\|} \hline \text { 120V ac } \\ \text { Supply (L1) }{ }^{1} \\ \hline \end{array}$
Input 0	A-0	B-0	C-35
Input 1	A-1	C-1	C-36
Input 2	A-2	B-2	C-37
Input 3	A-3	C-3	C-38
Input 4	A-4	B-4	C-39
Input 5	A-5	C-5	C-40
Input 6	A-6	B-6	C-41
Input 7	A-7	C-7	C-42
Input 8	A-8	B-8	C-43
Input 9	A-9	C-9	C-44
Input 10	A-10	B-10	C-45
Input 11	A-11	C-11	C-46
Input 12	A-12	B-12	C-47
Input 13	A-13	C-13	C-48
Input 14	A-14	B-14	C-49
Input 15	A-15	C-15	C-50
120 V ac L1	Power terminals $\mathrm{C}-34$ thru $\mathrm{C}-51$ (C-34 and C-51 on -TBN) are internally connected together. Connect 120 V ac L1 to $\mathrm{C}-34$		
120 V ac L2	Common terminals B-16 thru B-33 (B-16 and B-33 for -TBN) are internally connected together. Connect 120 V ac common L2 to terminal B-16		
${ }^{1}$ When using the 1794 -TBN, an external terminal strip is needed to connect the 120 V ac power connections.			

## Connecting Wiring for the 1794-IA8I

1. For 1794-TB2, -TB3, or -TB3S - Connect individual input wiring to even numbered terminals on the $0-15$ row (A) as indicated in the table below .
For 1794-TBN - Connect individual input wiring to even numbered terminals $0-14$ on the $16-33$ row (B) as indicated in the table below.
2. For 1794-TB2, -TB3, or -TB3S - Connect the associated 120 V ac common (L2) of the isolated supply to the corresponding odd numbered terminals on the $0-15$ row A for each input as indicated in the table below.
For 1794-TBN - Connect the associated 120 V ac common lead (L2) of the isolated supply to the corresponding odd numbered terminal $1-15$ on the $34-51$ row (C) as indicated in the table below.

## IMPORTANT

Individual isolated 120 V ac L 1 power leads must be run externally to each of the input devices.

Wiring Connections for the 1794-IA8I

Input	1794-TB2, -TB3, -TB3S		1794-TBN	
	Input Terminal	120 V ac L2 Common	Input Terminal	$120 \mathrm{~V} \text { ac } \mathrm{L} 2$ Common
Input 0	A-0	A-1	B-0	C-1
Input 1	A-2	A-3	B-2	C-3
Input 2	A-4	A-5	B-4	C-5
Input 3	A-6	A-7	B-6	C-7
Input 4	A-8	A-9	B-8	C-9
Input 5	A-10	A-11	B-10	C-11
Input 6	A-12	A-13	B-12	C-13
Input 7	A-14	A-15	B-14	C-15
$A=$ Even numbered terminals 0 thru 14 for customer connections; corresponding odd numbered 120 V ac common L2 terminals 1 thru 15 for customer connections from isolated power supply.			B = Even numbered terminals 0 thru 14 for customer connections; $\mathrm{C}=0 \mathrm{dd}$ numbered 120 V ac common L2 terminals 1 thru 15 for customer connections from isolated power supply.	

1794-TB2, -TB3, or -TB3S Terminal Base Wiring for the 1794-IA8I
|
U

Connect Inputs to even numbered terminals on row (A) (1794-TB3 shown) Connect 120 V ac common L 2 to odd numbered terminals on row (A)

## 1794-TBN Terminal Base Wiring for 1794-IA8I



Connect Inputs to even numbered terminals on row (B)
$\mathrm{L} 2=120 \mathrm{~V}$ ac common - Connect to odd numbered terminals on row (C)

## Configuring Your ac Input Module

Image Table Memory Map for the 1794-IA8, -IA8K and -IA8I

Dec.	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Oct.	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Read									17	16	15	14	13	12	11	10
Write	Not used - set to 0															
WhereI = nput   $\mathrm{F}=$ Input filter time.																

Image Table Memory Map for the 1794-IA16

Dec.	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Oct.	17	16	15	14	13	12	11	10	7	6	5	4	3	2	1	0
Read 1	$\begin{aligned} & 1 \\ & 15 \end{aligned}$	$\begin{aligned} & 1 \\ & 14 \end{aligned}$	$\begin{aligned} & 1 \\ & 13 \end{aligned}$	$\begin{aligned} & 1 \\ & 12 \end{aligned}$	$\begin{aligned} & 1 \\ & 11 \end{aligned}$	$\begin{aligned} & 1 \\ & 10 \end{aligned}$	19	18	17	16	15	14	13	12	11	10
Write 3	Not used - set to 0										$\begin{aligned} & \text { Input Filter } \mathrm{FT} \\ & 12-15 \end{aligned}$			$\begin{aligned} & \text { Input Filter } \mathrm{FT} \\ & 0-11 \end{aligned}$		
Where $I=$ Input    $\mathrm{FI}=$ Input filter time																

## Setting the Input Filter Time

You can increase the input filter time (FT) for channels 00-07 (1794-IA8, -IA8K, -IA8I) and channels 00-15 (1794-IA16) by setting the corresponding bits in the output image table (complementary word) for the module.


For example, to increase the off-to-on filter time to 12 ms for all inputs at address rack 1 , module group 0 , set bits and program as shown below.


To increase the filter time, set the bits according to the table below.

## Input Filter Time

Bits			Description	Selected Filter Tim			Maximum Filter Time 1794-1A8$(\mathrm{ms})$		Maximum Filter Time $\underset{(\mathrm{ms})}{\text { 1794-IA1 }}$	
02	01	00	Filter Time inputs 00-11		Off	On	Off	On	Off	On
05	04	03	Filter Time inputs 12-15				On	Off	On	Off
0	0	0	Filter Time 0 (Default)	256 $\mu \mathrm{s}$	8.4	26.4	8.4	26.4	7.5	26.5
0	0	1	Filter Time 1	$512 \mu \mathrm{~s}$	8.6	26.6	8.6	26.6	8	27
0	1	0	Filter Time 2	1 ms	9	27	9	27	9	28
0	1	1	Filter Time 3	2 ms	10	28	10	28	10	29
1	0	0	Filter Time 4	4 ms	12	30	12	30	12	31
1	0	1	Filter Time 5	8 ms	16	34	16	34	16	35
1	1	0	Filter Time 6	16 ms	24	42	24	42	24.5	44
1	1	1	Filter Time 7	32 ms	40	58	40	58	42	60.5

## Specifications

Specifications	1794-IA8, 1794-IA8K	1794-IA8\|
Number of Inputs	8, (1 group of 8), nonisolated	8 isolated
Module Location	Cat. No. 1794-TB2, -TB3, -TB3S and -TBN Terminal Base Units	
On-state Voltage	65 V ac minimum   120 V ac nominal   132 V ac maximum	
On-state Current ${ }^{1}$	7.1 mA minimum	
Off-state Voltage	43 V ac maximum	
Off-state Current	2.9 mA minimum	
Input Impedance	10.6K ohms nominal	
Nominal Input Current	12 mA @ $120 \mathrm{Vac}, 60 \mathrm{~Hz}$	
Isolation Voltage	Tested at 2150 V dc for 1 s between user and system No isolation between individual channels	Tested at 2150V dc for 1s between user and system and between individual channels
Input Filter Time	Refer to Input Filter Time table	
Flexbus Current	30 mA @5V dc	
Power Dissipation	4.5W maximum @ 132V ac	
Thermal Dissipation	Maximum 15.3 BTU/hr @ 132V ac	


Specifications - Cat. No. 1794-IA16	
Number of Inputs	16 (1 group of 16), nonisolated
Module Location	Cat. No. 1794-TB3, -TB3S and -TBN Terminal Base Units
On-state Voltage	74 V ac minimum 120 V ac nominal 132 V ac maximum
On-state Current ${ }^{1}$ minimum nominal maximum	$5.49 \mathrm{~mA} @ 74 \mathrm{Vac}, 47 \mathrm{~Hz}$ 12.06mA @ 120V ac, 60Hz 14.81 mA @ 132 V ac, 63Hz
Off-state Voltage	20 V ac maximum
Off-state Current	2.9 mA minimum
Nominal Input Impedance	10 Kohms
Nominal Input Current	$12 \mathrm{~mA} @ 120 \mathrm{Vac}$, 60Hz
Isolation Voltage	Tested at 2150V dc for 1 s between user and system No isolation between individual channels
Flexbus Current	20 mA
Power Dissipation	6.4 W maximum @ 132V ac
Thermal Dissipation	Maximum 21.8 BTU/hr @ 132V ac


General Specifications	
$\begin{aligned} & \text { Input Filter Time }{ }^{2} \\ & \text { Off to On } \\ & \text { On to Off } \end{aligned}$	Refer to Input Filter Time chart for values.
Terminal Base Screw Torque	7 pound-inches ( 0.8 Nm )   9 pound-inches ( 1.0 Nm ) for 1794-TBN
Dimensions (with module installed)	$\begin{aligned} & \text { 3.7H } \times 3.7 \mathrm{~W} \times 2.7 \mathrm{D} \text { inches } \\ & 94 \mathrm{H} \times 94 \mathrm{~W} \times 69 \mathrm{~mm} \end{aligned}$
Indicators (field side indication, customer device driven)	1794-IA8, -IA8K - 8 yellow status indicators 1794-IA8I- 8 yellow status indicators 1794-IA16-16 yellow status indicators
External ac power Supply voltage Voltage range	120 V ac nominal   1794-IA8, -IA8K, -IA8I-85 to 132 V ac, $47-63 \mathrm{~Hz}$ $1794-\mathrm{IA} 16$ - 74 to 132 V ac, $47-63 \mathrm{~Hz}$
Keyswitch Position	8
Environmental Conditions	
Operating Temperature	IEC 60068-2-1 (Test Ad, Operating Cold),   IEC 60068-2-2 (Test Bd, Operating Dry Heat),   IEC 60068-2-14 (Test Nb, Operating Thermal Shock):   0 to $55^{\circ} \mathrm{C}$ ( 32 to $131^{\circ} \mathrm{F}$ )
Storage Temperature	IEC 60068-2-1 (Test Ab, Un-packaged Non-operating Cold), IEC 60068-2-2 (Test Bb, Un-packaged Non-operating Dry Heat), IEC 60068-2-14 (Test Na, Un-packaged Non-operating Thermal Shock):   -40 to $85^{\circ} \mathrm{C}$ ( -40 to $185^{\circ} \mathrm{F}$ )
Relative Humidity	IEC 60068-2-30 (Test Db, Un-packaged Non-operating Damp Heat):   5 to $95 \%$ non-condensing
Vibration	IEC60068-2-6 (Test Fc, Operating): $5 \mathrm{~g} @ 10-500 \mathrm{~Hz}$
Shock	IEC60068-2-27 (Test Ea, Unpackaged shock):   Operating 30 g   Non-operating 50 g
Emissions	CISPR 11:   Group 1, Class A (with appropriate enclosure)
ESD Immunity	IEC 61000-4-2:   4 kV contact discharges   8 kV air discharges
Radiated RF Immunity	IEC 61000-4-3:   $10 \mathrm{~V} / \mathrm{m}$ with 1 kHz sine-wave $80 \% \mathrm{AM}$ from 30 MHz to 1000 MHz $10 \mathrm{~V} / \mathrm{m}$ with $200 \mathrm{~Hz} 50 \%$ Pulse $100 \% \mathrm{AM}$ at 900 Hz
ET/B Immunity	IEC 61000-4-4:   $\pm 2 \mathrm{KV}$ at 5 kHz on signal ports   $\pm 2 \mathrm{KV}$ at 5 kHz on power ports
Surge Transient Immunity	IEC 61000-4-5:   $\pm 1 \mathrm{kV}$ line-line(DM) and $\pm 2 \mathrm{kV}$ line-earth(CM) on signal ports   $\pm 1 \mathrm{kV}$ line-line(DM) and $\pm 2 \mathrm{kV}$ line-earth(CM) on power ports
Conducted RF Immunity	IEC 61000-4-6:   10 Vrms with 1 kHz sine-wave $80 \% \mathrm{AM}$ from 150 kHz to 80 MHz
Enclosure Type Rating	None (open-style)
Conductors Wire Size   Category ${ }^{3}$	```12-22AWG \(\left(2.5 \mathrm{~mm}^{2}-0.34 \mathrm{~mm}^{2}\right)\) stranded copper wire rated at \(75^{\circ} \mathrm{C}\) or higher \(3 / 64\) inch ( 1.2 mm ) insulation maximum 2```
Certifications (when product is marked ${ }^{4}$	UL UL Listed Industrial Control Equipment CSA certified for Class I, Division 2, Groups A, B, C and D Hazardous locations   EEx ${ }^{5}$ European Union 94/9/EEC ATEX Directive, compliant with: EN 50021; Potentially Explosive Atmospheres, Protection "n" (European Zone 2) - (1794-IA8K only)   CE $^{4} \quad$ European Union 89/336/EEC EMC Directive, compliant with: EN 61000-6-4; Industrial Emissions EN 50082-2; Industrial Immunity EN 61326: Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity European Union 73/23/EEC LVD Directive, compliant with: EN 61131-2; Programmable Controllers   C-Tick ${ }^{4}$ - Australian Radiocommunications Act compliant with AS/NZS CISPR 11, Industrial Emissions

## www.rockwellautomation.com

## Corporate Headquarters

Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212 .520

## Headquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36-BP 3A/B, 1170 Brussels, Belgium, Tel: (32) 26630600 , Fax: (32) 26630640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

## Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: (1) 864.281.2433
Europe: Rockwell Automation, Brühlstraße 22, D-74834 Elztal-Dallau, Germany, Tel: (49) 6261 9410, Fax: (49) 626117741
Asia Pacific: Rockwell Automation, 55 Newton Road, \#11-01/02 Revenue House, Singapore 307987, Tel: (65) 351 6723, Fax: (65) 3551733

# Attachment G-07c 

Manufacturers' Submittals and Individual O\&M Manuals

## CONTROLS

## Digital Output Module

## FLEX I/O AC Digital Output Modules

Cat. No. 1794-0A8, 1794-0A8K, 1794-0A8I, 1794-0A16
(Modules with catalog numbers that end in K are conformally coated to meet noxious gas requirements of ISA/ANSI-71.040-1985 Class G3 Environment.)

## Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your local Rockwell Automation sales office or online at
http://www.literature.rockwellautomation.com) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.
Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc. is prohibited
Throughout this manual we use notes to make you aware of safety considerations.

WARNING	Identifies information about practices or circumstances that can cause an explosion in   a hazardous envirinment, which may lead to personal injury or death, property   damage, or economic loss.
IMPORTANT	Identifies information that is critical for successful application and understanding of   the product.
ATTENTION	Identifies information about practices or circumstances that can lead to personal   injury or death, property damage, or economic loss. Attentions help you identify a   hazard, avoid a hazard, or recognnize the consequence

## Environment and Enclosure

This equipment is intended for use in a Pollution Degree 2 industrial environment, in overvoltage Category II applications (as defined in IEC 60664-1), at altitudes up to 2000 $\mathrm{m}(6562 \mathrm{ft})$ without derating.
This equipment is considered Group 1, Class A industrial equipment according to IEC/CISPR 11. Without appropriate precautions, there may be difficulties with electromagnetic compatibility in residential and other environments due to conducted and radiated disturbances.
This equipment is supplied as open-type equipment. It must be mounted within an enclosure that is suitably designed for those specific environmental conditions that will be present and appropriately designed to prevent personal injury resulting from
accessibility to live parts. The enclosure must have suitable flame-retardant properties accessibility to ive parts. The enclosure must have suitable flame-retardant properties $5 \mathrm{~A}, \mathrm{~V} 2, \mathrm{~V} 1, \mathrm{VO}$ (or equivalent) if non-metallic. The interior of the enclosure must be accessible only by the use of a tool. Subsequent sections of this publication may contain additional information regarding specific enclosure type ratings that are required to comply with certain product safety certifications.
In addition to this publication, see:

- Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1, for additional installation requirements
- NEMA Standard 250 and IEC 60529 , as applicable, for explanations of the degrees of protection provided by enclosures




## North American Hazardous Location Approval

The following output modules are North American Hazardous Location approved: 1794-OA8, 1794-OA8K, 1794-OA8I and 1794-OA16.
The following information applies when operating this

equipment in hazardous locations: | Informations sur ri'utilisation de cet équipement en |
| :--- |
| environnements dangereux : |

## European Hazardous Location Approval

The following module is European Zone 2 approved: 1794-OA8K.

## The following applies when the product bears the Ex Marking:

This equipment is intended for use in potentially explosive atmospheres as defined by European Union Directive 94/9/EC and has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of Category 3 equipment intended for use in Zone 2 potentially explosive atmospheres, given in Annex II to this Directive
Compliance with the Essential Health and Safety Requirements has been assured by compliance with EN 60079-15 and EN 60079-0.


1. Rotate the keyswitch (3) on the terminal base (4) clockwise to position 8 as required for this type of module.
2. Make certain the FlexBus connector (1) is pushed all the way to the left to connect with the neighboring terminal base/adapter. You cannot install the module unless the connector is fully extended.
3. Make sure the pins on the bottom of the module are straight so they will align properly with the connector in the terminal base.

4. Position the module (7) with its alignment bar (6) aligned with the groove (5) on the terminal base.
5. Press firmly and evenly to seat the module in the terminal base unit. The module is seated when the latching mechanism (2) is locked into the module.

## Connecting Wiring for the 1794-0A8 and 1794-0A8K

1. For 1794-TB2, 1794-TB3, or 1794-TB3S: Connect individual output wiring to even numbered terminals on the $0 \ldots 15$ row (A) as indicated in the table, Wiring Connections for the 1794-OA8 and 1794-OA8K. For 1794-TBN or 1794-TBNF: Connect individual output wiring to even numbered terminals on the 16... 33 row (B) as indicated in the table below.
2. For 1794-TB2, 1794-TB3, or 1794-TB3S: Connect the associated V AC common (L2) lead of the output device to the corresponding odd numbered terminal on the $0 \ldots 15$ row (A) for each output as indicated in the table below; or to the corresponding terminal on the $16 \ldots 33$ row (B). (The V AC common (L2) terminals of row (B) and the odd numbered terminals of row (A) are internally connected together.)
For 1794-TBN or 1794-TBNF: Connect the associated V AC common (L2) lead of the output device to the corresponding odd numbered terminal on the $34 \ldots 51$ row (C) for each output as indicated in the table below. (The odd numbered terminals of row (C) are internally connected together to V AC L2 common.)
3. Connect $V$ AC power $L 1$ to terminal 34 on the $34 \ldots 51$ row (C).
4. Connect V AC common L 2 to terminal 16 on the $16 \ldots 33$ row (B).
5. If daisychaining V AC power (L1) to the next terminal base, connect a jumper from terminal 51 (V AC L1) on this base unit to terminal 34 on the next base unit.
6. If continuing V AC common ( L 2 ) to the next base unit, connect a jumper from terminal 33 (V common L2) on this base unit to terminal 16 on the next base unit.


Wiring Connections for the 1794-0A8 and 1794-0A8K

$\text { Output }{ }^{(1)}$	1794-TB2, 1794-TB3, 1794-TB3S		1794-TBN, 1794-TBNF	
	Output Terminal	Common Terminal (L2) ${ }^{(1)}$	Output Terminal	Common Terminal (L2) ${ }^{(2)}$
0	A-0	A-1/B-17	B-0	C-1
1	A-2	A-3/B-19	B-2	C-3
2	A-4	A-5/B-21	B-4	C-5
3	A-6	A-7/B-23	B-6	C-7
4	A-8	A-9/B-25	B-8	C-9
5	A-10	A-11/B-27	B-10	C-11
6	A-12	A-13/B-29	B-12	C-13
7	A-14	A-15/B-31	B-14	C-15
$A=$ Output terminals (Even numbered terminals $0 \ldots$. 14)   $B=$ Common terminals   $C=$ Power terminals (C-34 and $C-51$ on 1794-TB2; $C-34 \ldots C-51$ on   $1794-$ TB3 and $1794-$ TB3S)			$\mathrm{B}=$ Even numbered output terminals $0 \ldots 14, \mathrm{AC}$common terminals 16 and 33$\mathrm{C}=$ Power terminals $\mathrm{C}-34$ and $\mathrm{C}-51$, and oddnumbered output terminals $1 \ldots 15$	

(1) A-1, 3, 5, 7, 9, 11, 13 and 15 on the 1794-TB2, 1794-TB3 and 1794-TB3S are internally connected in the module to 120 V AC common (L2).
(2) C-1, 3, 5, 7, 9, 11, 13 and 15 on the 1794-TBN and 1794-TBNF are internally connected in the module to 120 V AC common (L2).

## 1794-TB2, 1794-TB3 and 1794-TB3S Terminal Base Wiring for the 1794-0А8



## 1794-TBN and 1794-TBNF Terminal Base Wiring for the 1794-0A8



Connect 120V AC (L2) to terminal B-16
Connect 120V AC power (L1) to terminal C-34
Use B-33 and C-51 for daisychaining to the next terminal base

## Connecting Wiring for the 1794-0A8I

1. For 1794-TB2, 1794-TB3, or 1794-TB3S: Connect individual output wiring to the even numbered terminals on the $0 \ldots 15$ row (A).
For 1794-TBN or 1794-TBNF: Connect individual output wiring to the even numbered terminals on the $16 \ldots 33$ row (B).
2. For $\mathbf{1 7 9 4}-\mathrm{TB} 2, \mathbf{1 7 9 4 - T B} 3$, or $\mathbf{1 7 9 4}-\mathrm{TB} 3 \mathrm{~S}$ : Connect the associated V AC power lead (L1) to the corresponding odd numbered terminal on the $0 . .15$ row (A) for each output as indicated in the table below. For 1794-TBN or 1794-TBNF: Connect the associated V AC power (L1) lead to the odd numbered terminals on row (C). output device.

Wiring Connections for the 1794-0A8I

Output ${ }^{(1)}$	1794-TB2, 1794-TB3, 1794-TB3S		1794-TBN, 1794-TBNF	
	Output Terminal	$\begin{aligned} & \text { 120V AC } \\ & \text { Supply }{ }^{(1)} \end{aligned}$	Output Terminal	$\left\lvert\, \begin{aligned} & \text { 120V AC } \\ & \text { Supply } \end{aligned}\right.$
0	A-0	A-1	B-0	C-1
1	A-2	A-3	B-2	C-3
2	A-4	A-5	B-4	C-5
3	A-6	A-7	B-6	C-7
4	A-8	A-9	B-8	C-9
5	A-10	A-11	B-10	C-11
6	A-12	A-13	B-12	C-13
7	A-14	A-15	B-14	C-15
(1) $\mathrm{A}=$ Even numbered terminals $0 \ldots 14$ for customer connections; corresponding odd numbered 120V AC supply L1 terminals $1 \ldots 15$ for customer connections from isolated power supply.				
2) $B=$ Even numbered terminals $0 \ldots 14$ for customer connections; $C=O$ dd numbered $120 \mathrm{~V} A C$ supply $L 1$ terminals $1 \ldots 15$ for customer connections from isolated power supply.				

1794-TB2, 1794-TB3, 1794-TB3S Terminal Base Wiring for 1794-0A8I



Connect outputs to even numbered terminals on row (A)
Connect isolated 120 V AC (L1) to odd numbered terminals on row (A)
Individual isolated 120 V AC common (L2) must be run externally to each of the output devices (Terminals C-35 . . . -50 are not available on the 1794-TB2.)

## 1794-TBN and 1794-TBNF Terminal Base Wiring for the 1794-0A8



Connect outputs to even numbered terminals on row ( B )
Connect isolated 120 V AC (L1) to odd numbered terminals on row (C).
ndividual isolated 120 V AC common (L2) must be run externally to each of the output devices.

## Connecting Wiring for the 1794-0A16

1. For 1794-TB2, 1794-TB3, or 1794-TB3S: Connect individual output wiring to numbered terminals on the $0 \ldots 15$ row (A) as indicated in the table below.

For 1794-TBN: Connect individual output wiring to terminals $0 \ldots 15$ on rows $B$ and $C$
2. For 1794-TB2, 1794-TB3 or 1794-TB3S: Connect the associated V AC common (L2) lead of the output device to the corresponding numbered terminal on the $16 \ldots 33$ row (B) for each output as indicated in the table below. (The V AC common terminals of row (B) are internally connected together.)
For 1794-TBN: Auxiliary terminal blocks are required to connect the associated L2 common for each channel. Connect the L2 side of the load together and then connect to L2 on the power supply.
3. Connect 120 V AC power L1 to terminal 34 on the $34 \ldots 51$ row (C).
4. Connect 120 V AC common L 2 to terminal 16 on the $16 \ldots 33$ row (B).
5. If daisychaining power to the next terminal base, connect a jumper from terminal 51 (120V AC L1) on this base unit to terminal 34 on the next base unit.
6. If continuing 120 V AC common (L2) to the next base unit, connect a jumper from terminal 33 ( 120 V AC common L2) on this base unit to terminal 16 on the next base unit

$\begin{array}{ll} \text { IMPORTANT } \quad \text { Total current draw through terminal base connection is limited to } 10 \mathrm{~A} \text {. } \\ \text { Separate power connections to each terminal base may be necessary. } \end{array}$			
Wiring Connections for 1794-0A16			
Output Channel	1794-TB2, 1794-T	TB3S   120V AC Common (L2)	1794-TBN   Output Terminal ${ }^{(1)}$
0	A-0	B-17	B-0
1	A-1	B-18	C-1
2	A-2	B-19	B-2
3	A-3	B-20	C-3
4	A-4	B-21	B-4
5	A-5	B-22	C-5
6	A-6	B-23	B-6
7	A-7	B-24	C-7
8	A-8	B-25	B-8
9	A-9	B-26	C-9

Wiring Connections for 1794-0A16

	1794-TB2, 1794-TB3, 1794-TB3S		$\begin{array}{\|l\|} \hline \text { 1794-TBN } \\ \text { Output Terminal }{ }^{(1)} \\ \hline \end{array}$
	Output Terminal	120V AC Common (L2)	
10	A-10	B-27	B-10
11	A-11	B-28	C-11
12	A-12	B-29	B-12
13	A-13	B-30	C-13
14	A-14	B-31	B-14
15	A-15	B-32	C-15
120V AC L1 power	Connect V AC L1 to C-34.   1794-TB3, 1794-TB3S - Power terminals C-34 ...C-51 are internally connected together. 1794-TB2 and 1794-TBN - C-34 and C-51 are internally connected together.		
120V AC L2 common	Connect 120 V AC common L2 to terminal B-16.   1794-TB3, 1794-TB3S - 120V AC common L2 terminals B-16 . . B- 33 are internally connected together   1794-TB2, 1794-TBN - 120V AC common L2 terminals B-16 and B-33 internally connected together.		

(1) Auxiliary terminal blocks are required to connect the associated L2 common for each channel when using a 1794-TBN terminal base with the 1794-OA16.

1794-TB2, 1794-TB3, 1794-TB3S Terminal Base Wiring for 1794-0A16


Connect 120V AC common L2 to terminal B-16
(1794-TB3 shown)
Connect 120V AC power L1 to terminal C-34.
(Use B-33 and C-51 for daisy-chaining power to the next terminal base unit.) (Terminals $\mathrm{C}-35 \ldots \mathrm{C}$-50 are not present on the 1794-TB2.

## 1794-TBN Terminal Base Wiring for 1794-0A16



Connect 120V AC (L2) to terminal B-16
Connect 120V AC power (L1) to terminal C-34
Use B-33 and C-51 for daisychaining to the next terminal base

## Configure the FLEX I/O AC Output Module

Image Table Memory Map for the 1794-0A8, 1794-OA8K and 1794-0A81

Dec	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$		
$\mathbf{O c t}$	$\mathbf{1 7}$	$\mathbf{1 6}$	$\mathbf{1 5}$	$\mathbf{1 4}$	$\mathbf{1 3}$	$\mathbf{1 2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$		
Read	Not used - set to 0																	
Write	Not used - set to 0																	Where: $0=$ Output number
:---	:---																	

Image Table Memory Map for the 1794-0A16


Specifications
Specifications for 1794-OA8, 1794-0A8K and 1794-OA81

Attribute	1794-0A8, 1794-0A8K	1794-0A81
Number of outputs	8, (1 group of 8), nonisolated	8, isolated
Module location	1794-TB2, 1794-TB3, 1794-TB3S, 1794-TBN and 1794-TBNF	
Output voltage range	85V AC, min 120V AC, nom 132 V AC, max	
Output current rating	4.0A (8 outputs @ 500 mA )	
On-state current	5.0 mA per output min   500 mA per output max @ $55^{\circ} \mathrm{C}$ (sufficient to operate an Allen-Bradley   Bulletin 500 NEMA size 3 motor starter)   750 mA per output max @ $35^{\circ} \mathrm{C}$   1.0A on 4 nonadjacent outputs, 500 mA on the remaining 4 outputs @ $30^{\circ} \mathrm{C}$   NOTE: Below 50 mA the voltage drop across the module will be higher and the voltage waveform may have some small oscillation (less than 5 V ).	
Voltage drop, on-state, max	1.0V @ 0.5A	
Leakage current, off-state, max	2.25 mA	
Surge current	7 A for 40 ms , repeatable every 8 s	
Output signal delay ${ }^{(1)}$ Off to On On to Off	1/2 cycle, max   1/2 cycle, max	
Power dissipation, max	$\begin{aligned} & \text { 4.1W@ @ 0.5A } \\ & 6.3 W @ 0.75 \mathrm{~A} \\ & 6.3 \mathrm{~W} @ 1.0 \mathrm{~A} \end{aligned}$	
Thermal dissipation	$\begin{aligned} & \text { 14.0 BTU/hr @ 0.5A } \\ & 21.2 \mathrm{BTU} / \mathrm{hr} @ 0.75 \mathrm{~A} \\ & 21.4 \mathrm{BTU} / \mathrm{hr} @ 1.0 \mathrm{~A} \end{aligned}$	
FlexBus current	80 mA @5V DC	
Fusing ${ }^{(2)}$	1.6A, 250V AC slow-blow, Littelfuse 23901.6; San-0 SD6-1.6 (1.6A fuses come preinstalled in 1794-TBNF terminal base units.)	

(1) Output signal delay is the time from receipt of an output on or off command to the output actually turning on or off.
(2) Module outputs are not fused. Fusing is recommended. If fusing is desired, you must supply external fusing or use the 1794-TBNF terminal base, if recommended.

Specifications for 1794-0A16

Attribute	Value
Number of outputs	16, nonisolated
Module location	1794-TB2, 1794-TB3, 1794-TB3S and 1794-TBN3 ${ }^{(3)}$
Mounting	See derating curve
Output voltage range	$\begin{aligned} & \hline 74 \mathrm{~V} \text { AC min, } 47 \ldots 63 \mathrm{~Hz} \\ & \text { 120V AC nom, } 47 \ldots 63 \mathrm{~Hz} \\ & \text { 132V AC max, } 47 \ldots 63 \mathrm{~Hz} \end{aligned}$
Output current rating	4.0A (16 outputs @ 250 mA ) Attention: If using 0.5 A outputs, alternate wiring so that no two 0.5 A outputs are next to each other.
On-state current	5.0 mA per output, min 500 mA per output $@ 55^{\circ} \mathrm{C}$, max   NOTE: Below 50 mA the voltage drop across the module will be higher and the voltage waveform may have some small oscillation (less than 5V).
On-state voltage drop, max	1.5 V @ 0.5 A
Off-state leakage current, max	2.25 mA
Surge current	7 A for 40 ms , repeatable every 8 s
$\begin{gathered} \text { Output signal delay }{ }^{(1)} \\ \text { Off to On } \\ \text { On to Off } \end{gathered}$	1/2 cycle, max   1/2 cycle, max
Power dissipation, max	4.7W @ 0.5A
Thermal dissipation	16.1 BTU/hr @ 0.5 A
FlexBus current	80 mA @ 5V DC
Fusing ${ }^{(2)}$	2.5A, 150V AC normal blow, M02

(1) Auxiliary terminal blocks are required to connect the associated 120 V AC common for each channe when using the 1794-TBN terminal base with the 1794-OA16.
(2) Output signal delay is the time from receipt of an output on or off command to the output actually turning on or off.
(3) Module outputs are not fused. Fusing is recommended. If fusing is desired, you must supply external fusing or use the 1794-TBNF terminal base, if recommended.

## General Specifications

Attribute	Value
Terminal base screw torque	Determined by installed terminal base
Dimensions (with module   installed), HxWxD	$94 \times 94 \times 69 \mathrm{~mm}$   $(3.7 \times 3.7 \times 2.7$ in. $)$
Indicators (field side   indication, logic driven)	8 yellow status indicators - for 1794-0A8, 1794-0A8K   8 yellow status indicators - for 1794-0A81   16 yellow status indicators - for 1794-0A16
Supply voltage or   voltage ranges	FlexBus: 5V DC, 80 mA   Output: 120V AC, 50/60 Hz, 0.5 A, Pilot Duty, 4 A total
Isolation voltage	120 V (continuous), Basic Insulation Type, field side to backplane   No isolation between individual channels   Type tested @ 1250V AC for 60 s
Pilot Duty Rating	5 A Inrush
Keyswitch position	8
Enclosure type rating	None (open-style)
North American Temp Code	T4A - for 1794-0A8, 1794-0A8K, 1794-0A8I only   T4 - for 1794-0A16 only
IEC temp code	T4 - for 1794-0A8K only
Wire size	Determined by installed terminal base
Wiring    Category ${ }^{(1)}$ 2 - on signal ports	

(1) Use this Conductor Category information for planning conductor routing. Refer to Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1.

## Environmental Specifications

Attribute	Value
Temperature, operating	IEC 60068-2-1 (Test Ad, Operating Cold), IEC 60068-2-2 (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): $0 \ldots 55^{\circ} \mathrm{C}\left(32 \ldots 131^{\circ} \mathrm{F}\right)$
Temperature, nonoperating	IEC 60068-2-1 (Test Ab, Un-packaged Non-operating Cold), IEC 60068-2-2 (Test Bb, Un-packaged Non-operating Dry Heat), IEC 60068-2-14 (Test Na, Un-packaged Non-operating Thermal Shock): $-40 \ldots 85^{\circ} \mathrm{C}\left(-40 \ldots 185^{\circ} \mathrm{F}\right)$
Temperature, surrounding air, max	$55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$
Relative humidity	IEC 60068-2-30 (Test Db, Unpackaged Damp Heat): 5...95\% noncondensing
Vibration	$\begin{aligned} & \text { IEC60068-2-6 (Test Fc, Operating): } \\ & 5 \mathrm{~g} @ 10 \ldots 500 \mathrm{~Hz} \end{aligned}$
Shock, operating	IEC 60068-2-27 (Test Ea, Unpackaged Shock): 30 g
Shock, nonoperating	IEC 60068-2-27 (Test Ea, Unpackaged Shock): 50 g
Emissions	CISPR 11:   Group 1, Class A (with appropriate enclosure)
ESD immunity	IEC 61000-4-2:   4 kV contact discharges   8 kV air discharges
Radiated RF immunity	(1794-0A8, 1794-0A8K)   IEC 61000-4-3:   $10 \mathrm{~V} / \mathrm{m}$ with 1 kHz sine-wave $80 \%$ AM from $30 \ldots 2000 \mathrm{MHz}$ $10 \mathrm{~V} / \mathrm{m}$ with $200 \mathrm{~Hz} 50 \%$ Pulse $100 \%$ AM @ 900 MHz $1 \mathrm{~V} / \mathrm{m}$ with 1 kHz sine-wave $80 \% \mathrm{AM}$ from $2000 \ldots 2700 \mathrm{MHz}$   (1794-0A81)   IEC 61000-4-3:   $10 \mathrm{~V} / \mathrm{m}$ with 1 kHz sine-wave $80 \%$ AM from $30 \ldots 2000 \mathrm{MHz}$ $1 \mathrm{~V} / \mathrm{m}$ with 1 kHz sine-wave $80 \% \mathrm{AM}$ from $2000 \ldots 2700 \mathrm{MHz}$   (1794-0A16)   IEC 61000-4-3:   $10 \mathrm{~V} / \mathrm{m}$ with 1 kHz sine-wave $80 \%$ AM from $80 \ldots 2000 \mathrm{MHz}$ $10 \mathrm{~V} / \mathrm{m}$ with $200 \mathrm{~Hz} 50 \%$ Pulse $100 \% \mathrm{AM} @ 900 \mathrm{MHz}$ $10 \mathrm{~V} / \mathrm{m}$ with $200 \mathrm{~Hz} 50 \%$ Pulse $100 \%$ AM @ 1890 MHz $3 \mathrm{~V} / \mathrm{m}$ with 1 kHz sine-wave $80 \% \mathrm{AM}$ from $2000 \ldots 2700 \mathrm{MHz}$
Vibration	IEC 60068-2-6 (Test Fc, Operating): $5 \mathrm{~g} @ 10 \ldots 500 \mathrm{~Hz}$
EFT/B immunity	IEC 61000-4-4:   $\pm 2 \mathrm{kV}$ at 5 kHz on signal ports

Environmental Specifications

Attribute	Value
Surge transient immunity	IEC 61000-4-5:   $\pm 1 \mathrm{kV}$ line-line(DM) and $\pm 2 \mathrm{kV}$ line-earth(CM) on signal ports
Conducted RF immunity	```(1794-0A8, 1794-0A8K, 1794-0A81) IEC 61000-4-6: 10 V rms with 1 kHz sine-wave \(80 \%\) AM from \(150 \mathrm{kHz} . . .30 \mathrm{MHz}\) (1794-0A16) IEC 61000-4-6 10 V rms with 1 kHz sine-wave \(80 \% \mathrm{AM}\) from \(150 \mathrm{kHz} . . .80 \mathrm{MHz}\)```
Oscillatory surge withstand	$\begin{aligned} & \hline \text { IEEE C37.90.1: } \\ & 2.5 \mathrm{kV} \end{aligned}$

Certifications

Certifications (when product is marked) ${ }^{(1)}$	Value
UL	UL Listed Industrial Control Equipment. See UL File E65584.
CSA   (for 1794-0A8,   1794-0A8K, and   1794-0A8I only)	CSA Certified Process Control Equipment. See CSA File LR54689C. CSA Certified Process Control Equipment for Class I, Division 2 Group A,B,C,D Hazardous Locations. See CSA File LR69960C.
CSA   (for 1794-0A16 only)	CSA Certified Process Control Equipment. See CSA File LR93701. CSA Certified Process Control Equipment for Class I, Division 2 Group A,B,C,D Hazardous Locations. See CSA File LR93701.
CE	European Union 2004/108/EC EMC Directive, compliant with:   EN 61326-1; Meas./Control/Lab., Industrial Requirements   EN 61000-6-2; Industrial Immunity   EN 61000-6-4; Industrial Emissions   EN 61131-2; Programmable Controllers (Clause 8, Zone A \& B)   European Union 2006/95/EC LVD, compliant with:   EN 61131-2; Programmable Controllers (Clause 11)
C-Tick	Australian Radiocommunications Act, compliant with: AS/NZS CISPR 11; Industrial Emissions
Ex (for 1794-0A8K only)	European Union 94/9/EC ATEX Directive, compliant with:   EN 60079-15; Potentially Explosive Atmospheres, Protection "n" EN 60079-0; General Requirements II 3GExnA nC IIC T4 X

${ }^{(1)}$ See the Product Certification link at http://www.ab.com for Declarations of Conformity, Certificates, and other certification details.

Derating Curve for 1794-0A16


The area within the curve represents the safe operating range for the module under various conditions of user supplied 120 V AC supply voltages and ambient temperatures.

```
= Normal mounting safe operating range. Includes \(\square\)
\(=0\) ther mounting positions (including inverted horizontal, vertical) safe operating range
```

45677

Mounting	Temperature, max.
Normal horizontal	$55^{\circ} \mathrm{C}$
Other mounting positions (including inverted horizontal, vertical)	$51^{\circ} \mathrm{C}$

## Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products.
At http://www.rockwellautomation.com/support/, you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnect support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/support/.

## Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

United States or Canada	1.440 .646 .3434
Outside United States or   Canada	Use the Worldwide Locator at http://www.rockwellautomation.com/support/americas/phone en.html, or contact   your local Rockwell Automation representative.

## New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

United States	Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain   one) to your distributor to complete the return process.
Outside United States	Please contact your local Rockwell Automation representative for the return procedure.

## Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication RA-DU002, available at http://www.rockwellautomation.com/literature/.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

## www.rockwellautomation.com

## Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

# Attachment G-07d 

Manufacturers' Submittals and Individual O\&M Manuals

## CONTROLS

Flex Io User Manual

Allen-Bradley

FLEX I/O Analog
Modules
(Cat. No. 1794-IE8, -OE4, and -IE4XOE2 Series B)

## Important User Information

Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for example. Since there are many variables and requirements associated with any particular installation, Allen-Bradley does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Allen-Bradley publication SGI-1.1, "Safety Guidelines For The Application, Installation and Maintenance of Solid State Control" (available from your local Allen-Bradley office) describes some important differences between solid-state equipment and electromechanical devices which should be taken into consideration when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or in part, without written permission of Allen-Bradley Company, Inc. is prohibited.

Throughout this manual we make notes to alert you to possible injury to people or damage to equipment under specific circumstances.


ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage or economic loss.

Attention helps you:

- Identify a hazard.
- Avoid the hazard.
- Recognize the consequences.

Important: Identifies information that is especially important for successful application and understanding of the product.

Important: We recommend you frequently backup your application programs on appropriate storage medium to avoid possible data loss.

## Summary of Changes

This publication contains new and revised information not included in the previous version.

## New Information

## Addition of DeviceNet Mapping

A new chapter has been added to describe the special mapping for DeviceNet.

## Additional Flex I/O Modules

New series B analog modules are now available for Flex I/O users. These modules are:

- 1794-OE4 series B 4 output analog module
- 1794-IE8 series B 8 input analog module
- 1794-IE4XOE2 series B 4 in/2 out combo analog module

The differences between series A and series B are explained in Appendix B.

## I/O Mapping

I/O mapping for the series B versions of the analog modules has been added.

## Revised Information

This manual has been revised to include separate chapters for remote I/O adapters and DeviceNet adapters. In addition, range selection bits have been revised to include an Off condition.

## Change Bars

The areas in this manual which are different from previous editions are marked with change bars (as shown to the right of this paragraph) to indicate the addition of new or revised information.

## Table of Contents

Summary of Changes ..... P-1
New Information ..... P-1
Addition of DeviceNet Mapping ..... P-1
Additional Flex I/O Modules ..... P-1
I/O Mapping ..... P-1
Revised Information ..... P-1
Change Bars ..... P-1
Using This Manual ..... P-1
Purpose of this Manual ..... P-1
Audience ..... P-1
Vocabulary ..... P-1
Manual Organization ..... P-1
Conventions ..... P-2
For Additional Information ..... P-2
Overview of FLEX I/O and your Analog Modules ..... 1-1
Chapter Objectives ..... 1-1
The FLEX I/O System ..... 1-1
Types of FLEX I/O Modules ..... 1-2
How FLEX I/O Analog Modules Communicate with Programmable Controllers ..... 1-2
Features of your Analog Modules ..... 1-4
Chapter Summary ..... 1-4
How to Install Your Analog Module ..... 2-1
Chapter Objectives ..... 2-1
Before You Install Your Analog Module ..... 2-1
Compliance to European Union Directives ..... 2-1
EMC Directive ..... 2-1
Low Voltage Directive ..... 2-2
Power Requirements ..... 2-2
Installing the Module ..... 2-4
Mounting the Terminal Base Unit on a DIN Rail ..... 2-4
Panel/Wall Mounting ..... 2-5
Mounting the Analog Module on the Terminal Base Unit ..... 2-7
Connecting Wiring for the Analog Modules ..... 2-8
Connecting Wiring using a 1794-TB2 or -TB3 Terminal Base Unit ..... 2-9
Module Indicators ..... 2-13
Chapter Summary ..... 2-13
Module Programming ..... 3-1
Chapter Objectives ..... 3-1
Block Transfer Programming ..... 3-1
Sample programs for Flex I/O Analog Modules ..... 3-2
PLC-3 Programming ..... 3-2
Figure 3.1
PLC-3 Family Sample Program Structure for a 1794-IE8 Module ..... 3-2
Figure 3.2
PLC-3 Family Sample Program Structure for a 1794-OE4 Module ..... 3-3
Figure 3.3
PLC-3 Family Sample Program Structure for a 1794-IE4XOE2 Module ..... 3-3
PLC-5 Programming ..... 3-4
Figure 3.4
PLC-5 Family Sample Program Structure for the 1794-IE8 ..... 3-4
Figure 3.5
PLC-5 Family Sample Program Structure for the 1794-OE4 ..... 3-4
Figure 3.6
PLC-5 Family Sample Program Structure for the 1794-IE4XOE2 ..... 3-5
PLC-2 Programming ..... 3-5
Analog Data Format ..... 3-6
Chapter Summary ..... 3-6
Writing Configuration to and Reading Status from Your Module with a Remote I/O Adapter ..... 4-1
Chapter Objectives ..... 4-1
Configuring Your Analog Module ..... 4-1
Range Selection ..... 4-2
Safe State Value Selection ..... 4-2
Data Format ..... 4-2
Reading Data From Your Module ..... 4-2
Mapping Data for the Analog Modules ..... 4-3
8 Input Analog Module (Cat. No. 1794-IE8 Series B) ..... 4-3
Analog Input Module (1794-IE8) Read ..... 4-3
Word/Bit Descriptions for the 1794-IE8 Analog Input Module Read ..... 4-4
Analog Input Module (1794-IE8/B) Write Configuration Block ..... 4-4
Range Selection Bits for the 1794-IE8/B Analog Input Module ..... 4-5
Word/Bit Descriptions for the 1794-IE8/B Analog Input Module Write ..... 4-5
4 Output Analog Module (Cat. No. 1794-OE4 Series B) ..... 4-6
Analog Output Module (1794-OE4/B) Read ..... 4-6
Bit/Word Descriptions for the 1794-OE4/B Analog Output Module Read ..... 4-6
Analog Output Module (1794-OE4/B) Write Configuration Block ..... 4-7
Range Selection Bits for the 1794-OE4/B Analog Output Module (Word 5) ..... 4-7
Word/Bit Descriptions for the 1794-OE4/B Analog Output Module Write ..... 4-7
4 Input/2 Output Analog Combo Module (Cat. No. 1794-IE4XOE2 Series B) ..... 4-9
Analog Combo Module (1794-IE4XOE2/B) Read ..... 4-9
Word/Bit Descriptions for the 1794-IE4XOE2/B Analog Combo Module Read ..... 4-9
Analog Combo Module (1794-IE4XOE2/B) Write Configuration Block ..... 4-10
Range Selection Bits for the 1794-IE4XOE2/B Analog Combo Module ..... 4-11
Word/Bit Descriptions for the 1794-IE4XOE2/B Analog Combo Module Write ..... 4-11
Chapter Summary ..... 4-12
How Communication Takes Place and I/O Image Table Mapping with the DeviceNet Adapter ..... 5-1
Chapter Objectives ..... 5-1
About DeviceNet Manager ..... 5-1
Polled I/O Structure ..... 5-1
Adapter Input Status Word ..... 5-2
Mapping Data into the Image Table ..... 5-3
8 Input Analog Module (Cat. No. 1794-IE8 Series B) Image Table Mapping ..... 5-3
Analog Input Module (1794-IE8/B) Read ..... 5-3
Analog Input Module (1794-IE8/B) Write ..... 5-4
Range Selection Bits for the 1794-IE8/B Analog Input Module ..... 5-4
Word/Bit Descriptions for the 1794-IE8/B Analog Input Module ..... 5-4
4 Output Analog Module (1794-OE4 Series B) Image Table Mapping ..... 5-6
Analog Output Module (1794-OE4/B) Read ..... 5-6
Analog Output Module (1794-OE4/B) Write ..... 5-6
Range Selection Bits for the 1794-OE4/B Analog Output Module (Write Word 6) ..... 5-7
Word/Bit Descriptions for the 1794-OE4/B Analog Output Module ..... 5-7
Analog Combo Module (1794-IE4XOE2 Series B) Image Table Mapping ..... 5-9
Analog Combo Module (1794-IE4XOE2/B) Read ..... 5-9
Analog Output Module (1794-IE4XOE2/B) Write ..... 5-10
Range Selection Bits for the 1794-IE4XOE2 Analog Combo Module ..... 5-10
Word/Bit Descriptions for the 1794-IE4XOE2 Analog Combo Module ..... 5-10
Defaults ..... 5-12
Specifications ..... A-1
Differences Between Series A and Series B Analog Modules ..... B-1
Data Table Formats ..... C-1
Two's Complement Binary ..... C-1
Analog Data Format ..... C-2
Scaling Example ..... C-3
Support Services ..... C-1
Technical Support ..... C-1
Engineering and Field Services ..... C-1
Technical Training ..... C-1
Repair and Exchange Services ..... C-1

## Preface

## Using This Manual

## Purpose of this Manual

## Audience

## Vocabulary

## Manual Organization

This manual shows you how to use your FLEX I/O Analog modules with Allen-Bradley programmable controllers. The manual helps you install, program and troubleshoot your modules.

You must be able to program and operate an Allen-Bradley programmable controller to make efficient use of your FLEX I/O modules. In particular, you must know how to program block transfers.

We assume that you know how to do this in this manual. If you do not, refer to the appropriate programming and operations manual before you attempt to program your modules.

In this manual, we refer to:

- the analog input or analog output module as the "input module" or "output module"
- the Programmable Controller as the "controller"

This manual is divided into five chapters. The following chart lists each chapter with its corresponding title and a brief overview of the topics covered in that chapter.

Chapter	Title	Contents
$\mathbf{1}$	Overview of FLEX I/O and Analog   modules	Describes FLEX I/O Analog modules, features, and how   they function
$\mathbf{2}$	How to Install Your Analog   Module	How to install and wire the modules
$\mathbf{3}$	Module Programming	Explains block transfer programming, sample programs
$\mathbf{4}$	Writing Configuration to and   Reading Status From with a   Remote I/O Adapter	Explains how to configure your modules and read status   information from your modules when using a remote I/O   adapter
$\mathbf{5}$	How Communication Takes Place   and I/O Image Table Mapping   with the DeviceNet Adapter	Explains how you communicate with your modules, and   how the I/O image is mapped when using a DeviceNet   adapter
Appendix	Title	Contents
$\mathbf{A}$	Specifications	Differences Between Series A   and Series B Analog Modules
B Lists major differences between series.		
C	Data Formats	Explains 2's complement and left justification of numbers

## Conventions

We use these conventions in this manual:

In this manual, we show:	Like this:
that there is more information about a topic   in another chapter in this manual	
that there is more information about the   topic in another manual	

## For Additional Information

For additional information on FLEX I/O systems and modules, refer to the following documents:

Catalog   Number	Voltage	Description	Publications	
			Installation Instructions	User Manual
1794		1794 FLEX I/O Product Data	1794-2.1	
1794-ACN	24 V dc	ControlNet Adapter	1794-5.8	
1794-ADN	24 V dc	DeviceNet Adapter	1794-5.14	1794-6.5.5
1794-ASB	24 V dc	Remote I/O Adapter	1794-5.11	1794-6.5.3
$\begin{aligned} & 1794-T B 2 \\ & 1794-T B 3 \end{aligned}$		2-wire Terminal Base 3-wire Terminal Base	1794-5.2	
1794-TBN		Terminal Base Unit	1794-5.16	
1794-TBNF		Fused Terminal Base Unit	1794-5.17	
1794-TB3T		Temperature Terminal Base Unit	1794-5.41	
1794-IB16	24 V dc	16 Input Module	1794-5.4	
1794-OB16	24 V dc	16 Output Module	1794-5.3	
1794-IB10XOB6	24 V dc	10 Input/6 Output Module	1794-5.24	
1794-IE8	24 V dc	Selectable Analog 8 Input Module	1794-5.6	
1794-OE4	24 V dc	Selectable Analog 4 Output Module	1794-5.5	1794-6.5.2
1794-IE4XOE2	24 V dc	4 Input/2 Output Analog Module	1794-5.15	
1794-IR8	24 V dc	8 RTD Input Analog Module	1794-5.22	1794-6.5.4
1794-IT8	24 V dc	8 Thermocouple Input Module	1794-5.21	1794-6.5.7
1794-IB8S	24 V dc	Sensor Input Module	1794-5.7	
1794-IA8	120 V ac	8 Input Module	1794-5.9	
1794-OA8	120 V ac	Output Module	1794-5.10	
1794-CE1		Extender Cable	1794-2.12	
1794-NM1		Mounting Kit	1794-2.13	
1794-PS1	24 V dc	Power Supply	1794-5.35	

## Overview of FLEX I/O and your Analog Modules

## Chapter Objectives

The FLEX I/O System

Adapter


Terminal Base


I/O Module


- adapter/power supply - powers the internal logic for as many as eight I/O modules
- terminal base - contains a terminal strip to terminate wiring for two- or three-wire devices
- I/O module - contains the bus interface and circuitry needed to perform specific functions related to your application


## Types of FLEX I/O Modules

We describe the following FLEX I/O Analog modules in this user manual:

Catalog Number	Voltage	Inputs	Outputs	Description
1794-IE8	24 V dc	8	-	analog - 8 input, single-ended, non-isolated
$1794-0 \mathrm{E} 4$	24 V dc	-	4	analog - 4 output, single-ended, non-isolated
1794-IE4XOE2	24 V dc	4	2	analog - 4 input, single-ended, non-isolated   and 2 output, single-ended, non-isolated

FLEX I/O analog input, output and combination modules are block transfer modules that interface analog signals with any
Allen-Bradley programmable controllers that have block transfer capability. Block transfer programming moves input from the module's memory to a designated area in the processor data table, and output data words from a designated area in the processor data table to the module's memory. Block transfer programming also moves configuration words from the processor data table to module memory.

The analog modules have selectable ranges as shown in the table below:

Voltage	Current
0 to 10 V dc	0 to 20 mA
$+/-10 \mathrm{~V} \mathrm{dc}$	4 to 20 mA

How FLEX I/O Analog Modules Communicate with Programmable Controllers

The adapter/power supply transfers data to the module (block transfer write) and from the module (block transfer read) using BTW and BTR instructions in your ladder diagram program. These instructions let the adapter obtain input values and status from the module, and let you send output values and establish the module's mode of operation. Figure 1.1 describes the communication process.

Figure 1.1
An Example of Communication Between an Adapter and an Analog Input Module
(1)

The adapter transfers your configuration data to the module using a BTW.
(2)

External devices transmit analog signals to the module.


Your ladder program instructs the adapter to perform a BTR of the values and stores them in a data table.


The adapter and module determine that the transfer was made without error and input values are within specified range.

## (6)

Your ladder program can use and/or move the data (if valid) before it is written over by the transfer of new data in a subsequent transfer.

## (7)

Your ladder program performs BTWs to the module when you powerit up, and any time you wish to reconfigure the module.

## Features of your Analog Modules

Each module has a unique label identifying its keyswitch position, wiring and module type. A removable label provides space for writing individual designations per your application.

1794-IE8


1794-0E4


1794-IE4XOE2


In this chapter you learned about the FLEX I/O system and the types of analog modules and how they communicate with programmable controllers.

## How to Install Your Analog Module

Chapter Objectives

Before You Install Your Analog Module

Compliance to
European Union Directives

In this chapter, we tell you about:

- how to install your module
- how to set the module keyswitch
- how to wire the terminal base
- the indicators

Before installing your analog module in the I/O chassis:

You need to:	As described under:
Calculate the power requirements of all   modules in each chassis.	Power Requirements, page 2-2
Position the keyswitch on the terminal base	Installing the Module, page 2-4

!
ATTENTION: +24 V dc power must be applied to your module before operation. If power is not applied, the module position will appear to the adapter as an empty slot in your chassis. If the adapter does not recognize your module after installation is completed, cycle power to the adapter.

If this product has the CE mark it is approved for installation within the European Union and EEA regions. It has been designed and tested to meet the following directives.

## EMC Directive

This product is tested to meet Council Directive 89/336/EEC Electromagnetic Compatibility (EMC) and the following standards, in whole or in part, documented in a technical construction file:

- EN 50081-2EMC - Generic Emission Standard, Part 2 Industrial Environment
- EN 50082-2EMC - Generic Immunity Standard, Part 2 Industrial Environment

This product is intended for use in an industrial environment.

## Low Voltage Directive

This product is tested to meet Council Directive 73/23/EEC
Low Voltage, by applying the safety requirements of EN 61131-2 Programmable Controllers, Part 2 - Equipment Requirements and Tests.

For specific information required by EN 61131-2, see the appropriate sections in this publication, as well as the following Allen-Bradley publications:

- Industrial Automation Wiring and Grounding Guidelines For Noise Immunity, publication 1770-4.1
- Guidelines for Handling Lithium Batteries, publication AG-5.4
- Automation Systems Catalog, publication B111

Power Requirements
The wiring of the terminal base unit is determined by the current draw through the terminal base. Make certain that the current draw does not exceed 10A.

$\triangle$
ATTENTION: Total current draw through the terminal base unit is limited to 10A. Separate power connections may be necessary.

Methods of wiring the terminal base units are shown in the illustration below.


Wiring when total current draw is less than 10A


Analog module wiring separate from discrete wiring.

Wiring when total current draw is greater than 10A


Total current draw through any base unit must not be greater than 10A

Installing the Module

Installation of the analog module consists of:

- mounting the terminal base unit
- installing the analog module into the terminal base unit
- installing the connecting wiring to the terminal base unit

If you are installing your module into a terminal base unit that is already installed, proceed to "Mounting the Analog Module on the Terminal Base" on page 2-7.

## Mounting the Terminal Base Unit on a DIN Rail

$\triangle$
ATTENTION: Do not remove or replace a terminal base unit when power is applied. Interruption of the flexbus can result in unintended operation or machine motion.

1. Remove the cover plug (if used) in the male connector of the unit to which you are connecting this terminal base unit.
2. Check to make sure that the 16 pins in the male connector on the adjacent device are straight and in line so that the mating female connector on this terminal base unit will mate correctly.
3. Position the terminal base on the $35 \times 7.5 \mathrm{~mm}$ DIN rail A (A-B pt. no. 199-DR1; 46277-3; EN 50022) at a slight angle with hook B on the left side of the terminal base hooked into the right side of the unit on the left.

4. Make certain that the female flexbus connector $\mathbf{C}$ is fully retracted into the base unit.
5. Rotate the terminal base onto the DIN rail with the top of the rail hooked under the lip on the rear of the terminal base. Use caution to make sure that the female flexbus connector does not strike any of the pins in the mating male connector.
6. Press the terminal base down onto the DIN rail until flush. The locking tab $\mathbf{D}$ will snap into position and lock the terminal base to the DIN rail.
7. If the terminal base does not lock in place, use a screwdriver or similar device to move the locking tab down, press the terminal base flush with the DIN rail and release the locking tab to lock the base in place.
8. Gently push the female flexbus connector $\mathbf{C}$ into the adjacent terminal base or adapter female connector to complete the flexbus connections.
9. Repeat the above steps to install the next terminal base.

## Panel/Wall Mounting

Installation on a wall or panel consists of:

- laying out the drilling points on the wall or panel
- drilling the pilot holes for the mounting screws
- mounting the adapter mounting plate
- installing the terminal base units and securing them to the wall or panel
If you are installing your module into a terminal base unit that is already installed, proceed to "Mounting the Analog Module on the Terminal Base" on page 2-7.

Use the mounting kit Cat. No. 1794-NM1 for panel/wall mounting.

1794-NM1 Mounting Kit
Contents:
1 - Mounting Plate for Adapter 2-18 \#6 self-tapping screws ( 2 for the adapter, and 2 each for up to 8 modules)


To install the mounting plate on a wall or panel:

1. Lay out the required points on the wall/panel as shown in the drilling dimension drawing.

Drilling Dimensions for Panel/Wall Mounting of FLEX I/O

2. Drill the necessary holes for the \#6 self-tapping mounting screws.
3. Mount the mounting plate (1) for the adapter module using two \#6 self-tapping screws ( 18 included for mounting up to 8 modules and the adapter).

Important: Make certain that the mounting plate is properly
 grounded to the panel. Refer to "Industrial Automation Wiring and Grounding Guidelines," publication 1770-4.1.
4. Hold the adapter (2) at a slight angle and engage the top of the mounting plate in the indention on the rear of the adapter module.
5. Press the adapter down flush with the panel until the locking lever locks.
6. Position the terminal base unit up against the adapter and push the female bus connector into the adapter.
7. Secure to the wall with two \#6 self-tapping screws.
8. Repeat for each remaining terminal base unit.

Note: The adapter is capable of addressing eight modules. Do not exceed a maximum of eight terminal base units in your system.

## Mounting the Analog Module on the Terminal Base Unit

1. Rotate the keyswitch (1) on the terminal base unit (2) clockwise to the position required for the specific type of analog module.


Analog Module Cat. No.	Keyswitch Position
1794-IE8	3
1794-OE4	4
1794-IE4XOE2	5

2. Make certain the flexbus connector (3) is pushed all the way to the left to connect with the neighboring terminal base/adapter. You cannot install the module unless the connector is fully extended.
3. Make sure that the pins on the bottom of the module are straight so they will align properly with the connector in the terminal base unit.
4. Position the module (4) with its alignment bar (5) aligned with the groove (6) on the terminal base.
5. Press firmly and evenly to seat the module in the terminal base unit. The module is seated when the latching mechanism (7) is locked into the module.
6. Repeat the above steps to install the next module in its terminal base unit.

ATTENTION: Remove field-side power before removing or inserting the module. This module is designed so you can remove and insert it under backplane power. When you remove or insert a module with field-side power applied, an electrical arc may occur. An electrical arc can cause personal injury or property damage by:

- sending an erroneous signal to your system's field devices causing unintended machine motion - causing an explosion in a hazardous environment Repeated electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance.

Wiring to the analog modules is made through the terminal base unit on which the module mounts.

Refer to the following table for recommended terminal base units that you can use for each module.

Module	1794-TB2	1794-TB3
1794-IE8	Yes	Yes
1794-OE4	Yes	Yes
1794-IE4XOE2	Yes	Yes



## Connecting Wiring using a 1794-TB2 or -TB3 Terminal Base Unit

1. Connect the individual signal wiring to numbered terminals on the $\mathbf{0 - 1 5}$ row (A) on the terminal base unit. (Use Belden 8761 cable for signal wiring.)


ATTENTION: Connect only one current or one voltage signal per channel. Do not connect both current and voltage on one channel.
2. Connect each channel common to:

1794-IE8 - the associated terminal on row B.
1794-OE4 - the corresponding terminal on the same row (A)
1794-IE4XOE2 - inputs - the associated terminal on row $\mathbf{B}$; outputs - the corresponding terminal on the same row (A).
3. Connect +24 V dc to terminal 34 on the $\mathbf{3 4 - 5 1}$ row (C), and 24 V common to terminal 16 on the $\mathbf{1 6 - 3 3}$ row (B).

ATTENTION: To reduce susceptibility to noise, power analog modules and discrete modules from separate power supplies. Do not exceed a length of 33 $\mathrm{ft}(10 \mathrm{~m})$ for dc power cabling.

ATTENTION: Remove field-side power before removing or inserting the module. This module is designed so you can remove and insert it under backplane power. When you remove or insert a module with field-side power applied, an electrical arc may occur. An electrical arc can cause personal injury or property damage by:

- sending an erroneous signal to your system's field devices causing unintended machine motion
- causing an explosion in a hazardous environment

Repeated electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance.


1794-TB3
4. If daisy chaining the +24 V dc power to the next base unit, connect a jumper from terminal 51 on this base unit to terminal 34 on the next base unit. Connect the 24 V dc common/return from terminal 33 on this base unit to terminal 16 on the next base unit.

ATTENTION: +24 V dc power must be applied to your module before operation. If power is not applied, the module position will appear to the adapter as an empty slot in your chassis. If the adapter does not recognize your module after installation is completed, cycle power to the adapter.

Table 2.A
Wiring connections for 1794-TB2, and -TB3 Terminal Base Units when using the 1794-IE8 Analog Module

Channel	Signal Type	Label Markings	1794-TB2, 1794-TB3	
			Signal Terminal	24V dc Common Terminal
0	Current	I	0	17
	Voltage	V	1	18
1	Current	I	2	19
	Voltage	V	3	20
2	Current	I	4	21
	Voltage	V	5	22
3	Current	I	6	23
	Voltage	V	7	24
4	Current	I	8	25
	Voltage	V	9	26
5	Current	I	10	27
	Voltage	V	11	28
6	Current	I	12	29
	Voltage	V	13	30
7	Current	I	14	31
	Voltage	V	15	32
	24 V dc Common	16 thru $33^{1}$		
	+24V dc power	$\begin{aligned} & \hline \text { 1794-TB2 - } 34 \text { and } 51 \\ & \text { 1794-TB3 - } 34 \text { thru } 51 \end{aligned}$		
1 Terminals 16 thru 33 are internally connected in the terminal base unit				

Table 2.B
Wiring connections for 1794-TB2 and -TB3 Terminal Base Units when using the 1794-OE4 Analog Module

Channel	Type	Label Marking	1794-TB2, -TB3
			Signal Terminal
0	Current Signal	1	0
	Current Common	RET	$1^{1}$
	Voltage Signal	V	2
	Voltage Common	RET	$3^{1}$
1	Current Signal	1	4
	Current Common	RET	51
	Voltage Signal	V	6
	Voltage Common	RET	71
2	Current Signal	1	8
	Current Common	RET	91
	Voltage Signal	V	10
	Voltage Common	RET	$11^{1}$
3	Current Signal	I	12
	Current Common	RET	$13^{1}$
	Voltage Signal	V	14
	Voltage Common	RET	$15^{1}$
	24 V dc Common		16 thru $33^{2}$
	+24V dc		$\begin{aligned} & \text { 1794-TB2 - } 34 \text { and } 51 \\ & \text { 1794-TB3 - } 34 \text { thru } 51 \end{aligned}$

[^6]Terminals 16 thru 33 are internally connected in the terminal base unit.

Table 2.C
Wiring connections for 1794-TB2, and -TB3 Terminal Base Units when using the 1794-IE4XOE2 Analog Module

Channel	Signal Type	Label Markings	1794-TB2, 1794-TB3	
			Signal Terminal	24V dc Common Terminal
Input				
0	Current	I	0	17
	Voltage	V	1	18
1	Current	I	2	19
	Voltage	V	3	20
2	Current	I	4	21
	Voltage	V	5	22
3	Current	I	6	23
	Voltage	V	7	24


0	Current Signal	I	8	
	Current Common	RET	91	
	Voltage Signal	V	10	
	Voltage Common	RET	$11^{1}$	
1	Current Signal	I	12	
	Current Common	RET	$13^{1}$	
	Voltage Signal	V	14	
	Voltage Common	RET	$15^{1}$	
	24 V dc Common		16 thru $33^{2}$	
	+24 V dc power		$\begin{aligned} & \hline \text { 1794-TB2 - } 34 \text { and } 51 \\ & \text { 1794-TB3 - } 34 \text { thru } 51 \end{aligned}$	

Terminals $9,11,13$, and 15 are internally connected in the module to 24 V dc common.
Terminals 16 thru 33 are internally connected in the terminal base unit.

ATTENTION: Total current draw through the terminal base unit is limited to 10A. Separate power connections to the terminal base unit may be necessary.

## Module Indicators

The analog modules have one status indicator that is on when power is applied to the module.


## Chapter Summary

In this chapter you learned how to install your input module in an existing programmable controller system and how to wire to the terminal base units.

## Module Programming

## Chapter Objectives

Block Transfer Programming

In this chapter, we tell you about:

- analog data format
- block transfer programming
- sample programs for the PLC-3 and PLC-5 processors

Your module communicates with the processor through bidirectional block transfers. This is the sequential operation of both read and write block transfer instructions.

A configuration block transfer write (BTW) is initiated when the analog module is first powered up, and subsequently only when the programmer wants to enable or disable features of the module. The configuration BTW sets the bits which enable the programmable features of the module, such as scaling, alarms, ranges, etc. Block transfer reads are performed to retrieve information from the module.

Block transfer read (BTR) programming moves status and data from the module to the processor's data table. The processor user program initiates the request to transfer data from the module to the processor. The transferred words contain module status, channel status and input data from the module.

ATTENTION: If the analog module is not powered up before the remote I/O adapter, the adapter will not recognize the module. Make certain that the analog module is installed and powered before or simultaneously with the remote I/O adapter. If the adapter does not establish communication with the module, cycle power to the adapter.

The following sample programs are minimum programs; all rungs and conditioning must be included in your application program. You can disable BTRs, or add interlocks to prevent writes if desired. Do not eliminate any storage bits or interlocks included in the sample programs. If interlocks are removed, the program may not work properly.

Your program should monitor status bits, block transfer read and block transfer write activity.

## Sample programs for Flex I/O Analog Modules

## Program Action

At power-up in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read. Then it initiates a block transfer write to configure the module if the power--up bit is set.
Thereafter, the program continuously performs read block transfers.

Note: You must create the data file for the block transfers before you enter the block transfer instructions.

The pushbutton allows the user to manually request a block transfer write to configure the module.

The following sample programs show you how to use your analog module efficiently when operating with a programmable controller.

These programs show you how to:

- configure the module
- read data from the module
- update the module's output channels (if used)

These programs illustrate the minimum programming required for communication to take place.

## PLC-3 Programming

Block transfer instructions with the PLC-3 processor use one binary file in a data table section for module location and other related data. This is the block transfer control file. The block transfer data file stores data that you want transferred to your module (when programming a block transfer write) or from your module (when programming a block transfer read). The address of the block transfer data files are stored in the block transfer control file.

The same block transfer control file is used for both the read and write instructions for your module. A different block transfer control file is required for every module.

A sample program segment with block transfer instructions is shown in Figure 3.1, and described below.

Figure 3.1
PLC-3 Family Sample Program Structure for a 1794-IE8 Module


## Program Action

At power-up in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read. Then it initiates a block transfer write to configure the module and send data values.
Thereafter, the program continuously performs read block transfers and write block transfers.
Note: You must create the data file for the block transfers before you enter the block transfer instructions.

Figure 3.2
PLC-3 Family Sample Program Structure for a 1794-0E4 Module

1 1 |  | Block Transfer |
| :---: | :---: |
| Read Done Bit |  |
| B6:0 |  |
|  | $] /[$ |
| 15 |  |

BTR		Enable
BLOCK XFER READ		(EN $)$
RACK:	7	12
GROUP:	1	Done
MODULE:	0	(DN $)$
CONTROL:	\#B6:0	15
DATA FILE:	\#B7:0	Error
LENGTH:	1	$($ ER $)$

Block Transfer
Write Done Bit
B6:0
$\mathrm{J} /[$
05

BTW		Enable
BLOCK XFER WRITE RACK:	7	$-\left(E N_{02}\right)$
GROUP:	1	Done
MODULE:	0	(
CONTROL:	\#B6:0	${ }_{05}$
DATA FILE:	\#B8:0	Error
LENGTH:	14	Eror

Figure 3.3
PLC-3 Family Sample Program Structure for a 1794-IE4XOE2 Module


## PLC-5 Programming

The PLC-5 program is very similar to the PLC-3 program with the following exceptions:

- block transfer enable bits are used instead of done bits as the conditions on each rung.
- separate block transfer control files are used for the block transfer instructions.

Figure 3.4
PLC-5 Family Sample Program Structure for the 1794-IE8

## Program Action

At power-up in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read. Then it initiates a block transfer write to configure the module if the power-up bit is set.

Thereafter, the program continuously performs read block transfers to configure the module.

The pushbutton allows the user to manually request a block transfer write.
${ }^{1}$ Power-up bit included in Series B modules only.


Figure 3.5
PLC-5 Family Sample Program Structure for the 1794-0E4

## Program Action

At power-up in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read. Then it initiates a block transfer write to configure the module and send data values.

Thereafter, the program continuously performs read block transfers and write block transfers.


Figure 3.6
PLC-5 Family Sample Program Structure for the 1794-IE4XOE2

## Program Action

At power-up in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read. Then it initiates a block transfer write to configure the module and send data values.

Thereafter, the program continuously performs read block transfers and write block transfers.


## PLC-2 Programming

The 1794 analog I/O modules are not recommended for use with PLC-2 family programmable controllers due to the number of digits needed for high resolution. In addition, the data returned from the analog-to-digital converter in the module is 12 -bit resolute. This value is left-justified into a 16 -bit field, reserving the most significant bit for a sign bit. Refer to Appendix B for more information.

## Analog Data Format

The data returned from the analog-to-digital converter in the module is 12-bit resolute. This value is left-justified into a 16-bit field, reserving the most significant bit for a sign bit.



## Chapter Summary

Refer to Appendix C for a table of values for various current and voltage modes.

Appendix C also includes an example of scaling.

In this chapter, you learned how to program your programmable controller. You were given sample programs for your PLC-3 and PLC-5 family processors.

# Writing Configuration to and Reading Status from Your Module with a Remote I/O Adapter 

Chapter Objectives

Configuring Your Analog Module

In this chapter, we tell you about:

- configuring your module's features
- entering your data
- reading data from your module
- read block format

Because of the many analog devices available and the wide variety of possible configurations, you must configure your module to conform to the analog device and specific application that you have chosen. The module is configured using a group of data table words that are transferred to the module using a block transfer write instruction.

The software configurable features available are:

- input/output range selection, including full range and bipolar
- safe state operating value (customer selected analog values the module will maintain in the event of a network communication error)
Note: PLC-5 family programmable controllers that use 6200 software programming tools can take advantage of the IOCONFIG utility to configure these modules. IOCONFIG uses menu-based screens for configuration without having to set individual bits in particular locations. Refer to your 6200 software literature for details.


## Range Selection

Individual input channels are configurable to operate with the following voltage or current ranges:

Ranges	Bit Settings	
	Configure   Select	Full Range
$0-10 \mathrm{~V} \mathrm{dc} / 0-20 \mathrm{~mA}$	0	1
$4-20 \mathrm{~mA}$	1	0
-10 to +10 V dc	1	1
Off		0
$1 \quad$ When configured to Off, individual output channels will drive OV/OmA.		

?
ATTENTION: If using Series A modules, do not use configure select and full range bit settings of 0 . Individual channels revert to $4-20 \mathrm{~mA}$ with bit selections of all zeroes. This could result in unwanted or incorrect action.

You can select individual channel ranges using the designated words of the write block transfer instruction. Refer to the Bit/Word description for your particular module for word and bit numbers.

## Safe State Value Selection

## Data Format



## Reading Data From Your Module

You can select the analog values that your output module will maintain in the event of a network communication error. When the multiplex control bits (M) are cleared simultaneously by a communication error, (or by the user), the analog outputs will automatically switch to the values set in the safe state analog words. This allows you to define a safe operating state for controlled devices which depend on the analog output from the module.

The data returned from the analog-to-digital converter in the module is 12 -bit resolute. This value is left-justified into a 16-bit field, reserving the most significant bit for a sign bit. The $4-20 \mathrm{~mA}$ mode scales in the module and uses all 16 bits.

Refer to Appendix C for a table of values for various current and voltage modes, and an example of scaling to engineering terms.

Read programming moves status and data from the module to the processor's data table. The processor's user program initiates the request to transfer data from the input module to the processor.

## Mapping Data for the Analog Modules

The following read and write words and bit/word descriptions describe the information written to and read from the analog modules. Each word is composed of 16 bits.

8 Input Analog Module (Cat. No. 1794-IE8 Series B)

| Module Image |  |
| :---: | :---: | :---: |
| I/O Image |  |
| Input Size |  |
| 1 to 9 Words | Input Data Channel 0 |

Analog Input Module (1794-IE8) Read

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Read Word 0	S	Analog Value Channel 0														
Word 1	S	Analog Value Channel 1														
Word 2	S	Analog Value Channel 2														
Word 3	S	Analog Value Channel 3														
Word 4	S	Analog Value Channel 4														
Word 5	S	Analog Value Channel 5														
Word 6	S	Analog Value Channel 6														
Word 7	S	Analog Value Channel 7														
Word 8	PU	Not used - set to zero							U7	U6	U5	U4	U3	U2	U1	U0
Where: S $=$ sign bit (in 2's complement)    $U=$ Underrange bits for $4-20 \mathrm{~mA}$ inputs    $\mathrm{PU}=$ Power up bit																

## Word/Bit Descriptions for the 1794-IE8 Analog Input Module Read

Word	Decimal Bit (Octal Bit)	Definition
Read Word 0	$\begin{gathered} \hline \text { Bits 00-14 } \\ (00-16) \end{gathered}$	Channel 0 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 0 analog data sign bit.
Word 1	$\begin{gathered} \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 1 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 1 analog data sign bit.
Word 2	$\begin{gathered} \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 2 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 2 analog data sign bit.
Word 3	$\begin{gathered} \hline \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 3 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 3 analog data sign bit.
Word 4	$\begin{gathered} \text { Bits 00-14 } \\ (00-16) \end{gathered}$	Channel 4 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 4 analog data sign bit.
Word 5	$\begin{gathered} \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 5 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 5 analog data sign bit.
Word 6	$\begin{gathered} \hline \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 6 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 6 analog data sign bit.
Word 7	$\begin{gathered} \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 7 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 7 analog data sign bit.
Word 8	Bits 00-07	Underrange bits (U) for individual channels (4-20mA current input only)Bit 00 corresponds to input channel 0 , bit 01 corresponds to input channel 1 , and so on. When set (1), indicates either a broken or open input wire, or input current at or below 4mA.
	$\begin{gathered} \text { Bits 08-14 } \\ (10-16) \end{gathered}$	Not used - set to 0.
	Bit 15 (17)	Power Up bit - included in series B modules only. This bit is always 0 in series A modules. This bit is set to 1 when all bits in the configuration register (write word 0 ) are 0 (unconfigured state). The configuration register can be cleared by either a reset, or by the user writing all zeroes to it.

Analog Input Module (1794-IE8/B) Write Configuration Block

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Write Word 0	C7	C6	C5	C4	C3	C2	C1	CO	F7	F6	F5	F4	F3	F2	F1	F0
$\begin{array}{ll}\text { Where: } & \begin{array}{l}\mathrm{C}=\text { Configure select bit } \\ \mathrm{F}=\text { Full range bit }\end{array}\end{array}$   F = Full range bit																

Range Selection Bits for the 1794-IE8/B Analog Input Module

Channel No.	Channel 0		Channel 1		Channel 2		Channel 3		Channel 4		Channel 5		Channel 6		Channel 7	
	FO	Co	F1	C1	F2	C2	F3	C3	F4	C4	F5	C5	F6	C6	F7	C7
Decimal Bits (Octal Bits)	00	$\begin{gathered} 08 \\ (10) \end{gathered}$	01	$\begin{gathered} 09 \\ (11) \end{gathered}$	02	$\begin{gathered} 10 \\ \text { (12) } \end{gathered}$	03	$\begin{gathered} 11 \\ (13) \end{gathered}$	04	$\begin{gathered} 12 \\ (14) \end{gathered}$	05	$\begin{gathered} 13 \\ (15) \end{gathered}$	06	$\begin{gathered} 14 \\ (16) \end{gathered}$	07	$\begin{gathered} 15 \\ (17) \end{gathered}$
0-10V dc/0-20mA	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
4-20mA	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
-10 to +10 V dc	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Off ${ }^{1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$C=$ Configure select bit   $\mathrm{F}=$ Full range bit   1 When configured to off,		nels w	turn 0	on	es B m	ules,	4 to 20	A on S	A mo							

Word/Bit Descriptions for the 1794-IE8/B Analog Input Module Write

Word	Decimal Bit (Octal Bit)	Definition
	Bits $00-07$	Full range bits (F) for individual channels - Bit 00 corresponds to input channel   0, bit 01 corresponds to input channel 1, and so on.
Write	Configure select bits (C) for individual channels - Bit 08 corresponds to input   channel 0, bit 09 corresponds to input channel 1, and so on. Refer to Range Bit   Selections.	
Word	Bits 08-15 (10-17)	

## 4 Output Analog Module (Cat. No. 1794-OE4 Series B)



Analog Output Module (1794-OE4/B) Read

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Read Word 0	PU	Not used - set to 0														

Bit/Word Descriptions for the 1794-OE4/B Analog Output Module Read

Word	Decimal Bit   (Octal Bit)	Definition
	Bits 00-03	Current outputs only - When set (1), the wire on the output is broken or the   load resistance is too high. Bit 00 corresponds to channel 0, bit 01   corresponds to channel 2, and so on.
Read   Word 0	Bits 04-14   (04-16)	Not used - set to 0
	Bit 15 (17)	Power Up bit - included in series B modules only. This bit is always $\mathbf{0}$ in   series A modules. This bit is set to 1 when all bits in the configuration   register (write word 5) are 0 (unconfigured state). The configuration   register can be cleared by either a reset, or by the user writing all zeroes to it.

## Analog Output Module (1794-OE4/B) Write Configuration Block

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Write Word 0	S	Analog Data - Channel 0														
Word 1	S	Analog Data - Channel 1														
Word 2	S	Analog Data - Channel 2														
Word 3	S	Analog Data - Channel 3														
Word 4	0	Not used - set to 0											M3	M2	M1	M0
Word 5	0	Not used - set to 0			C3	C2	C1	C0	Not used - set to 0				F3	F2	F1	F0
Word 6 thru 9	Not used - set to 0															
Word 10	S	Safe State Value - Channel 0														
Word 11	S	Safe State Value - Channel 1														
Word 12	S	Safe State Value - Channel 2														
Word 13	S	Safe State Value - Channel 3														
$\begin{array}{ll} \text { Where: } & \\ & \text { S }=\text { Sign bit (in 2's complement) } \\ & M=\text { Multiplex control } \\ & C=\text { Contigure eselect bit } \\ & F=\text { Full range bit } \end{array}$																

Range Selection Bits for the 1794-OE4/B Analog Output Module (Word 5)

Channel No.	Channel 0		Channel 1		Channel 2		Channel 3	
	FO	CO	F1	C1	F2	C2	F3	C3
Decimal Bits (Octal Bits)	00	08 (10)	01	09 (11)	02	10 (12)	03	11 (13)
4-20mA	0	1	0	1	0	1	0	1
0-10V dc/0-20mA	1	0	1	0	1	0	1	0
-10 to +10V dc	1	1	1	1	1	1	1	1
Off ${ }^{1}$	0	0	0	0	0	0	0	0
C = Configure select bit								
1 When configured to off, individual channels will send OV or 0 mV on Series B modules. On Series A modules, 2 V or 4 mA is output until the module is configured.								

Word/Bit Descriptions for the 1794-OE4/B Analog Output Module Write

Word	Decimal Bit   (Octal Bit)	Definition
Write Word   0	Bits 00-14   $(00-16)$	Channel 0 analog data -12 -bit left justified two's complement number; unused   lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 0 analog data sign bit.


Word	Decimal Bit (Octal Bit)	Definition
Word 1	$\begin{gathered} \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 1 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 1 analog data sign bit.
Word 2	$\begin{gathered} \text { Bits 00-14 } \\ (00-16) \end{gathered}$	Channel 2 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 2 analog data sign bit.
Word 3	$\begin{gathered} \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 3 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 3 analog data sign bit.
Word 4	Bits 00-03	Multiplex control bits (M) for individual channels. These bits control the safe state analog outputs. - Bit 00 corresponds to output channel 0 , bit 01 corresponds to output channel 1 , and so on.   $1=$ use words $0,1,2$ or 3 as directed by channel number $n$ $0=$ use words $10,11,12$ or 13 as directed by channel number $n$ When bits $00-03$ are all cleared ( 0 ) simultaneously by a communication error or user choice thru the programmable controller program, word 5 full range and configure select bits are preserved at their last setting.
	$\begin{gathered} \text { Bits 04-15 } \\ (04-17) \end{gathered}$	Not used - set to 0.
Word 5	Bits 00-03	Full range bits (F) for individual channels - Bit 00 corresponds to output channel 0 , bit 01 corresponds to output channel 1 , and so on.
	Bits 04-07	Not used - set to 0 .
	$\begin{gathered} \hline \text { Bits 08-11 } \\ (10-13) \end{gathered}$	Configure select bits (C) for individual channels - Bit 08 corresponds to output channel 0 , bit 09 corresponds to output channel 1 , and so on.
	$\begin{gathered} \hline \text { Bits 12-15 } \\ (14-17) \end{gathered}$	Not used - set to 0 .
Words 6 thru 9	$\begin{aligned} & \text { Bits 00-15 } \\ & (00-17) \end{aligned}$	Not used - set to 0.
Word 10	$\begin{gathered} \hline \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 0 Safe State analog value - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 0 Safe State analog data sign bit.
Word 11	$\begin{gathered} \hline \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 1 Safe State analog value - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 1 Safe State analog data sign bit.
Word 12	$\begin{gathered} \hline \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 2 Safe State analog value - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 2 Safe State analog data sign bit.
Word 13	$\begin{gathered} \text { Bits 00-14 } \\ (00-16) \end{gathered}$	Channel 3 Safe State analog value - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 3 Safe State analog data sign bit.

## 4 Input/2 Output Analog Combo Module (Cat. No. 1794-IE4XOE2 Series B)



Analog Combo Module (1794-IE4XOE2/B) Read

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Read Word 0	S	Analog Value Input Channel 0														
Word 1	S	Analog Value Input Channel 1														
Word 2	S	Analog Value Input Channel 2														
Word 3	S	Analog Value Input Channel 3														
Word 4	PU	Not used - set to 0									W1	W0	U3	U2	U1	U0
Where: S = sign bit (in 2's complement)    W = iagnostic bist for current output wire broken or load resistance high. (Not used on voltage outputs.)    $\mathrm{U}=$ Underange bist for $4-20 \mathrm{~mA}$ inputs    PU $=$ Power up bit																

Word/Bit Descriptions for the 1794-IE4XOE2/B Analog Combo Module Read

Word	Decimal Bit   (Octal Bit)	Definition
Read   Word 0	Bits 00-14   $(00-16)$	Channel 0 analog data - 12-bit left justified two's complement number;   unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 0 analog data sign bit.
Word 1	Bits 00-14   $(00-16)$	Channel 1 analog data - 12-bit left justified two's complement number;   unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 1 analog data sign bit.
Word 2	Bits $00-14$   $(00-16)$	Channel 2 analog data - 12-bit left justified two's complement number;   unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 2 analog data sign bit.


Word	Decimal Bit (Octal Bit)	Definition
Word 3	$\begin{gathered} \hline \text { Bits 00-14 } \\ (00-16) \end{gathered}$	Channel 3 analog data - 12-bit left justified two's complement number; unused lower bits are zero; $4-20 \mathrm{~mA}$ uses all 16 bits.
	Bits 15 (17)	Channel 3 analog data sign bit.
Word 4	Bits 00-03	Underrange bits (U) for individual channels (4-20mA current inputs only) Bit 00 corresponds to input channel 0 , bit 01 corresponds to input channel 1 , and so on. When set (1), indicates either a broken or open input wire, or input current is at or below 4 mA .
	Bits 04-05	Wire Off bits (W) - Current outputs only - When set (1), the wire on the current output is broken or the load resistance is too high. Bit 00 corresponds to channel 0 , bit 01 corresponds to channel 2 , and so on.
	$\begin{gathered} \text { Bits 06-14 } \\ (06-16) \end{gathered}$	Not used
	Bit 15 (17)	Power Up bit - included in series B modules only. This bit is always 0 in series A modules. This bit is set to 1 when all bits in the configuration register (write word 3 ) are 0 (unconfigured state). The configuration register can be cleared by either a reset, or by the user writing all zeroes to it.

Analog Combo Module (1794-IE4XOE2/B) Write Configuration Block

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Write Word 0	S	Analog Data - Output Channel 0														
Word 1	S	Analog Data - Output Channel 1														
Word 2	0	Not used - set to 0													M1	M0
Word 3	Not		C5	C4	C3	C2	C1	C0	0	0	F5	F4	F3	F2	F1	F0
Words 4 and 5	Not used - set to 0															
Word 6	S	Safe State Value - Output Channel 0														
Word 7	S	Safe State Value - Output Channel 1														
Where: $M=$ Multiplex control bits    $\mathrm{S}=$ Sign bit (in 2's complement)    $C=$ Connigure select bit    $\mathrm{F}=$ Full range bit																

## Range Selection Bits for the 1794-IE4XOE2/B Analog Combo Module

Channel No.	Input   Channel 0		Input   Channel 1		Input   Channel 2		Input   Channel 3		Output Channel 0		Output Channel 1	
	F0	CO	F1	C1	F2	C2	F3	C3	F4	C4	F5	C5
Decimal Bits (Octal Bits)	00	$\begin{gathered} 08 \\ (10) \end{gathered}$	01	$\begin{gathered} 09 \\ (11) \end{gathered}$	02	$\begin{gathered} 10 \\ (12) \end{gathered}$	03	$\begin{gathered} 11 \\ (13) \end{gathered}$	04	$\begin{gathered} 12 \\ (14) \end{gathered}$	05	$\begin{gathered} 13 \\ (15) \end{gathered}$
4-20mA	0	1	0	1	0	1	0	1	0	1	0	1
$0-10 \mathrm{~V}$ dc/0-20mA	1	0	1	0	1	0	1	0	1	0	1	0
-10 to +10 V dc	1	1	1	1	1	1	1	1	1	1	1	1
Off ${ }^{1}$	0	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{C}=$ Configure select bit   $\mathrm{F}=$ Full range bit   1 When configured to off, individual channels will return or send either OV or OmA on Series B modules. On Series modules, 2 V or 4 mA is output until the module is configured.												

Word/Bit Descriptions for the 1794-IE4XOE2/B Analog Combo Module Write

Word	Decimal Bit (Octal Bit)	Definition
Write Word 0	$\begin{gathered} \hline \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 0 analog data - 12-bit left justified two's complement number; unused lower bits are zero; $4-20 \mathrm{~mA}$ uses all 16 bits.
	Bits 15   (17)	Channel 0 analog data sign bit.
Word 1	$\begin{gathered} \hline \text { Bits } 00-14 \\ (00-16) \end{gathered}$	Channel 1 analog data - 12-bit left justified two's complement number; unused lower bits are zero; $4-20 \mathrm{~mA}$ uses all 16 bits.
	Bits 15 (17)	Channel 1 analog data sign bit.
Word 2	Bits 00-01	Multiplex control bits (M) for individual channels. These bits control the safe state analog outputs - Bit 00 corresponds to output channel 0 , and bit 01 corresponds to output channel 1.   1 = use words 0 and 1 (analog value) as directed by channel number n $0=$ use words 6 and 7 (safe state analog value) as directed by channel number $n$ When bits 00-01 are all cleared (0) simultaneously by a communication error or user choice thru the programmable controller program, word 3 full range and configure select bits are preserved at their last setting.
	$\begin{gathered} \text { Bits 02-15 } \\ (02-17) \end{gathered}$	Not used - set to 0.
Word 3	Bits 00-05	Full range bits (F) for individual channels - Bit 00 corresponds to input channel 0 , bit 01 corresponds to input channel 1, bit 02 corresponds to input channel 3 , bit 03 corresponds to input channel 3 , bit 04 corresponds to output channel 1 , and bit 05 corresponds to output channel 2. Refer to Range Bit Selections.
	Bits 06-07	Not used - set to 0 .
	$\begin{gathered} \text { Bits 08-13 } \\ (10-15) \end{gathered}$	Configure select bits (C) for individual channels - Bit 08 corresponds to input channel 0, bit 09 (11) corresponds to input channel 1, bit 10 (12) corresponds to input channel 2, bit 11 (13) corresponds to input channel 3, bit 12 (14) corresponds to output channel 0 , and bit 13 (15) corresponds to output channel 1. Refer to Range Bit Selections.
	Bits 14-15 (16-17)	Not used - set to 0.


Word	Decimal Bit   (Octal Bit)	Definition
Words 4   and 5		Not used - set to 0.
Word 6	Bits 00-14   $(00-16)$	Channel 0 Safe State analog value - 12-bit left justified two's complement number;   unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 0 Safe State analog data sign bit.
	Bits 00-14   $(00-16)$	Channel 1 Safe State analog value - 12-bit left justified two's complement number;   unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15 (17)	Channel 1 Safe State analog data sign bit.

In this chapter you learned how to configure your module's features and enter your data.

## How Communication Takes Place and I/O Image Table Mapping with the DeviceNet Adapter

## Chapter Objectives

## About DeviceNet Manager



## Polled I/O Structure

In this chapter you will learn about:

- DeviceNet Manager software
- I/O structure
- image table mapping
- factory defaults

DeviceNet Manager is a software tool used to configure your FLEX I/O DeviceNet adapter and its related modules. This software tool can be connected to the adapter via the DeviceNet network.

You must know and understand how DeviceNet Manager works in order to add a device to the network. Refer to the DeviceNet Manager Software User Manual, publication 1787-6.5.3.

Output data is received by the adapter in the order of the installed I/O modules. The Output data for Slot 0 is received first, followed by the Output data for Slot 1 , and so on up to slot 7 .

The first word of input data sent by the adapter is the Adapter Status Word. This is followed by the input data from each slot, in the order of the installed I/O modules. The Input data from Slot 0 is first after the status word, followed by Input data from Slot 2, and so on up to slot 7.

DeviceNet Adapter


## Adapter Input Status Word

The input status word consists of:

- I/O module fault bits - 1 status bit for each slot
- node address changed -1 bit
- I/O status - 1 bit


The adapter input status word bit descriptions are shown in the following table.

Bit Description	Bit	Explanation
I/O Module Fault	0	This bit is set (1) when an error is detected in slot position 0.
	1	This bit is set (1) when an error is detected in slot position 1.
	2	This bit is set (1) when an error is detected in slot position 2.
	3	This bit is set (1) when an error is detected in slot position 3.
	4	This bit is set (1) when an error is detected in slot position 4.
	5	This bit is set (1) when an error is detected in slot position 5.
Node Address Changed	7	This bit is set (1) when an error is detected in slot position 6.
I/O State	8	This bit is set (1) when an error is detected in slot position 7.   changed since power up.
	9	Bit $=0$ - idle   Bit $=1$ - run

Possible causes for an I/O Module Fault are:

- transmission errors on the FLEX I/O backplane
- a failed module
- a module removed from its terminal base
- incorrect module inserted in a slot position
- the slot is empty

The node address changed bit is set when the node address switch setting has been changed since power up. The new node address does not take affect until the adapter has been powered down and then powered back up.

Mapping Data into the
Image Table

FLEX I/O analog modules are supported by the DeviceNet adapter. At present, these consist of:

Module Description	Catalog Number:	For image table mapping refer to:
8 Input Analog Module	$1794-$-IE8/B	page 5-3
4 Output Analog Module	$1794-0 \mathrm{E} / \mathrm{B}$	page 5-6
4 in/2 out Analog Combo Module	$1794-\mathrm{IE4XOE} 2 / \mathrm{B}$	page 5-9

## 8 Input Analog Module (Cat. No. 1794-IE8 Series B) Image Table Mapping

I/O Image Input Size	Module Image		
	Input Data Channel 0		
	Input Data Channel 1		
	Input Data Channel 2		
	Input Data Channel 3		
1 to 9 Words	Input Data Channel 4		
	Input Data Channel 5		
	Input Data Channel 6		
	Input Data Channel 7		
	PU		Underrange


Output Size	Configure select
0 or 1 Word	Not used
Not used	
Not used	
Not used	
Not used	

Analog Input Module (1794-IE8/B) Read

Decimal Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	Size
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00	Read Words
	S	Analog Value Channel 0															Read Word 1
	S	Analog Value Channel 1															Read Word 2
	S	Analog Value Channel 2															Read Word 3
	S	Analog Value Channel 3															Read Word 4
	S	Analog Value Channel 4															Read Word 5
	S	Analog Value Channel 5															Read Word 6
	S	Analog Value Channel 6															Read Word 7


Decimal Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	Size
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00	Read Words
	S	Analog Value Channel 7															Read Word 8
	PU	Not used - set to zero							U7	U6	U5	U4	U3	U2	U1	U0	Read Word 9
Where: $\quad$ PU = Power up bit - included in series B modules only.   $\mathrm{U}=$ Underrange bits for $4-20 \mathrm{~mA}$ inputs   $\mathrm{S}=$ sign bit (in 2's complement)																	

## Analog Input Module (1794-IE8/B) Write

Decimal Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	Size
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00	Write Words
	C7	C6	C5	C4	C3	C2	C1	CO	F7	F6	F5	F4	F3	F2	F1	F0	Write Word 1
Not used - set to 0																	Write Word 2 thru 6
$\begin{array}{ll}\text { Where: } & \mathrm{C}=\text { Configure select bit } \\ & \mathrm{F}=\text { Full range bit }\end{array}$																	

Range Selection Bits for the 1794-IE8/B Analog Input Module

Channel No.	Channel 0		Channel 1		Channel 2		Channel 3		Channel 4		Channel 5		Channel 6		Channel 7	
	F0	CO	F1	C1	F2	C2	F3	C3	F4	C4	F5	C5	F6	C6	F7	C7
Decimal Bit	00	08	01	09	02	10	03	11	04	12	05	13	06	14	07	15
0-10V dc/0-20mA	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
4-20mA	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
-10 to +10 V dc	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Off ${ }^{1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

C = Configure select bit
F = Full range bit
1 When configured to off, individual channels will return 0000 H on Series B modules, and $4-20 \mathrm{~mA}$ on Series A modules.
Word/Bit Descriptions for the 1794-IE8/B Analog Input Module

Word	Decimal Bit	Definition
Read Word 1	Bits 00-14	Channel 0 analog data - 12-bit left justified two's complement   number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 0 analog data sign bit.
	Bits 00-14	Channel 1 analog data - 12-bit left justified two's complement   number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 1 analog data sign bit.
Read Word 3	Bits 00-14	Channel 2 analog data - 12-bit left justified two's complement   number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 2 analog data sign bit.
	Bits 00-14	Channel 3 analog data - 12-bit left justified two's complement   number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 3 analog data sign bit.


Word	Decimal Bit	Definition
Read Word 5	Bits 00-14	Channel 4 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 4 analog data sign bit.
Read Word 6	Bits 00-14	Channel 5 analog data - 12 -bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 5 analog data sign bit.
Read Word 7	Bits 00-14	Channel 6 analog data - 12 -bit left justified two's complement number; unused lower bits are zero; $4-20 \mathrm{~mA}$ uses all 16 bits.
	Bits 15	Channel 6 analog data sign bit.
Read Word 8	Bits 00-14	Channel 7 analog data - 12-bit left justified two's complement number; unused lower bits are zero; $4-20 \mathrm{~mA}$ uses all 16 bits.
	Bits 15	Channel 7 analog data sign bit.
Read Word 9	Bits 00-07	Underrange bits (U) for individual channels (4-20mA current input only)- Bit 00 corresponds to input channel 0 , bit 01 corresponds to input channel 1 , and so on. When set (1), indicates either a broken or open input wire, or input current at or below 4 mA .
	Bits 08-14	Not used - set to 0.
	Bit 15	Power Up bit - included in series B modules only. This bit is always 0 in series A modules. This bit is set to 1 when all bits in the configuration register (write word 1) are 0 (unconfigured state). The configuration register can be cleared by either a reset, or by the user writing all zeroes to it.
Write Word 1	Bits 00-07	Full range bits (F) for individual channels - Bit 00 corresponds to input channel 0 , bit 01 corresponds to input channel 1, and so on. Refer to range selection above.
	Bits 08-15	Configure select bits (C) for individual channels - Bit 08 corresponds to input channel 0 , bit 09 corresponds to input channel 1, and so on. Refer to range selection above.
Write Word 2	Bits 00-15	Not used - set to 0 .
Write Word 3	Bits 00-15	Not used - set to 0.
Write Word 4	Bits 00-15	Not used - set to 0.
Write Word 5	Bits 00-15	Not used - set to 0.
Write Word 6	Bits 00-15	Not used - set to 0 .

## 4 Output Analog Module (1794-OE4 Series B) Image Table Mapping



		Analog Data Channel 0			
		Analog Data Channel 1			
		Analog Data Channel 2			
		Analog Data Channel 3			
		Not used			OE
Write	Output Size	Not used	Config. Select	Not used	Full Range
	1 to 6 Words				

Analog Output Module (1794-OE4/B) Read

Decimal Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	Size
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00	Read Words
	PU	Not used - set to 0											W3	W2	W1	W0	Read Word 1
Where: PU = Power up bit - included in series B modules only.   W = Diagnostic bits for current output wire broken or load resistance high. (Not used on voltage outputs.)																	

Analog Output Module (1794-OE4/B) Write

Decimal Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	Size
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00	Read Words
	S	Analog Data - Channel 0															Write Word 1
	S	Analog Data - Channel 1															Write Word 2
	S	Analog Data - Channel 2															Write Word 3
	S	Analog Data - Channel 3															Write Word 4
		Not used - set to 0											OE3	OE2	OE1	OE0	Write Word 5
	Not used - set to 0				C3	C2	C1	C0	Not used - set to 0				F3	F2	F1	F0	Write Word 6


Decimal Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	Size
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00	Read Words
	Not used - set to 0																Write Words 7 thru 14

Where: $\mathrm{S}=$ Sign bit (in 2's complement)
OE = Output enable bits (bit 00 corresponds to output 0 , bit 01 corresponds to output 1 and so on. ATTENTION: These bits must be set to 1 .
C = Configure select bit
F = Full range bit

Range Selection Bits for the 1794-OE4/B Analog Output Module (Write Word 6)

Channel No.	Channel 0		Channel 1		Channel 2		Channel 3	
	F0	CO	F1	C1	F2	C2	F3	C3
Decimal Bit	00	08	01	09	02	10	03	11
4-20mA	0	1	0	1	0	1	0	1
0-10V dc/0-20mA	1	0	1	0	1	0	1	0
-10 to +10 V dc	1	1	1	1	1	1	1	1
Off ${ }^{1}$	0	0	0	0	0	0	0	0
```\(\mathrm{C}=\) Configure select bit F = Full range bit 1 When configured to off, individual channels will send OV or 0 mA on Series B modules; 2 V or 4 mA on Series A modules.```								

Word/Bit Descriptions for the 1794-OE4/B Analog Output Module

Word	Decimal Bit	Definition
Read Word 1	Bits 00-03	Current outputs only - When set (1), the wire on the output is broken or the load resistance is too high. Bit 00 corresponds to channel 0 , bit 01 corresponds to channel 2 , and so on.
	Bits 04-14	Not used - set to 0 .
	Bit 15	Power Up bit - included in series B modules only. This bit is always 0 in series A modules. This bit is set to 1 when all bits in the configuration register (write word 6) are 0 (unconfigured state). The configuration register can be cleared by either of the reset inputs, or by the user writing all zeroes to it.
Write Word 1	Bits 00-14	Channel 0 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 0 analog data sign bit.
Write Word 2	Bits 00-14	Channel 1 analog data - 12-bit left justified two's complement number; unused lower bits are zero; $4-20 \mathrm{~mA}$ uses all 16 bits.
	Bits 15	Channel 1 analog data sign bit.
Write Word 3	Bits 00-14	Channel 2 analog data - 12-bit left justified two's complement number; unused lower bits are zero; $4-20 \mathrm{~mA}$ uses all 16 bits.
	Bits 15	Channel 2 analog data sign bit.
Write Word 4	Bits 00-14	Channel 3 analog data - 12-bit left justified two's complement number; unused lower bits are zero; $4-20 \mathrm{~mA}$ uses all 16 bits.
	Bits 15	Channel 3 analog data sign bit.

Word	Decimal Bit	Definition
Write Word 5	Bits 00-03	Output Enable bits. Bit 00 corresponds to input 0, bit 01 corresponds to input 1, bit 02 corresponds to input 2, and bit 03 corresponds to input 3. These bits must be set to 1.
	Bits 04-15	Not used - set to 0.
	Bits 00-03	Full range bits (F) for individual channels - Bit 00 corresponds to output channel 0, bit 01 corresponds to output channel 1, and so on. Refer to range selection above.
	Bits 08-11	Not used - set to 0.
Write Word 7	Configure select bits (C) for individual channels - Bit 08 corresponds to output channel 0, bit 09 corresponds to output channel 1, and so on. Refer to range selection above.	
Write Word 8	Bits 00-15	Bits 00-15
Write Word 9	Not used - set to 0.	
Wot used - set to 0.		
Write Word 10 00-15	Bits 00-15	Not used - set to 0.
Write Word 11	Bits 00-15	Not used - set to 0.
Write Word 12 0.	Bits 00-15	Not used - set to 0.
Write Word 13	Bits 00-15	Not used - set to 0.
Write Word 14	Bits 00-15	Not used - set to 0.

Analog Combo Module (1794-IE4XOE2 Series B) Image Table Mapping

			Output Data Cha	
			Output Data Cha	
			Not used	OE
	Output Size	Not used	Full Range and	
Write	0 to 4 Words		Not used	
			Not used	
			Not used	
			Not used	
			Not used	
			Not used	

Analog Combo Module (1794-IE4XOE2/B) Read

Decimal Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	Size
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00	Read Words
	S	Analog Value Input Channel 0															Read Word 1
	S	Analog Value Input Channel 1															Read Word 2
	S	Analog Value Input Channel 2															Read Word 3
	S	Analog Value Input Channel 3															Read Word 4
	PU	Not used - set to 0									W1	W0	U3	U2	U1	U0	Read Word 5
Where: $\quad \mathrm{PU}=$ Power up bit - included in series B modules only. W = Diagnostic bits for current output wire broken or load resistance high. (Not used on voltage outputs.) $\mathrm{U}=$ Underrange bits for $4-20 \mathrm{~mA}$ inputs																	

Analog Output Module (1794-IE4XOE2/B) Write

Decimal Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00	Size
Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00	Read Words
	S	Analog Data - Output Channel 0															Write Word 1
	S	Analog Data - Output Channel 1															Write Word 2
	Not used - set to 0														OE1	OE0	Write Word 3
	Not		C5	C4	C3	C2	C1	CO	0	0	F5	F4	F3	F2	F1	F0	Write Word 4
	Not used - set to 0																Write Word 5 thru 10
Where: $\quad O E=$ Output enable bits (bit 00 corresponds to output 0 , bit 01 corresponds to output 1). ATTENTION: These bits must be set to 1. $\mathrm{S}=$ Sign bit (in 2's complement) $\mathrm{C}=$ Configure select bit $\mathrm{F}=$ Full range bit																	

Range Selection Bits for the 1794-IE4XOE2 Analog Combo Module

Channel No.	Input Channel 0		Input Channel 1		Input Channel 2		Input Channel 3		Output Channel 0		Output Channel	
	F0	CO	F1	C1	F2	C2	F3	C3	F4	C4	F5	C5
Decimal Bit	00	08	01	09	02	10	03	11	04	12	05	13
4-20mA	0	1	0	1	0	1	0	1	0	1	0	1
0-10V dc/0-20mA	1	0	1	0	1	0	1	0	1	0	1	0
-10 to +10 V dc	1	1	1	1	1	1	1	1	1	1	1	1
Off ${ }^{1}$	0	0	0	0	0	0	0	0	0	0	0	0
$\begin{aligned} & \hline C=\text { Configure select bit } \\ & \mathrm{F}=\text { Full range bit } \\ & 1 \text { When configured to off, individual channels will return either } \mathrm{OV} \text { or } 0 \mathrm{~mA} \text { on Series } \mathrm{B} \text { modules; } 2 \mathrm{~V} \text { or } 4 \mathrm{~mA} \text { on Series } \mathrm{A} \text { modules. } \end{aligned}$												

Word/Bit Descriptions for the 1794-IE4XOE2 Analog Combo Module

Word	Decimal Bit	Definition
Read Word 1	Bits 00-14	Channel 0 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 0 analog data sign bit.
	Bits 00-14	Channel 1 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 1 analog data sign bit.
Read Word 3	Bits 00-14	Channel 2 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 2 analog data sign bit.
Read Word 4	Bits 00-14	Channel 3 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 3 analog data sign bit.

Word	Decimal Bit	Definition
Read Word 5	Bits 00-03	Underrange bits (U) for individual channels (4-20mA current inputs only) - Bit 00 corresponds to input channel 0 , bit 01 corresponds to input channel 1, and so on.
	Bits 04-05	Wire Off bits (W) - Current outputs only - When set (1), the wire on the current output is broken or the load resistance is too high. Bit 00 corresponds to channel 0 , bit 01 corresponds to channel 2 , and so on.
	Bits 06-14	Not used - set to 0.
	Bit 15	Power Up bit - included in series B modules only. This bit is always 0 in series A modules. This bit is set to 1 when all bits in the configuration register are 0 (unconfigured state). The configuration register can be cleared by either a reset input, or by the user writing all zeroes to it.
Write Word 1	Bits 00-14	Channel 0 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 0 analog data sign bit.
Write Word 2	Bits 00-14	Channel 1 analog data - 12-bit left justified two's complement number; unused lower bits are zero; 4-20mA uses all 16 bits.
	Bits 15	Channel 1 analog data sign bit.
Write Word 3	Bits 00-01	Output Enable bits. Bit 00 corresponds to output 0, bit 01 corresponds to output 1 . These bits must be set to 1 .
	Bits 02-15	Not used - set to 0 .
Write Word 4	Bits 00-05	Full range bits (F) for individual channels - Bit 00 corresponds to input channel 0 , bit 01 corresponds to input channel 1 , bit 02 corresponds to input channel 3 , bit 03 corresponds to input channel 3 , bit 04 corresponds to output channel 1 , and bit 05 corresponds to output channel 2 . Refer to range selection above.
	Bits 06-07	Not used - set to 0.
	Bits 08-13	Configure select bits (C) for individual channels - Bit 08 corresponds to input channel 0 , bit 09 (11) corresponds to input channel 1, bit 10 (12) corresponds to input channel 2 , bit 11 (13) corresponds to input channel 3, bit 12 (14) corresponds to output channel 0 , and bit 13 (15) corresponds to output channel 1. Refer to range selection above.
	Bits 14-15	Not used - set to 0.
Write Word 5	Bits 00-15	Not used - set to 0 .
Write Word 6	Bits 00-15	Not used - set to 0.
Write Word 7	Bits 00-15	Not used - set to 0.
Write Word 8	Bits 00-15	Not used - set to 0 .
Write Word 9	Bits 00-15	Not used - set to 0 .
Write Word 10	Bits 00-15	Not used - set to 0 .

Defaults

Each I/O module has default values associated with it. At default, each module will generate inputs/status and expect outputs/configuration.

Module Defaults for:		Factory Defaults		Real Time Size	
Catalog Number	Description	Input Default	Output Default	Input Default	Output Default
1794-IE8/B	8-pt Analog Input	9	6	8	0
1794-OE4/B	4-pt Analog Output	1	14	0	4
1794-IE4XOE2/B	4 in/2 out Analog Combo	5	10	4	2

Factory defaults are the values assigned by the adapter when you:

- first power up the system, and
- no previous stored settings have been applied.

For analog modules, the defaults reflect the actual number of input words/output words. For example, for the 8 input analog module, you have 9 input words, and 6 output words.

You can change the I/O data size for a module by reducing the number of words mapped into the adapter module, as shown in real time sizes."

Real time sizes are the settings that provide optimal real time data to the adapter module.

Analog modules have 15 words assigned to them. This is divided into input words/output words. You can reduce the I/O data size to fewer words to increase data transfer over the backplane. For example, an 8 input analog module has 9 words input/ 6 words output with factory default. You can reduce the input words to 8 by not using the underrange settings set in word 9 . Likewise, you can reduce the write words to 0 , thus eliminating the configuration setting and unused words.

For information on using DeviceNet Manager software to configure your adapter, refer to the DeviceNet Manager Software User Manual, publication 1787-6.5.3.

Specifications

Specifications - 1794-IE8/B Analog	Input Module
Number of Inputs	8 single-ended, non-isolated
Module Location	Cat. No. 1794-TB2, -TB3 Terminal Base Unit
Resolution Voltage Current	12 bits - unipolar; 11 bits plus sign - bipolar $2.56 \mathrm{mV} / \mathrm{cnt}$ unipolar; $5.13 \mathrm{mV} / \mathrm{cnt}$ bipolar $5.13 \mu \mathrm{~A} / \mathrm{cnt}$
Data Format	left justified 16-bit 2's complement
Conversion Type	Successive approximation
Conversion Rate	256μ s all channels
Input Current Terminal	4-20mA (user configurable) $0-20 \mathrm{~mA}$ (user configurable)
Input Voltage Terminal	$\pm 10 \mathrm{~V}$ (user configurable) 0-10V (user configurable)
Normal Mode Rejection Ratio Voltage Terminal Current Terminal	-3db @ 17Hz; -20db/decade -10.0 dB @ $50 \mathrm{~Hz},-11.4 \mathrm{~dB}$ @ 60Hz -3db @ 9Hz; -20db/decade -15.3 dB @ $50 \mathrm{~Hz},-16.8 \mathrm{~dB}$ @ 60Hz
Step Response to 63\% Voltage Terminal Current Terminal	$\begin{aligned} & 9.4 \mathrm{~ms} \\ & 18.2 \mathrm{~ms} \end{aligned}$
Input Impedance Voltage Terminal Current Termina	100k ohms 238 ohms
Input Resistance Voltage Terminal Current Terminal	200k ohms 238 ohms
Absolute Accuracy ${ }^{1}$ Voltage Terminal Current Termina	0.29% Full Scale @ $25^{\circ} \mathrm{C}$ 0.29% Full Scale @ $25^{\circ} \mathrm{C}$
Accuracy Drift with Temperature Voltage Terminal Current Terminal	0.00428% Full Scale $/{ }^{\circ} \mathrm{C}$ 0.00407% Full Scale $/{ }^{\circ} \mathrm{C}$
Calibration	None Required
Maximum Overload	30 V continuous or 32 mA continuous, one channel at a time
Isolation Voltage	Tested at 850 V dc for 1 s between user and system No isolation between individual channels
Indicators	1 green power indicator
Flexbus Current	20 mA
Power Dissipation	3W maximum @ 31.2V dc
Thermal Dissipation	Maximum 10.2 BTU/hr @ 31.2V dc
Keyswitch Position	3
Specifications continued on next page.	

Specifications - 1794-IE8/B Analog Input Module	
General Specifications	
External dc Power Supply Voltage Voltage Range Supply Current	24 V dc nominal 19.2 to 31.2 V dc (includes 5% ac ripple) 60 mA @ 24 V dc
Dimensions Inches (Millimeters)	$\begin{aligned} & \hline 1.8 \mathrm{H} \times 3.7 \mathrm{~W} \times 2.1 \mathrm{D} \\ & (45.7 \times 94.0 \times 53.3) \end{aligned}$
Environmental Conditions Operational Temperature Storage Temperature Relative Humidity Shock Operating Non-operating Vibration	0 to $55^{\circ} \mathrm{C}\left(32\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ -40 to $85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.185^{\circ} \mathrm{F}\right)$ 5 to 95% noncondensing (operating) 5 to 80% noncondensing (nonoperating) 30 g peak acceleration, $11(+1) \mathrm{ms}$ pulse width 50 g peak acceleration, $11\left({ }^{+} 1\right) \mathrm{ms}$ pulse width Tested 5 g @ 10-500Hz per IEC 68-2-6
Conductors Wire Size Category	12 gauge ($4 \mathrm{~mm}^{2}$) stranded maximum $3 / 64$ inch (1.2 mm) insulation maximum 2^{2}
Agency Certification (when product or packaging is marked)	- CSA certified - CSA Class I, Division 2, Groups A, B, C, D certified - UL listed - CE marked for all applicable directives
Installation Instruction	Publication 1794-5.6
1 Includes offset, gain, non-linearity and repeatability error terms. 2 Use this conductor category information for palanning conductor routing as described in publication 1770-4.1, "Wiring and Grounding Guidelines for Noise Immunity." 	

Specifications - 1794-0E4/B Analog Output Module	
Number of Outputs	4 single-ended, non-isolated
Module Location	Cat. No. 1794-TB2, -TB3 Terminal Base Unit
Resolution Voltage Current	12 bits plus sign $2.56 \mathrm{mV} / \mathrm{cnt}$ $5.13 \mu \mathrm{~A} / \mathrm{cnt}$
Data Format	left justified 16-bit 2's complement
Conversion Type	Pulse Width Modulation
Conversion Rate	1.024 ms maximum all channels
Output Current Terminal	OmA output until module is configured 4-20mA user configurable 0-20mA user configurable
Output Voltage Terminal	0 V output until module is configured $\pm 10 \mathrm{~V}$ user configurable 0-10V user configurable
Step Response to 63\% of FS	24 ms
Current Load on Voltage Output	3mA maximum
Resistive Load on mA Output	15-750 ohms
Absolute Accuracy Voltage Terminal Current Terminal	0.133% Full Scale @ $25^{\circ} \mathrm{C}$ 0.425% Full Scale @ $25^{\circ} \mathrm{C}$
Accuracy Drift with Temperature Voltage Terminal Current Terminal	0.0045% Full Scale $/{ }^{\circ} \mathrm{C}$ 0.0069% Full Scale $/{ }^{\circ} \mathrm{C}$
Calibration	None Required
Isolation Voltage	Tested at 850 V dc for 1 s between user and system No isolation between individual channels
Indicators	1 green power indicator
Flexbus Current	20 mA
Power Dissipation	4.5W maximum @ 31.2V dc
Thermal Dissipation	Maximum 15.3 BTU/hr @ 31.2V dc
Keyswitch Position	4
Specifications continued on next page.	

Specifications - 1794-OE4/B Analog Output Module	
General Specifications	
External dc Power Supply Voltage Voltage Range Supply Current	24 V dc nominal 19.2 to 31.2 V dc (includes 5% ac ripple) $70 \mathrm{~mA} @ 24 \mathrm{~V}$ dc (not including outputs)
Dimensions Inches (Millimeters)	$\begin{aligned} & 1.8 \mathrm{H} \times 3.7 \mathrm{~W} \times 2.1 \mathrm{D} \\ & (45.7 \times 94.0 \times 53.3) \end{aligned}$
Environmental Conditions Operational Temperature Storage Temperature Relative Humidity Shock Operating Non-operating Vibration	0 to $55^{\circ} \mathrm{C}\left(32\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ -40 to $85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.185^{\circ} \mathrm{F}\right)$ 5 to 95% noncondensing (operating) 5 to 80% noncondensing (nonoperating) 30 g peak acceleration, $11(+1) \mathrm{ms}$ pulse width 50 g peak acceleration, $11(\overline{+} 1) \mathrm{ms}$ pulse width Tested 5 g @ 10-500Hz pei IEC 68-2-6
Conductors Wire Size Category	12 gauge ($4 \mathrm{~mm}^{2}$) stranded maximum $3 / 64$ inch (1.2 mm) insulation maximum 2^{2}
Agency Certification (when product or packaging is marked)	- CSA certified - CSA Class I, Division 2, Groups A, B, C, D certified - UL listed - CE marked for all applicable directives
Installation Instruction	Publication 1794-5.5

1 Includes offset, gain, non-linearity and repeatability error terms.
2 Use this conductor category information for planning conductor routing as described in publication 1770-4.1, "Wiring and Grounding Guidelines for Noise Immunity."

Specifications - 1794-IE4XOE2/B 4 Input/2 Output Analog Combo Module	
Input Specifications	
Number of Inputs	4 single-ended, non-isolated
Resolution Voltage Current	12 bits - unipolar; 11 bits plus sign - bipolar $2.56 \mathrm{mV} / \mathrm{cnt}$ unipolar; $5.13 \mathrm{mV} / \mathrm{cnt}$ bipolar $5.13 \mu \mathrm{~A} / \mathrm{cnt}$
Data Format	left justified 16-bit 2's complement
Conversion Type	Successive approximation
Conversion Rate	256μ a all channels
Input Current Terminal	4-20mA (user configurable) $0-20 \mathrm{~mA}$ (user configurable)
Input Voltage Terminal	$\pm 10 \mathrm{~V}$ (user configurable) 0-10V (user contigurable)
Normal Mode Rejection Ratio Voltage Terminal Current Terminal	$\begin{aligned} & -3 \mathrm{db} @ 17 \mathrm{~Hz} ;-20 \mathrm{db} / \mathrm{decade} \\ & -10.0 \mathrm{~dB} @ 50 \mathrm{~Hz},-11.4 \mathrm{~dB} @ 60 \mathrm{~Hz} \\ & -3 \mathrm{db} @ 9 \mathrm{~Hz} ;-20 \mathrm{db} / \mathrm{decade} \\ & -15.3 \mathrm{~dB} @ 50 \mathrm{~Hz},-16.8 \mathrm{~dB} @ 60 \mathrm{~Hz} \end{aligned}$
Step Response to 63\% Voltage Terminal Current Terminal	$\begin{array}{\|l} 9.4 \mathrm{~ms} \\ 18.2 \mathrm{~ms} \end{array}$
Input Impedance Voltage Terminal Current Terminal	100k ohms 238 ohms
Input Resistance Voltage Terminal Current Terminal	200k ohms 238 ohms
Absolute Accuracy ${ }^{1}$ Voltage Terminal Current Terminal	0.29% Full Scale @ $25^{\circ} \mathrm{C}$ 0.29% Full Scale @ $25^{\circ} \mathrm{C}$
Accuracy Drift with Temperature Voltage Terminal Current Terminal	0.00428% Full Scale $/{ }^{\circ} \mathrm{C}$ 0.00407% Full Scale $/{ }^{\circ} \mathrm{C}$
Maximum Overload	30 V continuous or 32mA continuous, one channel at a time
Output Specifications	
Number of Outputs	2 single-ended, non-isolated
Resolution Voltage Current	$\begin{aligned} & \hline 12 \text { bits plus sign } \\ & 2.56 \mathrm{mV} / \mathrm{cnt} \\ & 5.13 \mu \mathrm{~A} / \mathrm{cnt} \end{aligned}$
Data Format	left justified 16-bit 2's complement
Conversion Type	Pulse Width Modulation
Conversion Rate	1.024 ms maximum all channels
Output Current Terminal	OmA output until module is configured 4-20mA user configurable 0-20mA user configurable
Output Voltage Terminal	OV output until module is configured $\pm 10 \mathrm{~V}$ user configurable 0-10V user configurable
Step Response to 63\% of FS	24 ms
Specifications continued on next page.	

Specifications - 1794-IE4XOE2/B 4 Input/2 Output Analog Combo Module	
Current Load on Voltage Output	3mA maximum
Resistive Load on mA Output	15-750 ohms
Absolute Accuracy ${ }^{1}$ Voltage Terminal Current Terminal	0.133\% Full Scale @ $25^{\circ} \mathrm{C}$ 0.425% Full Scale @ $25^{\circ} \mathrm{C}$
Accuracy Drift with Temperature Voltage Terminal Current Terminal	0.0045% Full Scale $/{ }^{\circ} \mathrm{C}$ 0.0069% Full Scale $/{ }^{\circ} \mathrm{C}$
General Specifications	
Module Location	Cat. No. 1794-TB2, -TB3 Terminal Base Unit
Flexbus Current	20 mA
Power Dissipation	4.0W maximum @ 31.2V dc
Thermal Dissipation	Maximum 13.6 BTU/hr @ 31.2V dc
Keyswitch Position	5
Calibration	None Required
Indicators	1 green power indicator
Isolation Voltage	Tested at 850 V dc for 1 s between user and system No isolation between individual channels
External dc Power Supply Voltage Voltage Range Supply Current	24 V dc nominal 19.2 to 31.2 V dc (includes 5% ac ripple) 70 mA @ 24 V dc
Dimensions Inches (Millimeters)	$\begin{aligned} & 1.8 \mathrm{H} \times 3.7 \mathrm{~W} \times 2.1 \mathrm{D} \\ & (45.7 \times 94.0 \times 53.3) \end{aligned}$
Environmental Conditions Operational Temperature Storage Temperature Relative Humidity Shock Operating Non-operating Vibration	0 to $55^{\circ} \mathrm{C}$ (32 to $131^{\circ} \mathrm{F}$) -40 to $85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.185^{\circ} \mathrm{F}\right)$ 5 to 95% noncondensing (operating) 5 to 80% noncondensing (nonoperating) 30 g peak acceleration, 11(+1)ms pulse width 50 g peak acceleration, $11(+1) \mathrm{ms}$ pulse width Tested $5 \mathrm{~g} @ 10-500 \mathrm{~Hz}$ per IEC 68-2-6
Conductors Wire Size Category	12 gauge ($4 \mathrm{~mm}^{2}$) stranded maximum $3 / 64$ inch (1.2 mm) insulation maximum 2^{2}
Agency Certification (when product or packaging is marked)	- CSA certified - CSA Class I, Division 2, Groups A, B, C, D certified - UL listed - CE marked for all applicable directives
Installation Instruction	Publication 1794-5.15
$1 \quad$ Includes offset, gain, non-linearity and repeatability error terms. 2 Use this conductor category information for planning conductor routing as described in publication 1770-4.1, "Wiring and Grounding Guidelines for Noise Immunity."	

Appendix

Differences Between Series A and Series B Analog Modules

The following lists major differences between series A and series B analog modules.

Catalog Number	Description	Series A	Series B
1794-IE8,1794-0E4,1794-IE4X0E2	Power Up bit in Read Word	None	This bit is set when all bits in the configuration register are 0 (unconfigured state).
	Change to range selection tables	No off position available. Module produces either 2 V or 4 mA , dependent upon the range selected, until module is configured.	Off position now produces 0 V or 0mA, dependent upon range selected, until module is configured.
Specifications			
1794-0E4	Output Current Terminal	4 mA output until module is configured 4-20mA user configurable 0-20mA user configurable	OmA output until module is configured 4-20mA user configurable 0-20mA user configurable
	Output Voltage Terminal	2 V output until module is configured $\pm 10 \mathrm{~V}$ user configurable $0-10 \mathrm{~V}$ user configurable	OV output until module is configured $\pm 10 \mathrm{~V}$ user configurable $0-10 \mathrm{~V}$ user configurable
1794-IE4XOE2	Output Current Terminal	4 mA output until module is configured 4-20mA user configurable $0-20 \mathrm{~mA}$ user configurable	OmA output until module is configured 4-20mA user configurable 0-20mA user configurable
	Output Voltage Terminal	2 V output until module is configured $\pm 10 \mathrm{~V}$ user configurable $0-10 \mathrm{~V}$ user configurable	OV output until module is configured $\pm 10 \mathrm{~V}$ user configurable 0-10V user configurable
$\begin{aligned} & \hline \text { 1794-IE8, } \\ & \text { 1794-0E4, } \\ & \text { 1794-IE4XOE2 } \end{aligned}$	Agency Certification (when product or packaging is marked)	- CSA certified - CSA Class I, Division 2, Groups A, B, C, D certified - UL listed	- CSA certified - CSA Class I, Division 2, Groups A, B, C, D certified - UL listed - CE marked for all applicable directives

Data Table Formats

Two's Complement Binary

Two's complement binary is used when performing mathematical calculations internal to the processor. To complement a number means to change it to a negative number. For example, the following binary number is equal to decimal 22.

$$
10110_{2}=22_{10}
$$

First, the two's complement method places an extra bit (sign bit) in the left-most position, and lets this bit determine whether the number is positive or negative. The number is positive if the sign bit is 0 and negative if the sign bit is 1 . Using the complement method:

$$
010110=22
$$

To get the negative using the two's complement method, you must invert each bit from right to left after the first " 1 " is detected.

In the above example:

$$
010110=+22
$$

Its two's complement would be:

$$
101010=-22
$$

Note that in the above representation for +22 , starting from the right, the first digit is a 0 so it is not inverted; the second digit is a 1 so it is not inverted. All digits after this one are inverted.

If a negative number is given in two's complement, its complement (a positive number) is found in the same way:

$$
\begin{aligned}
& 110010=-14 \\
& 001110=+14
\end{aligned}
$$

All bits from right to left are inverted after the first " 1 " is detected.
The two's complement of 0 is not found, since no first " 1 " is ever encountered in the number. The two's complement of 0 then is still 0 .

Analog Data Format

The data returned from the analog-to-digital converter in the module is 12 -bit resolute. This value is left-justified into a 16 -bit field, reserving the most significant bit for a sign bit.

Scaling Example

To scale your data to a different range:

- SLC 500 - use the scaling instruction.
- PLC-5 - determine a constant (slope) by dividing the desired range by the actual range. Multiply the result by your data, and add or subtract any offset.
Example:
A 4-20mA input places data at N13:0 (Figure 3.4 on page 3-4), with a range of 0 to 30,840 . ($30,840=7878$ hex - see data format on page $\mathrm{C}-2$).

You want the $4-20 \mathrm{~mA}$ (0 to 30,840) to be 32 to 1000 degrees in the PLC-5. Use the following formula:

Scaled Data (degrees) @ N30:0 = \{[(Desired Range)/Actual Range] X Analog Input Data $\}+$ Offset

$$
=\{[((1000-32) / 30,840] \times \mathrm{N} 13: 0\}+32
$$

$$
\text { = F8:0 + } 32
$$

Scaled Data (degrees) @ N30:0 = F8:0 + 32 (See ladder logic below)

Example using Compute Instructions

This rung will scale FLEX I/O analog data to a different range. In this example, we want the $4-20 \mathrm{~mA}$ input data to represent 32 to 1000 degrees in the PLC-5. For this example, $\mathrm{N} 13: 0=30,840$ (7878 in hex). Two compute instructions are needed because of the way the destination value will be rounded if we use an integer location instead of floating point in the first compute instruction. The second compute instruction has a final destination of an integer location.

Symbols

Empty, P-1, P-2, 1-1, 1-2, 2-1, 3-6, C-1

Numbers

1794-IE4XOE2, specifications, A-5
1794-IE8, specifications, A-1
1794-OE4, specifications, A-3

A
adapter input status word, 5-1
analog mapping
1794-IE8, 5-3
1794-IE4XOE2, 5-9
1794-OE4, 5-6
analog modules, types, 1-2

B

bit/word description
4 output analog module, 1794-OE4, 5-7
4 output/4 input module, 4-6
analog combo module, 1794-IE4XOE2, 5-10
block transfer, 1794-IE8, 5-4
block transfer read 1794-IE4XOE2, 4-9
1794-IE8/B, 4-4
1794-OE4/B, 4-6
block transfer write 1794-IE4XOE2, 4-11
1794-IE8/B, 4-5 1794-OE4/B, 4-7
block transfer
read, 1-2
write, 1-2
block transfer programming, 3-1
block transfer read, $\quad 4-2$
1794-OE4/B, 4-6
block transfer write
1794-IE4XOE2, 4-10
1794-IE8/B, 4-3
1794-OE4/B, 4-6
configuration block, 4-10
1794-IE8/B, 4-4
1794-OE4/B, 4-7
input range selection, 4-2

C
communication, between module and adapter, 1-3
configuration block, block transfer write
1794-IE8/B, 4-4
1794-OE4/B, 4-7
configuring features, 4-1
connecting wiring, 2-8
1794-IE4XOE2, 2-12
1794-IE8, 2-10
1794-OE4, 2-11
1794-TB2, TB3, 2-9
considerations, pre-installation, 2-1

D

daisy-chaining wiring, 2-3
default values, 5-12
description
adapter, 1-1
I/O modules, 1-1
terminal base, 1-1
differences, series A and series $B, B-1$
DIN rail mounting, 2-4

F
features
configuring, 4-1
of the module, 1-4
I
indicators, status, 2-13
input ranges, 4-2
program selectable, 1-2
input status word, 5-2

K

keyswitch positions, 2-7

L	R
left-justified data, 3-6, 4-2, C-2	range, selecting, 4-2
	range selection
M	1794-IE4XOE2, 4-11, 5-10
M	1794-IE8, 5-4
mapping	1794-OE4, 5-7
1794-IE8, 5-3	1794-IE8/B, 4-5
1794-IE4XOE2, 5-9	1794-OE4/B, 4-7
1794-OE4, 5-6	removing and replacing, under power
memory map - read	(RIUP), 2-8, 2-9
1794-IE4XOE2, 5-9	
1794-IE8, 5-3	
1794-OE4, 5-6	S
memory map - write	safe state, selection of, 4-2
1794-IE4XOE2, 5-10	sample program, 3-6
1794-IE8, 5-4	specifications
1794-OE4, 5-6	1794-IE4XOE2, A-5
module features, 1-4	1794-IE8, A-1
mounting, on terminal base, 2-7	1794-OE4, A-3
mounting kit, cat. no. 1794-NM1, 2-5	status indicators, 2-13
0	T
optimal defaults, 5-12	terminal base units, recommended, 2-8 terminology used, for module, $\mathrm{P}-1$
P	
panel/wall mounting, 2-5	W
PLC-2 programming, 3-5	wall/panel mounting, 2-5
polled I/O, structure, 5-1	wiring
power defaults, 5-12	methods of, 2-3
programming example	
PLC-3, 3-2	wiring connections $1794-$ IE4XOE2, $2-12$
PLC-5, 3-4	1794-IE8, 2-10
	1794-OE4, 2-11

Allen-Bradley
 Publication Problem Report

If you find a problem with our documentation, please complete and return this form.

Pub. Name FLEX I/O Analog Modules User Manual
1794-IE8, -OE4, -IE4XOE2
Cat. No. Series B Pub. No. 1794-6.5.2
Pub. Date May 1996
Part No. 955122-66

Check Problem(s) Type:	Describe Problem(s):		Internal Use Only
\square Technical Accuracy	\square text	\square illustration	
Completeness What information is missing?	procedure/stepexampleexplanation	illustration \square definition guideline \square feature other	info in manual (accessibility) info not in manual
Clarity What is unclear?			
Sequence What is not in the right order?			
Other Comments Use back for more comments.			

Your Name
Location/Phone

Return to: Marketing Communications, Allen-Bradley Co., 1 Allen-Bradley Drive, Mayfield Hts., OH 44124-6118 Phone: (216)646-3176
FAX: (216)646-4320

Support Services

At Allen-Bradley, customer service means experienced representatives at Customer Support Centers in key cities throughout the world for sales service and support. Our value-added services include:

Technical Support

- SupportPlus programs
- telephone support and 24-hour emergency hotline
- software and documentation updates
- technical subscription services

Engineering and Field Services

- application engineering assistance
- integration and start-up assistance
- field service
- maintenance support

Technical Training

- lecture and lab courses
- self-paced computer and video-based training
- job aids and workstations
- training needs analysis

Repair and Exchange Services

- your only "authorized" source
- current revisions and enhancements
- worldwide exchange inventory
- local support

0. Rockwuell Automation Allen-Bradley

Worldwide representation.

Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve productivity and quality for more than 90 years. We design, manufacture and support a broad range of automation products worldwide. They include logic processors, power and motion control devices, operator interfaces, sensors and a variety of software. Rockwell is one of the world's leading technology companies

Argentina • Australia •Austria • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic • Denmark • Ecuador • Egypt •El Salvador •Finland • France • Germany •Greece •Guatemala • Honduras • Hong Kong • Hungary • Iceland • India • Indonesia • Ireland • Israel • Italy • Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru • Philippines • Poland • Portugal • Puerto Rico • Qatar • Romania • Russia-CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Sweden • Switzerland • Taiwan • Thailand • Turkey • United Arab Emirates • United Kingdom • United States • Uruguay •Venezuela • Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444

Attachment G-07e

Manufacturers' Submittals and Individual O\&M Manuals

CONTROLS

Logic Controller

1769 CompactLogix Controllers User Manual

Catalog Numbers 1769-L31, 1769-L32C, 1769-L32E, 1769-L35CR, 1769-L35E

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.
WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment,
which may lead to personal injury or death, property damage, or economic loss.
ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property
damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

[^7]This manual contains new and updated information. Changes throughout this revision are marked by change bars, as shown to the right of this paragraph.

New and Updated Information

This table contains the changes made to this revision.

Topic	Page
Updated the Verify Compatibility section	18

Notes:

PrefaceAdditional Resources9
Chapter 1
About the 1769 CompactLogix Controller 11
Design a CompactLogix System 13
Chapter 2
Verify Compatibility 18
Before You Begin 19
Parts List 19
Set the Node Address (ControlNet only) 19
Connect the 1769-BA Battery 20
Install a CompactFlash Card (optional) 21
Assemble the System 22
Mount the System. 23
Minimum Spacing 23
Dimensions 24
Ground the Wiring. 24
Mount the Panel 25
Mount the Controller on the DIN Rail 25
Make RS-232 Connections to the Controller 26
RS-232 Cable 26
Optical Isolator (1769-L31 only) 27
Default Serial Configuration 27
Using the Channel 0 Default Communication Push Button 28
Make Ethernet Connections to the Controller 28
Assign an IP Address. 29
Make ControlNet Connections to the Controller 32
Connect the Controller to the Network via a ControlNet Tap 33
Connect a Programming Terminal to the Network via a 1786 -CP Cable 35
Install the Appropriate EDS Files. 36
Load the Controller Firmware 36
Use the ControlFLASH Utility to Load Firmware 37
Use AutoFlash to Load Firmware 37
Use a CompactFlash Card to Load Firmware 38
Select the Controller's Operating Mode 39
Chapter 3

Connect to the Controller via the
Serial Port
Connect to the Controller via the Serial Port 41
Configure the Serial Driver 43
Select the Controller Path 45
Controller Options 46
Chapter 4
Communicate over Networks
EtherNet/IP Network Communication 48
Connections over an EtherNet/IP Network 49
ControlNet Network Communication 50
Connections over ControlNet Network 52
DeviceNet Communication 53
Serial Communication 55
Configure an Isolator 57
Communicate with DF1 Devices 59
DF1 Radio Modem Support 61
Modbus Support 67
Broadcast Messages over a Serial Port 67
DH-485 Network Communication 72
Chapter 5
Manage Controller Communication Produce and Consume Data. 75
Send and Receive Messages 76
Determine Whether to Cache Message Connections 77
Connections 77
Calculate Total Connections 78
Connections Example 79
Chapter 6
Place, Configure, and Monitor I/0 Select I/O Modules 81
Validate I/O Layout 82
Estimate Requested Packet Interval 82
Calculate System Power Consumption 83
Validate Placement of I/O Modules 83
Place Local I/O Modules 86
Configure I/O 87
I/O Connections 88
Configure Distributed I/O on an EtherNet/IP Network 88
Configure Distributed I/O on a ControlNet Network 89
Configure Distributed I/O on a DeviceNet Network 90
Address I/O Data 91
Determine When Data Is Updated 92
Monitor I/O Modules 93
Display Fault Data 93
End-cap Detection and Module Faults. 94
Reconfigure an I/O Module 94
Reconfigure a Module via RSLogix 5000 Programming Software 94
Reconfigure a Module via a MSG Instruction 95
Chapter 7
Develop Applications Manage Tasks. 97
Develop Programs 98
Define Tasks 99
Define Programs 101
Define Routines 101
Sample Controller Projects 102
Organize Tags 103
Select a Programming Language 104
Add-on Instructions 105
Monitor Connections 107
Determine if Device Communication Has Timed Out 107
Determine if I/O Module Communication Has Timed Out 108
Interrupt the Execution of Logic and Execute the Fault Handler 109
Select a System Overhead Time Slice Percentage 109
Chapter 8
Configure PhaseManager Application PhaseManager Overview 113
State Model Overview 114
How Equipment Changes States 116
Manually Change States 117
Compare PhaseManager to Other State Models 117
Minimum System Requirements 118
Equipment Phase Instructions 118
Chapter 9
Use a CompactFlash Card
Locate the Controller Serial Number in RSLinx Software 119
Locate the Controller Serial Number 121
Use a CompactFlash Card to Load/Store a User Application 122
Manually Change Which Project Loads 122
Manually Change the Load Parameters 124
Use a CompactFlash Card for Data Storage 125
Read and Write User Data to the CompactFlash Card 125
Chapter 10
Battery Handling 127
Check If the Battery Is Low 128
Estimate 1769-BA Battery Life 128
Store Lithium Batteries 129
Battery Removal 129
Additional Resources 130
Appendix A
Status Indicators
1769-L3xx Controllers Status Indicators 131
CompactFlash Indicator 133
RS-232 Serial Port Status Indicators 133
ControlNet Indicators 133
Module Status (MS) Indicator 134
Network Channel Indicators 135
EtherNet/IP Indicators 135
Module Status (MS) Indicator 135
Network Status (NS) Indicator 136
Link Status (LNK) Indicator 136
Appendix B
Dynamic Memory Allocation in CompactLogix Controllers
Index
Messages 138
RSLinx Tag Optimization 138
Trends 139
DDE/OPC Topics 139
Specify Connections per PLC Controller 139
Number of Connections Needed to Optimize Throughput 141
View the Number of Open Connections. 141

Use this manual to become familiar with the CompactLogix ${ }^{\text {m" }}$ controller and its features.

This manual describes the necessary tasks to install, configure, program, and operate a CompactLogix system. In some cases, this manual includes references to additional documentation that provides the more comprehensive details.

Additional Resources

These documents contain additional information concerning related products from Rockwell Automation.

Resource	Description
1769 CompactLogix Controllers Specifications Technical Data, publication 1769-TD005	Contains technical specifications and certifications for all CompactLogix controllers.
1769-L3x CompactLogix System Quick Start, publication IASIMP-QS001	Provides examples of using a 1769-L3x CompactLogix controller to connect to multiple devices over various networks.
Logix5000 Controller Design Considerations Reference Manual, publication 1756-RM094	Provides guidelines you can follow to optimize your system. This manual also provides system information you need to make system design choices.
Logix5000 Controllers Common Procedures Manual, publication 1756-PM001	Guides the development of projects for Logix5000"m controllers. It provides links to individual guides.
Logix5000 Controllers General Instruction Set Reference Manual, publication 1756-RM003	Provides a programmer with details about each available instruction for a Logix5000 controller. You should already be familiar with how the Logix5000 controller stores and processes data.
Logix5000 Controllers Process Control/Drives Instruction Set Reference Manual, publication 1756-RM006	Provides a programmer with detail about each function block instruction available for a Logix5000 controller. You uhould already be familiar with how the Logix5000 controller stores and processes data.
EtherNet//P Modules in Logix5000 Control Systems User Manual, publication ENET-UM001	Describes how to install and configure EtherNet//P modules in Logix50000 control systems.
ControlNet Communication Modules in Logix5000 Control Systems User Manual, publication CNET-UM001	Describes how to install and configure ControlNet modules in a Logix5000 control system.
Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1	Provides general guidelines for installing a Rockwell Automation industrial system.
Product Certifications website, http://www.ab.com	Provides declarations of conformity, certificates, and other certification details.

You can view or download publications at http:/www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.

Notes:

1769 CompactLogix Controllers Overview

This chapter introduces the 1769 CompactLogix controllers. These controllers offer state-of-the-art control, communication, and I/O elements in a distributed control package.

About the 1769
 CompactLogix Controller

The 1769 CompactLogix controller offers state-of-the-art control, communication, and I/O elements in a distributed control package.

Figure 1 - CompactLogix Controller and 1769 I/0 Modules

For a more flexible system, use:

- multiple controllers in a single chassis.
- multiple controllers joined across networks.
- I/O in multiple platforms that is distributed in many locations and connected over multiple I/O links.

Figure 2 - CompactLogix System Overview

The CompactLogix controller, part of the Logix family of controllers, provides a small, powerful, cost-effective system consisting of the following:

- RSLogix ${ }^{\text {m" }} 5000$ programming software
- Built-in communication ports for EtherNet/IP (1769-L32E and 1769L35E only) and ControlNet (1769-L32C and 1769-L35CR only) networks
- A 1769-SDN communication interface module providing I/O control and remote device configuration over DeviceNet
- A built-in serial port on every CompactLogix controller
- Compact I/O modules providing a compact, DIN-rail or panel-mounted I/O system

Table 1 - CompactLogix Controller Combinations

Controller	Available Memory	Communication Options	Number of Tasks Supported	Number of Local I/O Modules Supported
1769-L35CR	1.5 MB	1 port ControlNet - supports redundant media 1 port RS-232 serial (system or user protocols)	8	30
1769-L35E		1 port EtherNet/IP 1 port RS-232 serial (system or user protocols)		
1769-L32C	750 KB	1 port ControlNet 1 port RS-232 serial (system or user protocols)	6	16
1769-L32E		1 port EtherNet/IP 1 port RS-232 serial (system or user protocols)		
1769-L31	512 KB	1 port RS-232 serial (system or user protocols) 1 port RS-232 serial (system protocol only)	4	

Design a CompactLogix System

When designing a CompactLogix system, determine the network configuration and the placement of components in each location. To design your CompactLogix system, you must select the following:

- I/O devices
- A communication network
- Controllers
- Power supplies
- Software

Notes:

Install the 1769-L3x Controllers

Topic	Page
Verify Compatibility	18
Before You Begin	19
Set the Node Address (ControlNet only)	19
Connect the 1769-BA Battery	20
Install a CompactFlash Card (optional)	21
Assemble the System	22
Mount the System	23
Make RS-232 Connections to the Controller	26
Make Ethernet Connections to the Controller	28
Make ControlNet Connections to the Controller	32
Install the Appropriate EDS Files	36
Load the Controller Firmware	36
Select the Controller's Operating Mode	39

Use this chapter to install the CompactLogix" controller, which must be the leftmost module in the first bank of the system.

WARNING: This equipment is intended for use in a Pollution Degree 2 industrial environment, in overvoltage Category II applications (as defined in IEC publication 60664-1), at altitudes up to 2000 meters (6562 ft) without derating.
This equipment is considered Group 1, Class A industrial equipment according to IEC/CISPR Publication 11. Without appropriate precautions, there may be potential difficulties ensuring electromagnetic compatibility in other environments due to conducted as well as radiated disturbance.
This equipment is supplied as open-type equipment. It must be mounted within an enclosure that is suitably designed for those specific environmental conditions that will be present and appropriately designed to prevent personal injury resulting from accessibility to live parts. The enclosure must have suitable flame-retardant properties to prevent or minimize the spread of flame, complying with a flame spread rating of $5 \mathrm{VA}, \mathrm{V} 2, \mathrm{~V} 1, \mathrm{~V} 0$ (or equivalent) if non-metallic. The interior of the enclosure must be accessible only by the use of a tool. Subsequent sections of this publication may contain additional information regarding specific enclosure type ratings that are required to comply with certain product safety certifications.
In addition to this publication, see the following:

- Industrial Automation Wiring and Grounding Guidelines, Allen-Bradley${ }^{\ominus}$ publication 1770-4.1, for additional installation requirements
- NEMA 250 and IEC 60529 , as applicable, for explanations of the degrees of protection provided by different types of enclosure

WARNING: This equipment is sensitive to electrostatic discharge, which can cause internal damage and affect normal operation. Follow these guidelines when you handle this equipment:

- Touch a grounded object to discharge potential static.
- Wear an approved grounding wriststrap.
- Do not touch connectors or pins on component boards.
- Do not touch circuit components inside the equipment.
- Use a static-safe workstation, if available.
- Store the equipment in appropriate static-safe packaging when not in use.

Table 2 - North American Hazardous Location Approval

The following information applies when operating this
equipment in hazardous locations.
Products marked "CLI, DIV 2, GP A, B, C, D" are suitable for use in
Class I Division 2 Groups A, B, C, D, H Hazardous Locations and
nonhazardous locations only. Each product is supplied with
markings on the rating nameplate indicating the hazardous location
temperature code. When combining products within a system, the
most adverse temperature code (lowest "T" number) may be used to
help determine the overall temperature code of the system.
Combinations of equipment in your system are subject to
investigation by the local Authority Having Jurisdiction at the time
of installation.

Informations sur I'utilisation de cet équipement en environnements dangereux.
Les produits marqués "CLI, DIV 2, GP A, B, C, D" ne conviennent qu'à une utilisation en environnements de Classe I Division 2 Groupes A, B, C, D dangereux et non dangereux. Chaque produit est livré avec des marquages sur sa plaque d'identification qui indiquent le code de température pour les environnements dangereux. Lorsque plusieurs produits sont combinés dans un système, le code de température le plus défavorable (code de température le plus faible) peut être utilisé pour déterminer le code de température global du système. Les combinaisons d'équipements dans le système sont sujettes à inspection par les autorités locales qualifiées au moment de l'installation.

WARNING: Explosion Hazard -

- Do not disconnect equipment unless power has been removed or the area is known to be nonhazardous.
- Do not disconnect connections to this equipment unless power has been removed or the area is known to be nonhazardous. Secure any external connections that mate to this equipment by using screws, sliding latches, threaded connectors, or other means provided with this product.
- Substitution of components may impair suitability for Class I, Division 2.
- If this product contains batteries, they must only be changed in an area known to be nonhazardous.

AVERTISSEMENT: Risque d'Explosion -

- Couper le courant ou s'assurer que I'environnement est classé non dangereux avant de débrancher l'équipement.
- Couper le courant ou s'assurer que I'environnement est classé non dangereux avant de débrancher les connecteurs. Fixer tous les connecteurs externes reliés à cet équipement à l'aide de vis, loquets coulissants, connecteurs filetés ou autres moyens fournis avec ce produit.
- La substitution de composants peut rendre cet équipement inadaptéà une utilisation en environnement de Classe I, Division 2.
- S'assurer que l'environnement est classé non dangereux avant de changer les piles.

Table 3 - European Hazardous Location Approval

European Zone 2 Certification (The following applies when the product bears the Ex or EEx Marking)

This equipment is intended for use in potentially explosive atmospheres as defined by European Union Directive 94/9/EC and has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of Category 3 equipment intended for use in potentially explosive atmospheres, given in Annex II to this Directive.
Compliance with the Essential Health and Safety Requirements has been assured by compliance with EN 60079-15 and EN 60079-0.

WARNING:

- This equipment must be installed in an enclosure providing at least IP54 protection when applied in Zone 2 environments.
- This equipment shall be used within its specified ratings defined by Allen-Bradley.
- Provisions shall be made to prevent the rated voltage from being exceeded by transient disturbances of more than 40% when applied in Zone 2 environments.
- Secure any external connections that mate to this equipment by using screws, sliding latches, threaded connectors, or other means provided with this product.
- Do not disconnect equipment unless power has been removed or the area is known to be nonhazardous.

ATTENTION: This equipment is not resistant to sunlight or other sources of UV radiation.

Verify Compatibility

IMPORTANT The series B controllers are compatible only with the controller firmware and the RSLogix 5000 software versions as indicated in the table below.
Attempting to use controllers with incompatible software and firmware revisions can result in the following:

- An inability to connect to the series B controller in RSLogix 5000 software
- Unsuccessful firmware upgrades in ControIFLASH ${ }^{\text {wo }}$ or AutoFlash utilities

This table shows the compatible pairs of RSLogix 5000 software versions and controller firmware revisions.

Controller	RSLogix 5000 Software Version or Later	Controller Firmware Revision or Later
1769-L31, 1769-L32C, 1769-L32E, 1769-L35CR, 1769-L35E	16.00 .00	16.023
	17.01 .02	17.012
	19.01 .00	19.015
	20.01 .00	20.013

Before You Begin

Consider the following when planning your CompactLogix system:

- The CompactLogix controller is always the leftmost module in the system.
- The controller must be within four modules of the system power supply. Some I/O modules may be up to eight modules away from the power supply. See the documentation for your 1769 I/O modules for details.
- The 1769-L32E controller supports as many as $16 \mathrm{I} / \mathrm{O}$ modules and the 1769-L35E controller supports as many as 30 I/O modules. Both controllers can use a maximum of 3 I/O banks with 2 expansion cables.
- Each I/O bank requires its own power supply.
- Only one controller can be used in a CompactLogix system.
- A $1769-E C R$ right end cap or $1769-E C L$ left end cap is required to terminate the end of the communication bus.

Parts List

These components are shipped with the controller.

Component	Description
\square	$1769-$ BA battery
\square	$1747-K Y$ controller key

You may also use these components with the controller.

If you want to	Then use this component
Connect a device to the RS-232 port	$1756-$ CP3 or 1747-CP3 serial cable
Add nonvolatile memory	$1784-$ CF128 Industrial CompactFlash card
Connect a device to the EtherNet/IP port	Standard Ethernet cable with RJ-45 connector
Connect a device to the ControlNet port	- ControlNet taps for connections from controller channels A or B to the ControlNet network - 1786-CP cable for connections from a programming terminal to the ControlNet network via the controller's network access port (NAP)

Set the Node Address (ControlNet only)

Every ControlNet network requires at least one module that can store parameters and configure the network with those parameters upon startup. The CompactLogix controller is called a keeper because it keeps the network configuration.

The CompactLogix controller can keep the network parameters at any legal node address ($01 \ldots 99$). Multiple devices on any one network can act as the network keepers. Each device capable of being the network keeper acts to back up the current keeper. This back-up function is automatic and requires no action on your part.

Node address switches are set to the 99 position at shipment, as shown in the figure.

43868

Use these steps to set the node address.

1. Slide the side cover forward.

43860
2. Use a small screwdriver to set the node address via the controller switches.

3. Write the node address on the front panel overlay after setting the node address switches.

Connect the 1769-BA Battery
The controller is shipped with the 1769-BA battery that is packed separately. To connect the battery, follow this procedure.

ATTENTION: The 1769-BA battery is the only battery you can use with the 1769-L32E and 1769-L35E controllers. The 1747-BA battery is not compatible with the 1769-L32E and 1769-L35E controllers and may cause problems.
WARNING: When you connect or disconnect the battery, an electrical arc can
occur. This could cause an explosion in hazardous location installations. Be sure
that power is removed or the area is nonhazardous before proceeding.
For safety information on the handling of lithium batteries, including handling and
disposal of leaking batteries, see Guidelines for Handling Lithium Batteries
Technical Data, publication AG-5.4NOVOU.

1. Remove the battery door by sliding it forward.

IMPORTANT Do not remove the plastic insulation covering the battery. The insulation is necessary to protect the battery contacts.

1. Insert the battery connector into the connector port.

The connector is keyed to be installed with the correct polarity.
2. Insert the battery into the battery port in the battery door.

3. Slide the battery door back until it clicks into position.

TIP At the end of its life, the used battery should be collected separately from any unsorted municipal waste and recycled.

Install a CompactFlash Card (optional)

ATTENTION: Do not remove the CompactFlash card while the controller is reading from or writing to the card, as indicated by a flashing green CF status indicator. This could corrupt the data on the card or in the controller, as well as corrupt the latest firmware in the controller.

The optional industrial CompactFlash card provides nonvolatile memory for a CompactLogix controller. The card is not required for controller operation.

To install a CompactFlash card, push the locking tab to the right and insert the industrial CompactFlash card into the socket on the front of the controller.

The label of the CompactFlash card faces toward the left. Match the orientation arrow on the card with the arrow on the front of the controller.

To remove the CompactFlash card, push the locking tab away from the CompactFlash card and pull the

44732 CompactFlash card from the socket.

Assemble the System

The controller can be attached to an adjacent I/O module or power supply before or after mounting.
WARNING: The CompactLogix controller is not designed for removal and
insertion under power.
If you insert or remove the module while backplane power is on, an electrical arc
can occur. This could cause an explosion in hazardous location installations.
Be sure that power is removed or the area is nonhazardous before proceeding.

Refer to the illustration when installing a controller.

1. Disconnect line power.
2. Check that the lever of the adjacent module (A) is in the unlocked (fully right) position.
3. Use the upper and lower tongue-and-groove slots (B) to secure the modules together.
4. Move the module back along the tongue-and-groove slots until the bus connectors line up with each other.
5. Use your fingers or a small screwdriver to push the module's bus lever back slightly to clear the positioning tab (C).
6. Move the module's bus lever fully to the left (D) until it clicks, being sure it is locked firmly in place.

ATTENTION: When attaching the controller, power supply, and I/O modules, make sure the bus connectors are securely locked together to be sure of proper electrical connection.
This equipment is not resistant to sunlight or other sources of UV radiation.
7. Attach an end-cap terminator (E) to the last module in the system by using the tongue-and-groove slots as before.
8. Lock the end-cap bus terminator (F).

Mount the System

ATTENTION: During panel or DIN-rail mounting of all devices, be sure that all debris (such as metal chips or wire strands) is kept from falling into the controller. Debris that falls into the controller could cause damage while the controller is energized.

Minimum Spacing

Maintain spacing from enclosure walls, wireways, and adjacent equipment. Allow 50 mm (2 in .) of space on all sides, as shown. This provides ventilation and electrical isolation.

Dimensions

IMPORTANT Compact $/ / 0$ expansion cables have the same dimensions as the end caps. Expansion cables can be used on either the right or left end. A 1769-ECR right-end cap or $1769-E C L$ left-end cap terminates the end of the communication bus.

Ground the Wiring

\triangle
ATTENTION: This product is grounded through the DIN rail to chassis ground. Use zinc-plated yellow-chromate steel DIN rail to assure proper grounding. The use of other DIN rail materials (such as aluminum or plastic) that can corrode, oxidize, or are poor conductors, can result in improper or intermittent grounding. Secure DIN rail to mounting surface approximately every 200 mm (7.8 in.) and use end-anchors appropriately.

This product is intended to be mounted to a well-grounded mounting surface such as a metal panel. Additional grounding connections from the controller's mounting tabs or DIN rail (if used) are not required unless the mounting surface cannot be grounded.

Refer to Allen-Bradley Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1, for additional information.

Mount the Panel

Mount the controller to a panel by using two screws per module. Use M4 or \#8 panhead screws. Mounting screws are required on every module. This procedure lets you use the assembled modules as a template for drilling holes in the panel.

IMPORTANT Due to module-mounting hole tolerance, it is important to follow these procedures.

1. On a clean work surface, assemble no more than three modules.
2. Using the assembled modules as a template, carefully mark the center of all module-mounting holes on the panel.
3. Return the assembled modules to the clean work surface, including any previously mounted modules.
4. Drill and tap the mounting holes for the recommended M4 or \#8 screw.
5. Place the modules back on the panel and check for proper hole alignment.

TIP The grounding plate, that is, where you install the mounting screws, enables the module to be grounded when it is panel-mounted.
6. Attach the modules to the panel by using the mounting screws.

TIP If you are mounting more modules, mount only the last one of this group and put the others aside. This reduces remounting time when you are drilling and tapping the next group of modules.
7. Repeat steps $1 . . .6$ for any remaining modules.

Mount the Controller on the DIN Rail

The controller can be mounted on the following DIN rails:

- EN $50022-35 \times 7.5 \mathrm{~mm}$ ($1.38 \times 0.30 \mathrm{in}$.)
- EN $50022-35 \times 15 \mathrm{~mm}(1.38 \times 0.59 \mathrm{in}$.)

ATTENTION: This product is grounded through the DIN rail to chassis ground. Use zinc-plated yellow-chromate steel DIN rail to assure proper grounding. The use of other DIN rail materials (for example, aluminum or plastic) that can corrode, oxidize, or are poor conductors, can result in improper or intermittent grounding. Secure DIN rail to mounting surface approximately every 200 mm (7.8 in.) and use end-anchors appropriately.

1. Before mounting the controller on a DIN rail, close the DIN rail latches.
2. Press the DIN-rail mounting area of the controller against the DIN rail. The latches will momentarily open and lock into place.

Make RS-232 Connections to the Controller

Connect the 9-pin female end of the serial cable to the serial port of the controller.

!WARNING: If you connect or disconnect the serial cable with power applied to this module or the serial device on the other end of the cable, an electrical arc can occur. This could cause an explosion in hazardous location installations.
Be sure that power is removed or the area is nonhazardous before proceeding.

RS-232 Cable

TIP This cable must be shielded and tied to the connector housing.

Optical Isolator (1769-L31 only)

Channel 0 is fully isolated and does not need a separate isolation device. Channel 1 is nonisolated. If you connect channel 1 to a device outside of the system's enclosure, consider installing an isolator (such as the 1761-NET-AIC interface converter) between the controller and device.

Select the appropriate cable.

Isolator Use	Cable	The 1756-CP3 cable attaches the controller directly to the controller. Ifyou make your own cable, it must be shielded and the shields must be tied to the metal shell surrounding the pins on the ends of the cable. You can also use a 1747-CP3 cable. This cable has a taller right-angle connector housing than the 1756-CP3 cable.	
No	The 1761-CBL-AP00 cable (right-angle connector to controller) or the 1761-CBL-PM02 cable (straight connector to the controller) attaches the controller to port 2 on the 1761-NET-AIC isolator. The mini-DIN connector is not commercially available, so you cannot make this cable.		

Default Serial Configuration

Channel 0 and Channel 1 (both serial ports) have the following default communication configuration.

Parameter	Default
Protocol	DF1 Full-duplex
Communication Rate	19.2 Kbps
Parity	None
Station Address	0

Parameter	Default
Control Lines	No Handshaking
Error Detection	BCC
Embedded Responses	Auto Detect
Duplicate Packet (Message) Detect	Enabled
ACK Timeout	$50(\times 20 \mathrm{~ms})$
NAK Receive Limit	3 Retries
ENQ Transmit Limit	3 Retries
Data Bits	8
Stop Bits	1

TIP Only Channel 0 has a default communication push button.

Using the Channel 0 Default Communication Push Button

The Channel 0 default communication push button is located on the front of the controller in the lower right corner as shown in the illustration. Use the Channel 0 default communication push button to change from the user-defined communication configuration to the default Communication mode. The Channel 0 default communication (DCH0) status indicator turns on (green, steady) to indicate that the default
 communication configuration is active.

IMPORTANT The default communication push button is recessed.
Before pressing the default communication push button, be sure to note the present communication configuration for Channel 0 . Pushing the default communication push button resets all configured parameters back to their default settings.
To return the channel to its user-configured parameters, you must enter them manually while online with the controller or download them as part of an RSLogix 5000 software project file. To do this online with RSLogix 5000 software, access the Controller Properties dialog box and enter parameters on the Serial Port, System Protocol, and User Protocol tabs.

Make Ethernet Connections to the Controller

The 1769-L32E and 1769-L35E controller are shipped with the BOOTP utility enabled. You must assign an IP address to the Ethernet port for the controller to communicate over an EtherNet/IP network.

WARNING: If you connect or disconnect the communication cable with power applied to this module or any device on the network, an electrical arc can occur. This could cause an explosion in hazardous location installations.
Be sure that power is removed or the area is nonhazardous before proceeding

Connect the RJ-45 connector of the Ethernet cable to the Ethernet port (top port) on the controller.

ATTENTION: Do not plug a DH-485 network cable or a NAP cable into the Ethernet port. Undesirable behavior or damage to the port may result.

Assign an IP Address

You can set the IP address by using any of these utilities:

- Rockwell BOOTP Utility (available with RSLinx and RSLogix 5000 software)
- RSLinx software
- RSLogix 5000 software

Use BOOTP to Set the IP Address

The BOOTP utility is a standalone program in one of the following directories:

- RSLinx Tools directory in the Rockwell Software ${ }^{\circ}$ program folder on the Start menu

The utility is automatically installed when you install RSLinx software.

- Utils directory on the RSLogix 5000 software installation CD

Follow this procedure to use the BOOTP utility.

1. Start the BOOTP software.
2. Select Tools $>$ Network Settings.
3. Enter the Ethernet mask and gateway.

4. Click OK.

In the BOOTP Request History dialog box, you see the hardware addresses of devices issuing BOOTP requests.
5. Double-click the hardware address of the device you want to configure.

TIP The hardware address is on the sticker on the left-side circuit board of the controller next to the battery.

The hardware address will be in this format: 00-0b-db-14-55-35.
The New Entry dialog box displays the device's Ethernet Address (MAC).
6. Enter the IP address.

7. Click OK.

8. To permanently assign this configuration to the device, highlight the device and click Disable BOOTP/DHCP.

When you cycle power, the device uses the configuration you assigned and does not issue a BOOTP request.

Use RSLinx Software to Set the IP Address

1. You can use RSLinx software, version 2.41 or later, to set the IP address.
2. Make sure the controller that uses the IP address is installed and running.
3. Connect to the controller via the serial connection (see page 26).
4. Start RSLinx software.

The RSWho dialog box opens.
5. Navigate to the Ethernet network via the serial network.

6. Right-click the Ethernet port (not the controller) and select Module Configuration.
7. Select the Port Configuration tab.
8. Click the appropriate radio button to choose the Network Configuration type.

9. Enter the IP address, network (subnet) mask, and gateway address (if needed).

Use RSLogix 5000 Software to Set the IP Address

You can use RSLogix software to set the IP address.

1. Make sure the controller that uses the IP address is installed and running.
2. Connect to the controller via the serial connection (see page 26).
3. Start RSLogix 5000 software.
4. In the Controller Organizer, select properties for the Ethernet port.

5. Choose the Port Configuration tab.
6. Specify the IP address.
7. Click Apply.
8. Click OK.

This sets the IP address in the hardware. This IP address should be the same IP address you assigned under the General tab.

Make ControlNet Connections to the Controller

The CompactLogix 1769-L32C and 1769-L35CR controllers connect to the ControlNet network. The CompactLogix 1769-L32C controller supports channel A connections only. The CompactLogix 1769-L35CR controller supports channels A and B (redundant media) connections.

For permanent connections to the network, you connect the module to the ControlNet network by using a ControlNet tap (for example, 1786-TPR, 1786-TPS, 1786-TPYR, 1786-TPYS).

The figure shows an example ControlNet network using redundant media.

Item	Description
1	ControlNet node
2	Redundant media available on 1769-L35CR only
3	ControlNet link

When connecting the CompactLogix controller to a ControlNet network, also refer to the following documentation:

- ControlNet Coax Tap Installation Instructions, publication 1786-IN007
- ControlNet Coax Media Planning and Installation Guide, publication CNET-IN002
- ControlNet Fiber Media Planning and Installation Guide, publication CNET-IN001

IMPORTANT For network connections we recommend taps with a straight connector (catalog number 1786-TPS or 1786-TPYS) because of the location of the BNC connectors on the bottom of the module.

Connect the Controller to the Network via a ControlNet Tap

Typically, ControlNet taps are used to make permanent connections from the CompactLogix controller to the network. Perform the following steps to connect the module to the network by using a ControlNet tap.

ATTENTION: Do not allow any metal portions of the tap to contact any conductive material.
If you disconnect the tap from the module, place the dust cap back on the straight or right angle connector to prevent the connector from accidentally contacting a metallic grounded surface.

1. Remove and save the dust caps from the ControlNet taps.

Item	Description
1	Segment 1
2	Segment 2
3	Dust caps

2. Connect the tap's straight or right-angle connector to the module's BNC connector as shown in the figure.

Item	Description
1	Segment 1
2	Segment 2
3	Tap connected to a CompactLogix controller not using redundant media
4	Tap connected to a CompactLogix controller using redundant media (1769-L35CR unit only)
5	Tap

IMPORTANT To prevent inadvertent reversal of the tap connections (resulting in incorrect status displays requiring troubleshooting), check the tap drop cable for the label indicating the attached segment before making your connection.

WARNING: If you connect or disconnect the communication cable with power
applied to this module or any device on the network, an electrical arc can occur.
This could cause an explosion in hazardous location installations.
Be sure that power is removed or the area is nonhazardous before proceeding

Connect a Programming Terminal to the Network via a 1786-CP Cable

You can use the CompactLogix controller's network access port (NAP) to connect a programming terminal to the ControlNet network. The figure shows the $1786-\mathrm{CP}$ cable connections.

WARNING: The NAP port is intended for temporary local-programming purposes only and not intended for permanent connection. If you connect or disconnect the NAP cable with power applied to this module or any device on the network, an electrical arc can occur. This could cause an explosion in hazardous location installations.
Be sure that power is removed or the area is nonhazardous before proceeding.

!
ATTENTION: Use the 1786-CP cable when you connect a programming terminal to the network through the NAP.
Using another cable could result in possible network failures or product damage.

Connect one end of the 1786-CP cable to the CompactLogix controller and the other end to the NAP of the programming terminal.

ATTENTION: Do not plug a DH-485 network cable or an RJ45 connector for the EtherNet/IP network to the NAP. Undesirable behavior and/or damage to the port may result.

Install the Appropriate EDS Files

If you have RSLinx software, version 2.42 or later, the most current EDS files were installed with the software. If you are using an earlier version of RSLinx software, you might need to install EDS files.

You need EDS files for these devices:

- 1769-L32E and 1769-L35E controllers
- 1769 CompactBus
- 1769 local adapter

All of these EDS files, except for the 1769 CompactBus file, are updated for each firmware revision. There is also a version 1 of the controller EDS file that you need for new controllers. Each controller is shipped with revision 1 firmware. To update the firmware, you must have the revision 1 EDS file (0001000E00410100.eds) installed for the controller.

The EDS files are available on the RSLogix 5000 Enterprise Series software CD. The files are also available at http://www.ab.com/networks/eds.

You must download the current firmware before you can use the controller.
To load firmware, you can use any of the following:

- ControlFLASH utility that is shipped with RSLogix 5000 programming software
- AutoFlash that launches through RSLogix 5000 software when you download a project and the controller does not have the matching firmware revision
- CompactFlash card (catalog number 1784-CF128) with valid memory already loaded

If you use the ControlFLASH or AutoFlash utilities, you need a network connection to the controller.

The firmware is available with RSLogix 5000 software or you can download it from the support website. Go to http://www.rockwellautomation.com/support/.

Follow these steps to download firmware from the support website.

1. On the Rockwell Automation Support Page, click Software Updates, Firmware and Other Downloads under the Other Tools heading.
2. Click Firmware Updates.
3. Select the appropriate firmware update.
4. Select the firmware revision.
5. Click a revision file to unzip the data.

Use the ControlFLASH Utility to Load Firmware

You can use the ControlFLASH utility to load firmware through a serial connection.

1. Make sure the appropriate network connection is made before starting.
2. Start the ControlFLASH utility.
3. When the Welcome dialog box appears, click Next.
4. Choose the catalog number of the controller and click Next.
5. Expand the network until you see the controller.
6. If the required network is not shown, first configure a driver for the network in RSLinx software.
7. Choose the controller and click OK.
8. Choose the revision level to which you want to update the controller and click Next.
9. To start the update of the controller, click Finish and then click Yes.
10. After the controller is updated, the status dialog box displays Update complete.
11. Click OK.
12. To close the ControlFLASH utility, click Cancel and then click Yes.

Use AutoFlash to Load Firmware

You can use AutoFlash to load firmware through a network connection.

IMPORTANT \quadWhen upgrading your controller firmware, it is extremely important to allow the upgrade to complete without interruption. If you interrupt the firmware upgrade either in the software or by disturbing the physical media, you may render the controller inoperable.	
	For more information about upgrading your CompactLogix controller firmware, see information posted at http://www.rockwellautomation.com/knowledgebase/.

1. Make sure the appropriate network connection is made and your network driver is configured in RSLinx software.
2. Use RSLogix 5000 programming software to create a controller project.
3. Click RSWho to specify the controller path.
4. Select your controller and click Download.

You may also choose to click Update Firmware to complete this process. If you do so, skip to step $\underline{8}$.
A dialog box displays indicating that the project revision and controller firmware revision are different.
5. Click Update Firmware.
6. Use the checkbox and pull-down menu to select your controller and firmware revision.
7. Click Update.
8. Click Yes.

The firmware upgrade begins.

IMPORTANT DO NOT INTERRUPT THE FIRMWARE UPGRADE ONCE IT HAS BEGUN.

Interrupting the firmware upgrade may result in an inoperable controller.

When the firmware upgrade is complete, the Download dialog box appears and you may continue by downloading your project to the controller.

Use a CompactFlash Card to Load Firmware

If you have an existing controller that is already configured and has firmware loaded, you can store the current controller user program and firmware on the CompactFlash card and use that card to update other controllers.

1. Use RSLogix 5000 software to store the controller user program and firmware of a currently configured controller to the CompactFlash card.
2. Access the Nonvolatile Memory tab of the Controller Properties dialog box.

Be sure to select Load Image On Powerup when you save to the card.
3. Remove the card and insert it into a controller that will use the same firmware and controller user program.

When you apply power to the second controller, the image stored on the CompactFlash card is loaded into the controller.

Select the Controller's Operating Mode

Use the keyswitch on the front panel of the controller to determine the controller's operating mode.

Keyswitch Position	Description	
Run	- Upload projects. - Run the program and enable outputs. - You cannot create or delete tasks, programs, or routines. You cannot create or delete tags or edit online while the keyswitch is in the Run position. - You cannot change the mode by using the programming software while the keyswitch is in the Run position.	
Prog	- Disable outputs. - Upload/download projects. - Create, modify, and delete tasks, programs, or routines. - The controller does not execute (scan) tasks while the keyswitch is in the Prog position. - You cannot change the mode through the programming software while the keyswitch is in the Prog position.	
Rem	- Upload/download projects. - Change between Remote Program, Remote Test, and Remote Run modes through the programming software.	
	Remote Run	- The controller executes (scans) tasks. - Enable outputs. - Edit online.
	Remote Program	- Disable outputs. - Create, modify, and delete tasks, programs, or routines. - Download projects. - Edit online. - The controller does not execute (scan) tasks.
	Remote Test	- Execute tasks with outputs disabled. - Edit online.

Notes:

Connect to the Controller via the Serial Port

This chapter describes how to connect to the controller via the serial port so that you can configure the controller and upload or download a project to the controller.

Topic	Page
Connect to the Controller via the Serial Port	41
Configure the Serial Driver	43
Select the Controller Path	45

For the CompactLogix controller to operate on a serial network, you need:

- a workstation with a serial port.
- RSLinx software to configure the serial communication driver.
- RSLogix5000 programming software to configure the serial port of the controller.

Connect to the Controller via the Serial Port

Channel 0 on the CompactLogix controllers is fully isolated and does not need a separate isolation device. Channel 1 on the 1769-L31 is not an isolated serial port.

Figure 3 - Serial Connection to Controller

If you connect channel 1 of the 1769-L31 controller to a modem or an ASCII device, consider installing an isolator between the controller and modem or ASCII device. An isolator is also recommended when connecting the controller directly to a programming workstation. One possible isolator is the 1761-NETAIC interface converter.

For more information on installing an isolator, see Configure an Isolator on page 57.

To connect a serial cable, perform this procedure.

1. Obtain a $1747-\mathrm{CP} 3$ or $1756-\mathrm{CP} 3$ serial cable.

TIP If you make your own serial cable, complete this procedure.

- Limit the length to $15.2 \mathrm{~m}(50 \mathrm{ft})$.
- Wire the connectors.
Workstation

2. Connect the cable to your controller and workstation.

Configure the Serial Driver

Use RSLinx software to configure the RS-232 DF1 Device driver for serial communication. To configure the driver, perform this procedure.

1. From the communication pull-down menu, choose Configure Drivers.

位 RSLinx Professional		
File Edit View	Communications Station DDE/OPC	Security
(2) 品 ${ }^{\text {8 }}$	RSWho	
	Configure Drivers... Configure Shortcuts... Configure Client Applications... Configure CIP Options...	
	Driver Diagnostics... CIP Diagnostics... Gateway Diagnostics...	

The Configure Drivers dialog box appears.

2. From the Available Driver Types pull-down menu, choose the RS-232 DF1 Device driver.
3. Click Add New to add the driver.

The Add New RSLinx Driver dialog box appears.

Add New RSLinx Driver	
Choose a name for the new driver. (15 characters maximum)	OK
AB_DF1-1	Cancel

4. Specify the driver name and click OK.

The Configure RS-232 DF1 Devices dialog box appears.

5. Specify the serial port settings.
a. From the Comm Port pull-down menu, choose the serial port on the workstation to which the cable is connected.
b. From the Device pull-down menu, choose Logix 5550-Serial Port.
c. Click Auto-Configure.
6. Verify that the Auto-Configuration was successful.

If	Then
Yes	Click 0K.
No	Go to step 5 and verify that you selected the correct communication port.

7. Click Close.

Select the Controller Path
To select the controller path, perform this procedure.

1. In RSLogix 5000 programming software, open a project for the controller.

2. From the Communications pull-down menu, choose Who Active.

The Who Active dialog box appears.

3. Expand the communication driver to the level of the controller.
4. Select the controller.

Controller Options

Once you have selected a controller, you have several options.

To	Choose
Monitor the project in the controller	Go Online
Transfer a copy of the project from the controller to RSLogix 5000 software	Upload
Transfer the open project to the controller	Download

Communicate over Networks

This chapter explains how CompactLogix controllers support additional networks to enable various functions.

Table 4-CompactLogix Controller Network Support
Function
Control distributed (remote) I/0.

- Ethenvel/P
- ControlNet
- DeviceNet

Topic	Page
EtherNet/P Network Communication	48
ControlNet Network Communication	50
DeviceNet Communication	53
Serial Communication	55
DH-485 Network Communication	72

EtherNet/IP Network Communication

The EtherNet/IP network offers a full suite of control, configuration and data collection services by layering the Common Industrial Protocol (CIP) over the standard Internet protocols, such as TCP/IP and UDP. This combination of well-accepted standards provides the capability required to both support information data exchange and control applications.

The EtherNet/IP network also uses commercial, off-the-shelf Ethernet components and physical media, providing you with a cost-effective plant-floor solution.

For EtherNet/IP communication, you can use these CompactLogix controllers with a built-in EtherNet/IP communication port:

- 1769-L32E CompactLogix controller
- 1769-L35E CompactLogix controller

You can use several software products with a 1769 CompactLogix controller on an EtherNet/IP network.

Table 5-EtherNet/IP Network Software Combinations

Software	Functions	Requirement
RSLogix 5000 programming software	- Configure the CompactLogix project Define EtherNet/IP communication	Yes
B00TP/DHCP utility with RSLogix 5000 programming software	Assign IP addresses to devices on an EtherNet/IP network	No
RSNetWorx software for an EtherNet/IP network	Configure EtherNet/IP devices by IP addresses and/or host names	No

The EtherNet/IP communication modules:

- support messaging, produced/consumed tags, HMI, and distributed I/O.
- encapsulate messages within standard TCP/UDP/IP protocol.
- share a common application layer with ControlNet and DeviceNet.
- interface via RJ45, category 5, unshielded, twisted-pair cable.
- support half/full-duplex 10 Mbps or 100 Mbps operation.
- support standard switches.
- require no network scheduling.
- require no routing tables.

In this example:

- the controllers produce and consume tags amongst themselves.
- the controllers initiate MSG instructions that send and receive data or configure devices.
- the personal computer uploads or downloads projects to the controllers.
- the personal computer configures devices on an EtherNet/IP network.

Figure 4-CompactLogix EtherNet/IP Overview

Connections over an EtherNet/IP Network

You indirectly determine the number of connections the controller uses by configuring the controller to communicate with other devices in the system. Connections are allocations of resources that provide more reliable communication between devices than unconnected messages.

All EtherNet/IP connections are unscheduled. An unscheduled connection is a message transfer between controllers that is triggered by the requested packet interval (RPI) or the program, such as a MSG instruction. Unscheduled messaging lets you send and receive data when needed.

The 1769-L32E and 1769-L35E controllers support 100 connections. However, the built-in EtherNet/IP port supports only 32 CIP connections over an EtherNet/IP network. With these controllers, the number of end-node connections they effectively support depends on a connection's RPI.

Requested Packet Interval	Max EtherNet/IP Port Communication Connections
2 ms	2
4 ms	5
8 ms	10
16 ms	18
$32 \mathrm{~ms}+$	$25+$

You can use all 32 communication connections on the built-in EtherNet/IP port. However, we recommend that you leave some connections available for tasks such as going online and non-I/O purposes.

ControlNet Network Communication

ControlNet is a real-time control network that provides high-speed transport of both time-critical I/O and interlocking data and messaging data, including uploading and downloading of programming and configuration data on a single physical-media link. The ControlNet network's highly-efficient data transfer capability significantly enhances I/O performance and peer-to-peer communication in any system or application.

The ControlNet network is highly deterministic and repeatable and remains unaffected as devices are connected or disconnected from the network. This robust quality results in dependable, synchronized, and coordinated real-time performance.

The ControlNet network often functions as:

- the default network for the CompactLogix platform.
- a substitute/replacement for the remote I/O (RIO) network because the ControlNet network adeptly handles large numbers of I/O points.
- a backbone to multiple distributed DeviceNet networks.
- a peer interlocking network.

For ControlNet communication, you can use these CompactLogix controllers with a built-in ControlNet communication port:

- 1769-L32C CompactLogix controller
- 1769-L35CR CompactLogix controller

You can use these software products with a 1769 CompactLogix controller on a ControlNet network.

Table 6-ControlNet Network Software Combinations

Software	Functions	Requirement
RSLogix 5000 programming software	-Configure the CompactLogix project - Define EtherNet/IP communication RSNetWorx for ControlNet software- Configure the ControlNet network - Define the NUT (network update time)	Yes

The ControlNet communication modules:

- support messaging, produced/consumed tags and distributed I/O.
- share a common application layer with DeviceNet and EtherNet/IP networks.
- require no routing tables.
- support the use of coax and fiber repeaters for isolation and increased distance.

In this example:

- the controllers produce and consume tags amongst themselves.
- the controllers initiate MSG instructions that send and receive data or configure devices.
- the personal computer uploads or downloads projects to the controllers.
- the personal computer configures devices on ControlNet, and configures the network itself.

Figure 5 - CompactLogix ControlNet Overview

Connections over ControlNet Network

You indirectly determine the number of connections the controller uses by configuring the controller to communicate with other devices in the system. Connections are allocations of resources that provide more reliable communication between devices compared to unconnected messages.

Table 7-ControlNet Connection Methods

Connection Method	Description
Scheduled	A scheduled connection is unique to ControlNet communication. A scheduled connection lets you send and receive data repeatedly at a set interval, which is the requested packet interval (RPI). For example, a connection to an I/O module is a scheduled connection because you repeatedly receive data from the module at a specified interval. Other scheduled connections include connections to: - communication devices. - produced/consumed tags. On a ControlNet network, you must use RSNetWorx for ControlNet to enable all scheduled connections and establish a network update time (NUT). Scheduling a connection reserves network bandwidth to specifically handle the connection.
Unscheduled	An unscheduled connection is a message transfer between nodes that is triggered by ladder logic or the program (such as a MSG instruction). Unscheduled messaging lets you send and receive data when needed. Unscheduled messages use the remainder of network bandwidth after scheduled connections are allocated.

The 1769-L32C and 1769-L35CR controllers support 100 connections. However, the built-in ControlNet port only supports 32 communication connections. With these controllers, the number of end-node connections they effectively support depends on the connection's NUT and RPI.

NUT	RPI	Supported ControlNet Communication Connections ${ }^{(1)}$
2 ms	2 ms	$0 \ldots 1$
3 ms	3 ms	$1 \ldots .2$
5 ms	5 ms	$3 \ldots 4$
10 ms	10 ms	$6 \ldots 9$
14 ms	14 ms	$10 \ldots 12$
5 ms	20 ms	$12 \ldots 16$
4 ms	64 ms	31

(1) For each NUT/RPI combination, the number of connections supported is listed in a range. The lower number is the number of connections we recommend you make to maintain reasonable ControlNet port CPU utilization rates. The higher number is the maximum number of connections possible for that NUT/RPI combination.

You can use all 32 communication connections on the built-in ControlNet port. However, we recommend that you leave some connections available for tasks such as going online and unscheduled network traffic.

DeviceNet Communication

The DeviceNet network uses the Common Industrial Protocol (CIP) to provide the control, configuration, and data collection capabilities for industrial devices. The DeviceNet network uses the proven Controller Area Network (CAN) technology, which lowers installation costs and decreases installation time and costly downtime.

A DeviceNet network provides access to the intelligence present in your devices by letting you connect devices directly to plant-floor controllers without having to hard wire each device into an I/O module.

Table 8-CompactLogix DeviceNet Communication Interfaces

If your application	Select
- Communicates with other DeviceNet devices	$1769-S D N$ DeviceNet
- Uses the controller as a master or slave on DeviceNet	
- Uses a controller ControlNet, Ethernet or serial port for other communication	$1769-A D N$ DeviceNet adapter module
- Accesses remote Compact I/O over a DeviceNet network	
- Sends remote I/O data for as many as 30 modules back to scanner or controller	

(1) This table specifically describes using the 1769 -ADN module to access remote Compact I/ 0 over DeviceNet. However, CompactLogix controllers can access other Allen-Bradley remote I/O over DeviceNet. In those cases, you must select the appropriate interface. For example, if accessing remote POINT I/O modules, you must select the 1734-ADN.

You can use these software products with a 1769 CompactLogix controller on a DeviceNet network.

Table 9-CompactLogix DeviceNet Software Combinations

Software	Functions	Requirement
RSLogix 5000 programming software	- Configure the CompactLogix - project - Define EtherNet/IP communication	
RSNetWorx software for DeviceNet	- Configure DeviceNet devices -Define the scan list for DeviceNet devices Yes	

The DeviceNet communication module:

- supports messaging to devices, not controller to controller.
- shares a common application layer with ControlNet and EtherNet/IP.
- offers diagnostics for improved data collection and fault detection.
- requires less wiring than traditional, hardwired systems.

You can use a linking device as a:

- gateway to connect information.
- control-level network to device-level network for programming, configuration, control or data collection.
- router/bridge to connect the EtherNet/IP or ControlNet network to the DeviceNet network.

Figure 7-CompactLogix Linking Device Overview

Serial Communication

CompactLogix controllers have a built-in RS-232 port.

- 1769-L32C, -L32E, -L35CR, and -L35E CompactLogix controllers have one built-in RS-232 port. By default, that port is channel 0 on these controllers.
- The 1769-L31 CompactLogix controller has two RS-232 ports. One port only allows DF1 protocol only. The second port accepts DF1 and ASCII protocol.

IMPORTANT Limit the length of serial (RS-232) cables to 15.2 m (50 ft).

You can configure the serial port of the controller for several modes.

Table 10-CompactLogix Serial Port Configuration

Mode	Functions
DF1 Point-to-Point	Communicate between the controller and one other DF1-protocol-compatible device. This is the default system mode. Default parameters are: - Baud Rate: 19,200 - Data Bits: 8 - Parity: None - Stop Bits: 1 - Control Line: No Handshake - RTS send Delay: 0 - RTS Off Delay: 0 This mode is typically used to program the controller through its serial port.
DF1 Master	Control polling and message transmission between the master and slave nodes. - The master/slave network includes one controller configured as the master node and as many as 254 slave nodes. Link slave nodes using modems or line drivers. - A master/slave network can have node numbers from $0 \ldots 254$. Each node must have a unique node address. Also, at least 2 nodes must exist to define your link as a network (1 master and 1 slave station are the two nodes).
DF1 Slave	Use a controller as a slave station in a master/slave serial communication network. - When there are multiple slave stations on the network, link slave stations using modems or line drivers to the master. When you have a single slave station on the network, you do not need a modem to connect the slave station to the master. You can configure the control parameters for no handshaking. You can connect $2 \ldots .255$ nodes to a single link. In DF1 slave mode, a controller uses DF1 half-duplex protocol. - One node is designated as the master and it controls who has access to the link. All the other nodes are slave stations and must wait for permission from the master before transmitting.
DF1 Radio Modem	- Compatible with SLC ${ }^{\text {TM }} 500$ and MicroLogix ${ }^{\text {TM }} 1500$ controllers. - This mode supports master and slave, and store and forward modes.
User (channel 0 only)	Communicate with ASCII devices. This requires your program to use ASCII instructions to transmit data to and from ASCII device.
DH-485	- Communicate with other DH-485 devices. - This multi-master, token-passing network allows programming and peer-to-peer messaging.

Configure an Isolator

Channel 0 on the CompactLogix controllers is fully isolated and does not need a separate isolation device. Channel 1 on the 1769-L31 controller is not an isolated serial port. To configure an isolator, perform this procedure.

1. Determine whether you need an isolator.

If you connect channel 1 of the 1769-L31 controller to a modem or an ASCII device, consider installing an isolator between the controller and modem or ASCII device. An isolator is also recommended when connecting the controller directly to a programming workstation.
One possible isolator is the 1761-NET-AIC interface converter.

2. Select the appropriate cable.

3. Connect the appropriate cable to the serial port.

Communicate with DF1 Devices

You can configure the controller as a master or slave on a serial communication network. Use serial communication when:

- the system contains three or more stations.
- communication occur regularly and require leased-line, radio, or power-line modem.
ATTENTION: Only the 1769-L31 controller has more than one RS-232 port. All
other 1769 controllers are limited to one RS-232 port.

1. In RSLogix 5000 programming software, right-click your controller and select Properties.

The Controller Properties dialog box appears.

2. Click the Serial Port tab.
3. From the Mode pull-down menu, choose System.
4. Specify communication settings.
5. Click the System Protocol tab.

6. From the Protocol pull-down menu, choose a DF1 protocol.
7. Specify DF1 settings.

DF1 Radio Modem Support

Your ControlLogix controller includes a driver that lets it to communicate over the DF1 Radio Modem protocol. This driver implements a protocol, optimized for use with radio modem networks, that is a hybrid between DF1 full-duplex protocol and DF1 half-duplex protocol, and therefore is not compatible with either of these protocols.

IMPORTANT The DF1 radio modem driver should be used only among devices that support and are configured for the DF1 radio modem protocol.
Additionally, there are some radio modem network configurations that will not work with the DF1 radio modem driver. In these configurations, continue to use DF1 half-duplex protocol.

Like DF1 full-duplex protocol, DF1 radio modem lets any node to connect to any other node at any time (if the radio modem network supports full-duplex data port buffering and radio transmission collision avoidance). Like DF1 half-duplex protocol, a node ignores any packets received that have a destination address other than its own, with the exception of broadcast packets and pass-through packets.

Unlike either DF1 full-duplex or DF1 half-duplex protocols, DF1 radio modem protocol does not include ACKs, NAKs, ENQs, or poll packets. Data integrity is assured by the CRC checksum.

Using the DF1 Radio Modem Driver

The DF1 radio modem driver can be configured as the system mode driver by using RSLogix 5000 programming software, version 17 or later.

To configure the controller for DF1 Radio Modem communication, perform this procedure.

1. In the Controller Organizer of RSLogix 5000 programming software, right-click your controller and select Properties.

The Controller Properties dialog box appears.

2. Click the System Protocol tab.

3. From the Protocol pull-down menu, choose DF1 Radio Modem.
4. Specify DF1 Radio Modem system protocol settings.

Setting	Description
Station Address	Specifies the node address of the controller on the serial network. Select a number $1 \ldots . .254$ decimal, inclusive. To optimize network performance, assign node addresses in sequential order. Initiators, such as personal computers, should be assigned the lowest address numbers to minimize the time required to initialize the network.
Error Detection	Click one of the radio buttons to specify the error detection scheme used for all messages. - BCC - the processor sends and accepts messages that end with a BCC byte. - CRC - the processor sends and accepts messages with a 2-byte CRC.
Enable Store and Forward	Check the Enable Store and Forward checkbox if you want to enable the store and forward functionality. When enabled, the destination address of any received message is compared to the Store and Forward tag table. If there is a match, the message is then forwarded (re-broadcasted) from the port. From the Store and Forward Tag pull-down menu, choose an integer (INT[16]) tag. Each bit represents a station address. If this controller reads a message destined for a station that has its bit set in this table, it forwards the message. Also note, the Enable Store and Forward function is usable only if the controller is connected to the master radio modem.

5. Click OK.

Advantage of Using DF1 Radio Modem Protocol

The primary advantage of using DF1 radio modem protocol for radio modem networks is in transmission efficiency. Each read/write transaction (command and reply) requires only one transmission by the initiator (to send the command) and one transmission by the responder (to return the reply). This minimizes the number of times the radios need to key-up to transmit, which maximizes radio life and minimizes radio power consumption. In contrast, DF1 half-duplex protocol requires five transmissions for the DF1 master to complete a read/write transaction with a DF1 slave - three by the master and two by the slave.

The DF1 radio modem driver can be used in a pseudo master/slave mode with any radio modems, as long as the designated master node is the only node initiating MSG instructions, and as long as only one MSG instruction is triggered at a time.

For modern serial radio modems that support full-duplex data port buffering and radio transmission collision avoidance, the DF1 radio modem driver can be used to set up a masterless peer-to-peer radio network. In a peer-to-peer radio network, any node can initiate communication to any other node at any time, as long as all of the nodes are within radio range so that they receive each other's transmissions.

DF1 Radio Modem System Limitations

The following questions need to be answered to determine if you can implement the new DF1 radio modem driver in your radio modem network.

- If all of the devices on the network are ControlLogix controllers, you must configure them with the DF1 radio modem driver by using RSLogix 5000 programming software, version 17 or later. If not, then make sure that all of the nodes can support the DF1 radio modem protocol.
- If each node receives the radio transmissions of every other node, being both within radio transmission/reception range and on a common receiving frequency (either via a Simplex radio mode or via a single, common, full-duplex repeater) the radio modems must handle full-duplex data port buffering and radio transmission collision avoidance.

If this is the case, you can take full advantage of the peer-to-peer message initiation capability in every node (for example, the ladder logic in any node can trigger a MSG instruction to any other node at any time).

If not all modems can handle full-duplex data port buffering and radio transmission collision avoidance, you may still be able to use the DF1 radio modem driver, but only if you limit MSG instruction initiation to a single master node whose transmission can be received by every other node.

- If not all nodes receive the radio transmission of every other node, you may still be able to use the DF1 radio modem driver, but only if you limit MSG instruction initiation to the node connected to the master radio modem whose transmissions can be received by every other radio modem in the network.
- You can take advantage of the ControlLogix controller channel-to-channel pass-through to remotely program the other nodes using RSLinx and RSLogix 5000 programming software running on a personal computer connected to a local ControlLogix controller via DH-485, DH + , or Ethernet.

Communicate with ASCII Devices

You can use the serial port to interface with ASCII devices when the controller is configured for user mode. For example, you can use the serial port to:

- read ASCII characters from a weigh scale module or bar code reader.
- send and receive messages from an ASCII triggered device, such as a MessageView terminal.

Figure 8 - ASCII Device Serial Communication

To configure the controller for ASCII communication, perform this procedure.

1. In RSLogix 5000 programming software, right-click your controller and select Properties.

The Controller Properties dialog box appears.

2. Click the Serial Port tab.
3. From the Mode pull-down menu, choose User.
4. Specify communication settings.
5. Click the User Protocol tab.

6. From the Protocol pull-down menu, choose ASCII.
7. Specify ASCII settings.

The controller supports several instructions to manipulate ASCII characters. The instructions are available in ladder diagram (LD) and structured text (ST).

Read and Write ASCII Characters

Instruction Code	Description
ABL	Determine when the buffer contains termination characters
ACB	Count the characters in the buffer
ACL	Clear the buffer
	Clear out ASCII Serial Port instructions that are currently executing or are in the queue
	Obtain the status of the serial port control lines
	Turn on or off the DTR signal
	Turn on or off the RTS signal
ARD	Read a fixed number of characters
ARL	Read a varying number of characters, up to and including the first set of termination characters
AWA	Send characters and automatically append one or two additional characters to mark the end of the data
AWT	Send characters

Create and Modify Strings of ASCII Characters

Instruction Code	Description
CONCAT	Add characters to the end of a string
DELETE	Delete characters from a string
FIND	Determine the starting character of a substring
INSERT	Insert characters into a string
MID	Extract characters from a string

Convert Data to or from ASCII Characters

Instruction Code	Description
STOD	Convert the ASCII representation of an integer value to a SINT, INT, DINT, or REAL value
STOR	Convert the ASCII representation of a floating-point value to a REAL value
DTOS	Convert a SINT, INT, DINT, or REAL value to a string of ASCII characters
RTOS	Convert a REAL value to a string of ASClI characters
UPPER	Convert the letters in a string of ASCII characters to upper case
LOWER	Convert the letters in a string of ASCII characters to lower case

Modbus Support

To use Logix5000 controllers on Modbus, connect the controllers through the serial port and execute specific ladder logic routines.

A sample controller project is available with RSLogix 5000 Enterprise programming software.

Broadcast Messages over a Serial Port

You can broadcast messages over a serial port connection from a master controller to all of its slave controllers by using several communication protocols. Those protocols are the following:

- DF1 Master
- DF1 Radio Modem
- DF1 Slave

Broadcasting over a serial port is achieved using the 'message' tag. Because messages are sent to receiving controllers, only the 'write' type messages can be used for broadcasting.

The broadcast feature can be set up by using ladder logic programming software or Structured Text programming software.

The broadcast feature can also be set by modifying the path value of a message tag in the tag editor.

For this example, Ladder Logic programming software will be used.

Step 1:Set Broadcast-Controller Properties

First, set the System Protocol by following these steps.

1. In the Controller Organizer, right-click on the controller and choose Properties.
2. In the Controller Properties dialog box, from the System Protocol tab, choose the settings for the controller, then choose OK.

Field	DF-1 Master Protocol	DF-1 Slave Protocol	DF-1 Radio Modem Protocol
Station Address	Controller station address number	Controller station address number	Controller station address number
Transmit Retries	3	3	N/A
ACK Timeout	50	N/A	N/A
Slave Poll Timeout	N/A	3000	N/A
Reply Message Wait	5	N/A	N/A
Polling Mode	Message: polls the slave by using the Message instruction Slave: initiates messages for slave-to-slave broadcast. Standard: schedules polling for the slave.	N/A	N/A
EOT Suppression	N/A	Disable	NCC
Error Detection	BCC	Enabled	BCC
Duplicate Detection	Enabled	N/A	N/A Enable Store and Forward N/A

Step 2: Set Broadcast - Create Controller Scope Message Tag

Next, create a Message tag by following these steps.

1. In the Controller Organizer, right-click on the Controller Tags folder and choose New Tag.

The new tag must be a 'message' tag.
2. Name the tag and select the Data Type 'Message', then choose OK.

The Message tag in the Controller Scope's Controller Tags folder will look similar to the following.

Name \quad 吕 $1 \triangle$	Value $\quad \leftarrow$	Force Mask \leqslant	Style	Data Type
--newtag	\{...\}	\{...\}		MESSAGE
\pm-newtag.Flags	16\#0200		Hex	INT
newtag.EW	0		Decimal	B00L
newtag.ER	0		Decimal	B00L
newtag.DN	0		Decimal	B00L
newtag.ST	0		Decimal	B00L
newtag.EN	0		Decimal	B00L
newtag.T0	0		Decimal	B00L
newtag.EN...	1		Decimal	B00L
\pm-newtag.ERR	16\#0000		Hex	INT
+-naiulan FX	164nnon monn		How	nimi

Step 3: Ladder Logic Programming Software
Then, to set broadcasting over a serial port, follow these steps.

1. In the Controller Organizer, from the Tasks folder, choose Main Routine to display the ladder logic programming software interface.
2. Open a MSG instruction from the Input/Output tab.
3. Double-click in the Message Control field to enable the pull-down menu and select the tag you created.
4. Launch the View Configuration dialog box.
5. In the Message Configuration dialog box, from the Configuration tab, select the message type from the Message Type field.

Valid 'Write' Message Types include the following:

- CIP Generic
- CIP Data Table Write
- PLC2 Unprotected Write
- PLC3 Typed Write
- PLC3 Word Range Write
- PLC5 Typed Write
- PLC5 Word Range Write
- SLC Typed Write

6. Fill in any other fields needed.
7. From the Communication tab, select the Broadcast Radio button and the Channel from the pull-down, then choose OK.

ATTENTION: When using structured text programming software, broadcast over serial is set by typing MSG(aMsg) and right-clicking on aMSG to display the Message Configuration dialog box.

DH-485 Network Communication

For DH-485 communication, use the controller's serial port.
However, with a CompactLogix controller, we recommend that you use NetLinx networks, such as EtherNet/IP, ControlNet, or DeviceNet, because excessive traffic on a DH-485 network may make it impractical to connect to a controller with RSLogix 5000 programming software.

IMPORTANT If your application uses connections to DH-485 networks, select built-in serial ports.

The DH-485 protocol uses RS-485 half-duplex as its physical interface. RS-485 is a definition of electrical characteristics, not a protocol. You can configure the CompactLogix controller's RS-232 port to act as a DH-485 interface. By using a 1761-NET-AIC converter and the appropriate RS-232 cable (1756-CP3 or 1747-CP3), a CompactLogix controller can send and receive data on a DH-485 network.

Figure 9-CompactLogix DH-485 Communication Overview

On the DH-485 network, the CompactLogix controller can send and receive messages to and from other controllers.

$$
\begin{array}{ll}
\text { IMPORTANT A DH-485 network consists of multiple cable segments. Limit the total length } \\
\text { of all the segments to } 1219 \mathrm{~m}(4000 \mathrm{ft}) \text {. }
\end{array}
$$

For the controller to operate on a DH-485 network, you need a 1761-NET-AIC interface converter for each controller you want to put on the DH-485 network.

You can have two controllers for each 1761-NET-AIC converter, but you need a different cable for each controller.

To establish DH－485 communication，perform this procedure．
1．Connect the serial port of the controller to either port 1 or port 2 of the 1761－NET－AIC converter．

2．Use the RS－485 port to connect the converter to the DH－485 network．
The cable you use to connect the controller depends on the port you use on the 1761－NET－AIC converter．

Connection	Required Cable
Port 1	1747－CP3
DB－9 RS－232，DTE connection	or
	1761－CBL－AC00
Port 2	1761－CBL－AP00
mini－DIN 8 RS－232 connection	or
	$1761-C B L-P M 02$

3．In RSLogix 5000 programming software，right－click on your controller and choose Properties．

		［J］	New Module．．．	
		品	Cut	Ctrl＋X
		路	Copy	Ctrl +C
		显	Paste	Ctrilv
			Delete	Del
rescription	Samf		Cross Reference	Ctulte
Aajor Fault				
finor Fault			Properties	Alt＋Enter

The Controller Properties dialog appears．

4．Click the Serial Port tab．
5．From the Mode pull－down menu，choose System．
6．Specify communication settings．
IMPORTANT The baud rate specifies the communication rate for the DH－485 port．All devices on the same DH－485 network must be configured for the same baud rate． Select 9600 or 19200 KB ．
7. Click the System Protocol tab.

8. From the Protocol pull-down menu, choose DH485.
9. Specify DH-485 settings.
10. From the Protocol pull-down menu, choose DF1 Radio.

Table 11 - System Protocol Specifications

Characteristic	Description
Station Address	Specifies the node address of the controller on the DH-485 network. Select a number 1...31 decimal, inclusive. To optimize network performance, assign node addresses in sequential order. Initiators, such as personal computers, should be assigned the lowest address numbers to minimize the time required to initialize the network.
Token Hold Factor	Number of transmissions plus retries that a node holding a token can send onto the data link each time it receives the token. Enter a value between 1...4. The default is 1.
Maximum Station Address	Specifies the maximum node address of all the devices on the DH-485 network. Select a number 1...31 decimal, inclusive. To optimize network performance, make sure: - the maximum node address is the highest node number being used on the network. - that all the devices on the same DH-485 network have the same maximum node address.

Manage Controller Communication

This chapter explains how to manage controller communication.

Topic	Page
Produce and Consume Data	75
Send and Receive Messages	76
Connections	77
Calculate Total Connections	78
Connections Example	79

Produce and Consume Data

The controller supports the ability to produce (broadcast) and consume (receive) system-shared tags over ControlNet or EtherNet/IP networks. Produced and consumed tags each require connections. Over ControlNet, produced and consumed tags are scheduled connections.

Table 12 - Controller Communication Overview

Tag Type	Description
Produced	A produced tag allows other controllers to consume the tag, which means that a controller can receive the tag data from another controller. The producing controller uses one connection for the produced tag and another for each consumer. The controller's communication device uses one connection for each consumer. As you increase the number of controllers that can consume a produced tag, you also reduce the number of connections the controller and communication device have available for other operations, like communication and I/0.
Consumed	Each consumed tag requires one connection for the controller that is consuming the tag. The controller's communication device uses one connection for each consumer.

For two controllers to share produced or consumed tags, both controllers must be attached to the same control network, such as a ControlNet or Ethernet/IP network. You cannot bridge produced and consumed tags over two networks.

The number of available connections limits the total number of tags that can be produced or consumed. If the controller uses all of its connections for I/O and communication devices, no connections are left for produced and consumed tags.

Send and Receive Messages

Messages transfer data to other devices, such as controllers or operator interfaces. Messages use unscheduled connections to send or receive data. Connected messages can leave the connection open (cache) or close the connection when the message is done transmitting.

Table 13 -Message Transmission

Message Type	Communication Method	Connected Message	Can the message be cached?
CIP data table read or write	NA	Yes	Yes
PLC-2, PLC-3, PLC-5, or SLC (all types)	CIP CIP with Source ID	No	No

(1) You can connect CIP generic messages. However, for most applications we recommend you leave CIP generic messages unconnected.
(2) Consider caching only if the target module requires a connection.

Connected messages are unscheduled connections on both ControlNet and EtherNet/IP networks.

Each message uses one connection, regardless of how many devices are in the message path. You can program the target of a MSG instruction to optimize message transfer time.

Determine Whether to Cache Message Connections

When you configure a MSG instruction, you can cache or not cache the connection.

Table 14-Caching Messages

Message Execution	Function
Repeatedly	Cache the connection. This keeps the connection open and optimizes execution time. Opening a connection each time the message executes increases execution time.
Infrequently	Do not cache the connection. This closes the connection upon completion of the message, freeing up that connection for other uses.

Connections

A Logix 5000 system uses a connection to establish a communication link between two devices. Connections can be:

- a controller to local I/O modules or local communication modules.
- a controller to remote I/O or remote communication modules.
- a controller to remote I/O (rack-optimized) modules.
- produced and consumed tags.
- messages.
- controller access by RSLogix 5000 programming software.
- controller access by RSLinx software for HMI or other applications.

The limit of connections may ultimately reside in the communication module you use for the connection. If a message path routes through a communication module, the connection related to the message also counts towards the connection limit of that communication module.

Table 15-Connections Overview

Device	Supported Connections
CompactLogix controller (1769-L31) 100 Built-in ControlNet communication port (1769-L32C and 1769- L35CR controllers only) Built-in EtherNet/IP communication port (1769-L32E and 1769-L35E controllers only)	

Calculate Total Connections
You can calculate the total number of local and remote connections the controller uses.

Table 16-Local Connections Calculation

Local Connection Type	Device Quantity	Connections per Device	Total Connections
Local I/0 module (always a direct connection)		1	
Built-in ControlNet communication port (1769-L32C and 1769-L35CR controllers only)		0	
Built-in EtherNet/P communication port (1769-L32E and 1769-L35E controllers only)	0		
1769-SDN DeviceNet scanner module	2		

The number of remote connections a communication module supports determines how many connections the controller can access through that module.

Table 17 - Remote Connections Calculation

Remote Connection Type	Device Quantity	Connections per Device	Total Connections
Remote ControlNet communication module - I/0 configured as direct connection (none) - I/0 configured as rack-optimized connection		$\begin{aligned} & 0 \text { or } \\ & 1 \end{aligned}$	
Remote I/O module over ControlNet (direct connection)		1	
Remote EtherNet/IP communication module - I/0 configured as direct connection (none) - I/0 configured as rack-optimized connection		$\begin{aligned} & 0 \text { or } \\ & 1 \end{aligned}$	
Remote I/0 module over a EtherNet/IP network (direct connection)		1	
Remote device over a DeviceNet network (accounted for in rack-optimized connection for local 1769SDN module)		0	
Other remote communication adapter (POINT and FLEX adapters, for example)		1	
Produced tag Each consumer		$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	
Consumed tag		1	
Message (depending on type)		1	
Block-transfer message		1	
Total			

Connections Example

In this example system the 1769-L35E CompactLogix controller:

- controls local digital I/O modules in the same chassis.
- controls remote I/O devices on a DeviceNet network.
- sends and receives messages to/from a ControlLogix controller on an EtherNet/IP network.
- produces one tag that the 1794 FlexLogix controller consumes.
- is programmed via RSLogix 5000 programming software.

Figure 10-Example - CompactLogix System Connections

Table 18 - Example - CompactLogix Connection Types

Connection Type	Device Quantity	Connections per Device	Total Connections
Controller to local I/O modules (rack-optimized)	2	1	2
Controller to 1769-SDN scanner module	1	2	2
Controller to built-in EtherNet/P communication port (rack-optimized)	1	0	0
Controller to RSLogix 5000 programming software	1	1	1
Message to Controllogix controller	2	1	2
Produced tag consumed by FlexLogix controller	2	1	2

Notes:

Place, Configure, and Monitor I/O

This chapter explains how to place, configure, and monitor CompactLogix I/O modules.

Topic	Page
Select I/0 Modules	81
Place Local I/O Modules	86
Configure I/0	87
Configure Distributed I/0 on an EtherNet/IP Network	88
Configure Distributed I/O on a ControlNet Network	89
Configure Distributed I/O on a DeviceNet Network	90
Address I/0 Data	91
Determine When Data Is Updated	92
Reconfigure an I/0 Module	94

When choosing 1769 I/O modules, select:

- specialty I/O modules when appropriate.

Some modules have field-side diagnostics, electronic fusing, or individually-isolated inputs and outputs.

- a 1492 wiring system for each I/O module as an alternative to the terminal block that comes with the module.
- 1492 PanelConnect modules and cables if you are connecting input modules to sensors.

Validate I/O Layout

After you have selected your I/O modules, you need to validate the system you want to design. Before you begin to place your I/O modules, consider that the minimum backplane RPI increases as you add modules. Also, the I/O modules must be distributed so that the current consumed from the left or right side of the power supply never exceeds 2.0 A at 5 V DC or 1.0 A at 24 V DC.

Estimate Requested Packet Interval

The requested packet interval (RPI) defines the frequency at which the controller sends and receives all I/O data on the backplane. Each module on the backplane can have its own individual RPI setting.

The effective scan frequency for any individual module is still impacted by the other modules in the system and those modules' RPI settings. The following table provides relative scanning durations for various types of modules. This information should be taken into account when setting an individual module's RPI in order to achieve the desired effective scan frequency for any module in the system.

Type of Module	Request Packet Interval
Digital and analog (any mix)	• $1 \ldots 4$ modules can be scanned in 1 ms.
	- $5 \ldots 30$ modules can be scanned in 2 ms.
	- Some input modules have a fixed 8 ms filter, so selecting a greater RPI has
	no effect.
Specialty	- Full-sized 1769-SDN modules add 2 ms per module.
	- 1769 -HSC modules add 1 ms per module.
	- Full-sized 1769-ASCII modules add 1 ms per module.

You can always select an RPI that is slower than these. The RPI shows how quickly modules can be scanned, not how quickly an application can use the data. The RPI is asynchronous to the program scan. Other factors, such as program execution duration, affect I/O throughput.

Calculate System Power Consumption

To validate your proposed system, calculate the total 5 V DC current and 24 V DC to be consumed.

Table 19-I/0 Module Power Consumption Calculation Table

Catalog Number	Number of Modules	Module Current Requirements		Calculated Current = (Number of Modules) x (Module Current Requirements)	
		at 5V DC (in mA)	at 24V DC (in mA)	at 5V DC (in mA)	at 24V DC (in mA)
1769-L31		330	40		
1769-L32C		650	40		
1769-L32E		660	90		
1769-L35CR		680	40		
1769-L35E		660	90		
Total Current Required ${ }^{(1)}$:					

(1) This number must not exceed the power supply current capacity.

Table 20 - Power Supply Current Capacity

Specification	Power Supply and Capacity			
	1769-PA2	1769-PB2	1769-PA4	1769-PB4
Output Bus Current Capacity $0 \ldots . .55^{\circ} \mathrm{C}\left(32 \ldots 131{ }^{\circ} \mathrm{F}\right)$	2 A at 5V DC and 0.8 A at 24V DC		4 A at 5 V DC and 2 A at 24 V DC	
24V DC User Power Capacity 0... $55^{\circ} \mathrm{C}\left(32 \ldots 131{ }^{\circ} \mathrm{F}\right)$	250 mA (maximum)	NA		

Validate Placement of I/O Modules

The controller you use determines how many local I/O modules you can configure.

Table 21 - Controller I/O Support

Controller	Supported Local I/0 Modules	I/0 Banks
1769-L35CR	30	3
1769-L35E	30	3
1769-L32C, 1769-L32E and 1769-L31	16	3

To validate the proposed placement of I / O modules in your CompactLogix system, perform this procedure.

1. Verify that your $1769-\mathrm{L} 3 x$ controller resides on the leftmost side of the bank.

2. Verify that you have placed no more than three I/O modules between your controller and power supply (bank 0).
Placing more than three I/O modules in bank 0 would exceed the distance rating of four and invalidate your system.
3. Validate the number of I / O modules your power supply can support.

In a single-bank system, make sure you have not placed more than eight I/ O modules between the power supply and end cap (bank 1).

IMPORTANT	In a single-bank system, the power supply can support up to eight $1 / 0$ modules as long as the modules' power consumption does not exceed the power supply's capacity.
	So, in a single-bank system, you may not have more than eleven total I/0
	modules, three to the left of your power supply and eight to the right.
	If your system requires additional I/O modules, you must add an additional
bank.	

In a multi-bank system, make sure that your additional bank(s) do not have more than eight I/O modules on either side of the additional power supply.

IMPORTANT In a multi-bank system, you may place up to eight $1 / 0$ modules on either side of the additional power supply so long as the power consumed by these modules does not exceed the power supply's capacity.

In this example, the I/O modules $12 \ldots 30$ could be arranged in any way as long as the power supplies' capacity was not exceeded. In other words, the first additional bank could contain fewer than 16 I/O modules This is just 1 possible arrangement.

4. Verify that all banks have end caps.

IMPORTANT If you place and configure more I/0 modules and I/0 banks than your controller can support, your system may run well for a period of time. Nothing alerts you to the fact that you have exceeded your controller's capacity.
However, by exceeding your controller's I/0 capacity, you put your system at risk of intermittent faults, the most common being Major Fault Type 03 (I/0 Fault) Code 23.

Place Local I/O Modules

Use the 1769-CRR1/-CRR3 or 1769-CRL1/-CRL3 expansion cable to connect banks of I/O modules.

Each I/O module also has a power supply distance rating, the number of modules from the power supply. The distance rating is printed on each module's label. Each module must be located within its distance rating.

Figure 11-Controller I/O Placement

ATTENTION: The CompactLogix system does not support Removal and Insertion Under Power (RIUP). While the CompactLogix system is under power:

- any break in the connection between the power supply and the controller (for example, removing the power supply, controller, or an $1 / 0$ module) may subject the logic circuitry to transient conditions above the normal design thresholds and may result in damage to system components or unexpected behavior.
- removing an end cap or an I/O module faults the controller and may also result in damage to system components.

The CompactLogix controller also supports distributed (remote) I/O via these networks:

- EtherNet/IP
- ControlNet
- DeviceNet

Configure I/O

To communicate with an I/O module in your system, add the module to the I/O Configuration folder of the controller.

Figure 12-I/O Module Configuration

When you add a module, you also define a specific configuration for the module. While the configuration options vary from module to module, there are some common options that you typically configure

Table 22-I/O Configuration Options

Configuration Option	Description
Requested packet interval (RPI)	The RPI specifies the interval at which data updates over a connection. For example, an input module sends data to a controller at the RPI that you assign to the module. - Typically, you configure an RPI in milliseconds (ms). The range is $0.1 \ldots 750 \mathrm{~ms}$. - If a ControlNet network connects the devices, the RPI reserves a slot in the stream of data flowing across the ControlNet network. The timing of this slot may not coincide with the exact value of the RPI, but the control system guarantees that the data transfers at least as often as the RPI.
Change of state (COS)	Digital I/O modules use COS to determine when to send data to the controller. If a COS does not occur within the RPI timeframe, the module multicasts data at the RPI. Because the RPI and COS functions are asynchronous to the logic scan, it is possible for an input to change state during program scan execution. If this is a concern, buffer input data so your logic has a stable copy of data during its scan. Use the Synchronous Copy (CPS) instruction to copy the input data from your input tags to another structure and use the data from that structure.
Communication format	Many I/0 modules support different formats. The communication format that you choose also determines: - data structure of tags. - connections. - network usage. - ownership. - returning of diagnostic information.
Electronic keying	When you configure a module, you specify the slot number for the module. However, it is possible to purposely or accidentally place a different module in that slot. Electronic keying lets you protect your system against the accidental placement of the wrong module in a slot. The chosen keying option determines how closely any module in a slot must match the configuration for that slot before the controller opens a connection to the module. There are different keying options depending on your application needs.

I/O Connections

A Logix5000 system uses connections to transmit I/O data.
Table 23 - Logix5000 I/0 Connections

Connection	Description
Direct	A direct connection is a real-time, data-transfer link between the controller and an I/O module. The controller maintains and monitors the connection between the controller and the I/O module. Any break in the connection, such as a module fault or the removal of a module while under power, causes the controller to set fault status bits in the data area associated with the module. Typically, analog I/O modules, diagnostic I/O modules, and specialty modules require direct connections.
Rack-optimized	For digital I/O modules, you can select rack-optimized communication. A rack-optimized connection consolidates connection usage between the controller and all the digital I/O modules on a rack (or DIN rail). Rather than having individual, direct connections for each I/ O module, there is one connection for the entire rack (or DIN rail).

Configure Distributed I/0 on an EtherNet/IP Network

To communicate with distributed I/O modules over an EtherNet/IP network:

- choose a 1769-L32E or 1769-L35E CompactLogix controller with a builtin EtherNet/IP communication port.
- add an EtherNet/IP adapter, and I/O modules to the I/O Configuration folder of the controller.

Within the I/O Configuration folder, organize the modules into a hierarchy of tree/branch and parent/child.

Figure 13 - EtherNet/IP Distributed I/O Configuration
For a typical distributed I/O network...

... you build the $\mathrm{I} / 0$ configuration in this order.

Configure Distributed I/0 on a ControlNet Network

To communicate with distributed I/O modules over a ControlNet network:

- choose a 1769-L32C or 1769-L35CR CompactLogix controller with a built-in ControlNet communication port.
- add a ControlNet adapter, and I/O modules to the I/O Configuration folder of the controller.

Within the I/O Configuration folder, organize the modules into a hierarchy of tree/branch and parent/child.

Figure 14-ControlNet Distributed I/O Configuration
For a typical distributed I/O network...

Configure Distributed I/O on a DeviceNet Network

To communicate with the I/O modules over a DeviceNet network, add the DeviceNet bridge to the I/O Configuration folder of the controller. RSNetWorx for DeviceNet software is used to define the scanlist within the DeviceNet scanner to communicate data between the devices and the controller through the scanner.

Figure 15 - DeviceNet Distributed I/O Configuration

For a typical distributed I/O network...
Single Network

Several Smaller Distributed Networks (subnets)

...you build the $\mathrm{I} / 0$ configuration in this order

Add the local scanner module.

Address I/O Data
I/O information is presented as a set of tags.

- Each tag uses a structure of data, depending on the specific features of the I/O module.
- The name of the tags is based on the location of the I/O module in the system.

Figure 16 - $/ \mathbf{/ O}$ Address Format

Where	Is
Location	Network location.
	Local = same chassis or DIN rail as the controller.
	Adapter_Name = identifies remote communication adapter or bridge module.
Slot	Slot number of I/0 module in its chassis or DIN rail.
Type	Type of data.
	$\mathrm{I}=$ input.
	$0=$ output.
	C = configuration.
	$\mathrm{S}=$ status.
Member	Specific data from the $\mathrm{I} / 0$ module, depending on what type of data the module can store. - For a digital module, a data member usually stores the input or output bit values. - For an analog module, a channel member (CH\#) usually stores the data for a channel.
SubMember	Specific data related to a member.
Bit	Specific point on a digital I/O module, depending on the size of the I/0 module (0 . . 31 for a 32 -point module).

Determine When Data Is Updated

CompactLogix controllers update data asynchronously with the execution of logic. This flowchart illustrates when producers send data. Controllers, input modules and bridge modules are producers.

Figure 17 - Updating of Data

TIP If you need to ensure that the I/O values being used during logic execution are from one moment in time, such as at the beginning of a ladder program, use the Synchronous Copy instruction (CPS) to buffer I/O data.

With the CompactLogix controller, you can monitor I/O modules at different levels by:

- using the programming software to display fault data.

Refer to Display Fault Data on page 23.

- programming logic to monitor fault data so you can take appropriate action

Display Fault Data

Fault data for certain types of module faults can be viewed through the programming software.

To display fault data, perform this procedure.

1. In RSLogix 5000 programming software, select Controller Tags in the Controller Organizer and right-click to select Monitor Tags.

The display style for the fault data defaults to decimal.

2. Change the display style to Hex to read the fault code.

If the module faults, but the connection to the controller remains open, the controller tags database displays the fault value 16\#0E01_0001. The fault word uses this format.

Figure 18 - Fault Word Format

$0=$ Connection Open
1 = connection closed
\qquad

Bit	Description
Fault_Bit	This bit indicates that at least one bit in the fault word is set (1). If all the bits in the fault word are cleared (0), this bit is cleared (0).
Connection_Closed	This bit indicates whether the connection to the module is open (0) or closed (1). If the connection is closed (1), the Fault_Bit is set (1).

End-cap Detection and Module Faults

If a module not adjacent to an end cap experiences a fault and the connection to the controller is not broken, only the module enters the fault state. If a module adjacent to an end cap experiences a fault, both the module and the controller transition to the fault state.

Reconfigure an I/O Module

If an I/O module supports reconfiguration, you can reconfigure the module via:

- the Module Properties dialog box in RSLogix 5000 programming software.
- a MSG instruction in program logic.

Reconfigure a Module via RSLogix 5000 Programming Software

To reconfigure an I/O module via RSLogix 5000 programming software, perform this procedure.

1. Highlight the module in the I/O Configuration tree and right-click to choose Properties.

The Controller Properties dialog box appears.

18Controller Properties - Example_for_1769_ASCII_Module					- \square
Date/Time	Advanced	SFC Execution	File \| No	Nonvolatie Memory	Memory
General	Serial Port \|	System Protocol	User Protocol	Major Faults	Minor Faults
Vendor:	Allen-Bradley				
Type:	1769-L35CR Compactuogix5335CR Controller			Change	Controller...
Revision:	16.1				
Name:	Example_for_1769_ASCII_Module				
Description:	Sample logic using the 1769-ASCII module with CompactLogix. Connect cable from computer to channel zero of A.SClI module.			ith	

2. Reconfigure the module.

Reconfigure a Module via a MSG Instruction

To reconfigure an I/O module, use a Module Reconfigure MSG instruction. During the reconfiguration:

- input modules continue to send input data to the controller.
- output modules continue to control their output devices.

A Module Reconfigure message requires the property Message Type and a selection of Module Reconfigure.

To reconfigure an I/O module, perform this procedure.

1. Set the required member of the configuration tag of the module to the new value.
2. Send a Module Reconfigure message to the module.

EXAMPLE When reconfigure[5] is on, the MOV instruction sets the high alarm to 60 for the local module in slot 4. The Module Reconfigure message then sends the new alarm value to the module. The ONS instruction prevents the rung from sending multiple messages to the module while the reconfigure[5] is on.

Notes:

Develop Applications

This chapter explains how to develop applications.

Topic	Page
Manage Tasks	97
Develop Programs	98
Organize Tags	103
Select a Programming Language	104
Monitor Controller Status	106
Monitor Connections	107
Select a System Overhead Time Slice Percentage	109

Manage Tasks
With a Logix 5000 controller, you can use multiple tasks to schedule and prioritize the execution of your programs based on specific criteria. This divides your controller's processing time among the different operations in your application. Remember that:

- the controller executes only one task at one time.
- one exception task can interrupt another and take control.
- in any given task, only one program executes at one time.

Develop Programs

The controller's operating system is a preemptive multitasking system that is IEC 1131-3 compliant. This environment provides:

- tasks to configure controller execution.
- programs to group data and logic.
- routines to encapsulate executable code written in a single programming language.

Figure 19 - Program Development
Control Application

Define Tasks

Tasks provide scheduling and priority information for programs. You can configure tasks as continuous, periodic, or event tasks. Only one task can be continuous.

Table 24 - Task Support

Controller	Tasks Supported
1769-L35x	8
1769-L32x	6
1769-L31	4

A task can have as many as 32 separate programs, each with its own executable routines and program-scoped tags. Once a task is triggered (activated), all the programs assigned to the task execute in the order in which they are grouped. Programs can only appear once in the Controller Organizer and cannot be shared by multiple tasks.

Specify Task Priorities

Each task in the controller has a priority level. The operating system uses the priority level to determine which task to execute when multiple tasks are triggered. You can configure periodic tasks to execute from the lowest priority of 15 up to the highest priority of 1 . A higher-priority task will interrupt any lowerpriority task. The continuous task has the lowest priority and is always interrupted by a periodic task.

The CompactLogix controller uses a dedicated periodic task at priority 6 to process I/O data. This periodic task executes at the RPI you configure for the CompactBus, which can be as fast as once each millisecond. Its total execution time is as long as it takes to scan the configured I/O modules.

How you configure your tasks affects how the controller receives I/O data. Tasks at priorities $1 \ldots .5$ take precedence over the dedicated I/O task. Tasks in this priority range can impact I/O processing time. For example, if you use the following configuration:

- $\mathrm{I} / \mathrm{ORPI}=1 \mathrm{~ms}$
- a task of priority $=1 \ldots . .5$ that requires 500μ s to execute and is scheduled to run every millisecond
this configuration leaves the dedicated I/O task 500μ s to complete its job of scanning the configured I/O.

However, if you schedule two high priority tasks $1 \ldots .5$ to run every millisecond, and they both require 500μ s or more to execute, no CPU time would be left for the dedicated I/O task. Furthermore, if you have so much configured I/O that the execution time of the dedicated I/O task approaches 2 ms (or the combination of the high priority tasks and the dedicated I/O task approaches 2 ms) no CPU time is left for low priority tasks $7 \ldots 15$.

TIP For example, if your program needs to react to inputs and control outputs at a set rate, configure a periodic task with a priority higher than $6(1 \ldots .5)$. This keeps the dedicated $I / 0$ task from affecting the periodic rate of your program. However, if your program contains a lot of math and data manipulation, place this logic in a task with priority lower than 6 ($7 . . .15$), such as the continuous task, so that the dedicated I/0 task is not adversely affected by your program.

Table 25 - Multiple Tasks Example

Task	Priority Level	Task Type	Example Execution Time	Worst-Case Completion Time
1	5	20 ms periodic task	2 ms	2 ms
2	7	Dedicated I/0 task 5 ms selected RPI	1 ms	3 ms
3	10	10 ms periodic task	4 ms	8 ms
4	None (lowest)	Continuous task	25 ms	60 ms

Remember that:

- the highest priority task interrupts all lower priority tasks.
- the dedicated I/O task can be interrupted by tasks with priority levels $1 . . .5$.

The dedicated I/O task interrupts tasks with priority levels 7...15. This task runs at the selected RPI rate scheduled for the CompactLogix system (2 ms in this example).

- the continuous task runs at the lowest priority and is interrupted by all other tasks.
- a lower priority task can be interrupted multiple times by a higher priority task.
- when the continuous task completes a full scan it restarts immediately, unless a higher priority task is running.

Define Programs

Each program contains:

- program tags.
- a main executable routine.
- other routines.
- an optional fault routine.

Each task can schedule as many as 32 programs.
The scheduled programs within a task execute to completion from first to last. Programs unattached to any task show up as unscheduled programs. You must specify (schedule) a program within a task before the controller can scan the program.

Define Routines

A routine is a set of logic instructions in a single programming language, such as ladder logic. Routines provide the executable code for the project in a controller. A routine is similar to a program file or subroutine in a PLC or SLC controller.

Each program has a main routine. This is the first routine to execute when the controller triggers the associated task and calls the associated program. Use logic, such as the Jump to Subroutine (JSR) instruction, to call other routines.

You can also specify an optional program fault routine. The controller executes this routine if it encounters an instruction-execution fault within any of the routines in the associated program.

Sample Controller Projects

RSLogix 5000 Enterprise programming software includes sample projects that you can copy and then modify to fit your application.

To view a set of sample controller projects, perform this procedure.

1. From the Help pull-down menu, choose Vendor Sample Projects.

2. Scroll down to select a set of sample projects.

Organize Tags

With a Logix5000 controller, you use a tag (alphanumeric name) to address data (variables). In Logix5000 controllers, there is no fixed, numeric format. The tag name itself identifies the data. This lets you:

- organize your data to mirror your machinery.
- document (through tag names) your application as you develop it.

Figure 20-Tag Organization

When you create a tag, assign these properties to the tag:

- Tag type
- Data type
- Scope

Select a Programming Language

The CompactLogix controller supports these programming languages, both online and offline.

Table 26 - Programming Language Selection

Required Language	Program
Ladder diagram (LD)	Continuous or parallel execution of multiple operations (not sequenced)
	Boolean or bit-based operations
	Complex logical operations
	Message and communication processing
	Machine interlocking
	Operations that service or maintenance personnel may have to interpret in order to troubleshoot the machine or process
Function block diagram (FBD)	Continuous process and drive control
	Loop control
	Calculations in circuit flow
Sequential function chart (SFC)	High-level management of multiple operations
	Repetitive sequence of operations
	Batch process
	Motion control using structured text
	State machine operations
Structured text (ST)	Complex mathematical operations
	Specialized array or table loop processing
	ASCII string handling or protocol processing

Add-on Instructions

With version 18 of RSLogix 5000 programming software, you can design and configure sets of commonly used instructions to increase project consistency. Similar to the built-in instructions contained in Logix 5000 controllers, these instructions you create are called Add-on Instructions. Add-on Instructions reuse common control algorithms. With them, you can:

- ease maintenance by animating logic for a single instance.
- protect intellectual property with locking instructions.
- reduce documentation development time.

You can use Add-on Instructions across multiple projects. You can define your instructions, obtain them from somebody else, or copy them from another project.

Once defined in a project, Add-on Instructions behave similarly to the built-in instructions in Logix 5000 controllers. They appear on the instruction tool bar for easy access, as do internal RSLogix 5000 software instructions.

Feature	Description
Save Time	With Add-on Instructions, you can combine your most commonly used logic into sets of reusable instructions. You save time when you create instructions for your projects and then share them with others. Add-on Instructions increase project consistency since commonly used algorithms all work in the same manner, regardless of who implements the project.
Use Standard Editors	You create Add-on Instructions by using one of three RSLogix 5000 software programming editors. - Standard Ladder - Function Block Diagram - Structured Text Once you have created instructions, you can use them in any RSLogix 5000 editor.
Export Add-on Instructions	You can export Add-on Instructions to other projects as well as copy and paste them from one project to another. Give each instruction a unique name so that you don't accidentally overwrite another instruction of the same name.
Add-on InstructionsUse Context Views	Context views let you visualize an instruction's logic for a specific instant, simplifying online troubleshooting of your Add-on Instructions. Each instruction contains a revision, a change history, and an auto-generated help page.
Create Custom Help	When you create an instruction, you enter information for the description fields in software dialog boxes, information that becomes what is known as Custom Help. Custom Help makes it easier for users to get the help they need when implementing the instructions.
Apply Source Protection	As the creator of Add-on Instructions, you can limit users of your instruction(s) to read-only access, or you can bar access to the internal logic or local parameters used by the instruction(s). This source protection lets you prevent unwanted changes to your instruction(s) and protects your intellectual property.

Monitor Controller Status

Get System Value	
Class name	$?$
Instance name	$?$
Attribute Name	$?$
Dest	$?$
	$? ?$

Set System Value	
Cr	
Class name	$?$
Instance name	$?$
Attribute Name	$?$
Source	$?$
	$? ?$

The CompactLogix controller uses Get System Value (GSV) and Set System Value (SSV) instructions to get and set (change) controller data. The controller stores system data in objects. There is no status file, as in the PLC-5 processor.

The GSV instruction retrieves the specified information and places it in the destination. The SSV instruction sets the specified attribute with data from the source.

When you enter a GSV/SSV instruction, the programming software displays the:

- valid object classes.
- object names.
- attribute names.

For the GSV instruction, you can get values for all the available attributes. For the SSV instruction, the software displays only those attributes you are allowed to set.

In some cases, there will be more than one of the same type of object, so you might also have to specify the object name. For example, there can be several tasks in your application. Each task has its own TASK object that you access by the task name.

You can access these object classes:

- AXIS
- CONTROLLER
- CONTROLLERDEVICE
- CST
- DF1
- FAULTLOG
- MESSAGE
- MODULE
- MOTIONGROUP
- PROGRAM
- ROUTINE
- SERIALPORT
- TASK
- WALLCLOCKTIME

Monitor Connections

If communication with a device in the I/O configuration of the controller does not occur for 100 ms or 4 times the RPI, whichever is less, the communication times out, and the controller produces these warnings:

- The I/O status indicator on the front of the controller flashes green.
- A \leqq displays over the I/O configuration folder and the device (s) that has timed out.
- A module fault code is produced, which you can access via:
- the Module Properties dialog box for the module.
- a GSV instruction.

Determine if Device Communication Has Timed Out

If communication times out with at least one device (module) in the I/O configuration of the controller, the I/O status indicator on the front of the controller flashes green.

- The GSV instruction gets the status of the I/O status indicator and stores it in the I_O_LED tag.
- If I_O_LED equals 2 , the controller has lost communication with at least one device.

where:
I_O_LED is a DINT tag that stores the status of the I/O status indicator on the front of the controller.

Determine if I/O Module Communication Has Timed Out

If communication times out with a device (module) in the I/O configuration of the controller, the controller produces a fault code for the module.

- The GSV instruction gets the fault code for IO_Module and stores it in the Module_Status tag.
- If Module_Status is any value other than 4 , the controller is not communicating with the module.

Figure 21-I/0 Module Communication

This rung is used to check the status of an lo connection We look at the entry status of the connection, if the value returned is anything other than 4 The connection is not functioning properly.
When an error is detected the error code and and info is trapped on a one shot basis This is becuase the controller will try and re-establish the connect and when it does this you will loss the true error

Interrupt the Execution of Logic and Execute the Fault Handler

To interrupt the execution of logic and execute the fault handler, perform this procedure.

1. In the Controller Organizer of RSLogix 5000 programming software, right-click the module and choose Properties.

The Module Properties dialog box appears.

2. Click the Connection and check Major Fault On Controller If Connection Fails While in Run Mode checkbox.
3. Click OK.
4. Develop a routine for the Controller Fault Handler.

Select a System Overhead Time Slice Percentage

With RSLogix 5000 programming software, you can specify a percentage for the system overhead time slice. A Logix 5000 controller communicates with other devices (I/O modules, controllers, HMI terminals) at either a specified rate (scheduled) or when there is processing time available to service the communication (unscheduled).

Service communication is any communication that you do not configure through the I/O configuration folder of the project.

- The system overhead time slice specifies the percentage of time (excluding the time for periodic or event tasks) that the controller devotes to service communication.
- The controller performs service communication for up to 1 ms at a time and then resumes the continuous task.

To select a system overhead percentage, perform this procedure.

1. In the Controller Organizer of RSLogix 5000 programming software, right-click on your controller and choose Properties.

The Controller Properties dialog box appears.
Y Controller Properties - Generic_Profile $\quad-\square$

2. Click the Advanced tab.
3. From the System Overhead Time Slice menu, choose a percentage.

System overhead time slice functions include:

- communicating with programming and HMI devices, such as RSLogix 5000 software.
- responding to messages.
- sending messages.

The controller performs system overhead functions for up to 1 millisecond at a time. If the controller completes the overhead functions in less than one millisecond, it resumes the continuous task.

As the system overhead time slice percentage increases, time allocated to executing the continuous task decreases. If there are no communication for the controller to manage, the controller uses the communication time to execute the continuous task. While increasing the system overhead percentage does increase communication performance, it also increases the amount of time it takes to execute a continuous task, increasing overall scan time.

	V15 and Lower		V16 and Higher	
Time Slice (SOTS)	Comms	Continuous Task	Comms	Continuous Task
10%	1 msec	9 msec	1 msec	9 msec
20%	1 msec	4 msec	1 msec	4 msec
33%	1 msec	2 msec	1 msec	2 msec
50%	1 msec	1 msec	1 msec	1 msec
66%	1 msec	0.5 msec	2 msec	1 msec
80%	1 msec	0.2 msec	4 msec	1 msec
90%	0.1 msec	9 msec	1 msec	

At a time slice of 10%, system overhead interrupts the continuous task every 9 ms of continuous task time.

The interruption of a periodic task increases the elapsed time (clock time) between the execution of system overhead functions.

If you use the default time slice of 20%, the system overhead interrupts the continuous task every 4 ms .

Elapsed Time (ms)

If you increase the time slice to 50%, the system overhead interrupts the continuous task every 1 ms .

If the controller contains only a periodic task(s), the system overhead time slice value has no effect. System overhead runs whenever a periodic task is not running.

Configure PhaseManager Application

This chapter explains how to configure a PhaseManager ${ }^{\text {Tw }}$ application.
The PhaseManager option of RSLogix 5000 programming software gives you a state model for your equipment.

Topic	Page
PhaseManager Overview	113
State Model Overview	114
Compare PhaseManager to Other State Models	117
Minimum System Requirements	118
Equipment Phase Instructions	118

For additional information, consult PhaseManager User Manual, publication_ LOGIX-UM001

PhaseManager Overview

PhaseManager lets you add equipment phases to your controller. An equipment phase helps you lay out your code in sections that are easier to write, find, follow, and change.

Term	Description
Equipment phase	- As with a program, an equipment phase is run in a task and is given a set of routines and tags. - Unlike a program, an equipment phase runs by a state model and lets you do one activity.
State model	A state model divides the operating cycle of your equipment into a series of states. Each state is an instant in the operation of the equipment. It's the actions or conditions of the equipment at a given time. The state model of an equipment phase is similar to the S88 and PackML state models.
State machine	- An equipment phase includes an embedded state machine that: - calls the main routine (state routine) for an acting state. - manages the transitions between states with minimal coding. - makes sure that the equipment goes from state to state along an allowable path.
PHASE tag	When you add an equipment phase, RSLogix 5000 programming software makes a tag, using the PHASE data type.

Figure 22 - PhaseManager Overview

State Model Overview

A state model divides the operating cycle of your equipment into a series of states. Each state is an instant in the operation of the equipment, an action or condition at a given time.

In a state model, you define what your equipment does under different conditions, such as run, hold, and stop. You don't need to use all the states for your equipment. Use only needed states.

Table 27 - Types of States

State	Description
Acting	Does something or several things for a certain time or until certain conditions are met. An acting state runs one time or repeatedly.
Waiting	Shows that certain conditions are met and the equipment is waiting for the signal to go to the next state.

Figure 23 - PhaseManager States

With a state model, you define the behavior of your equipment and put it into a brief functional specification. In this way you show what happens and when it happens.

State	Question To Be Asked
Stopped	What happens when you turn on power?
Resetting	How does the equipment get ready to run?
Idle	How do you tell that the equipment is ready to run?
Running	What does the equipment do to make product?
Holding	How does the equipment temporarily stop making product without making scrap?
Held	How do you tell if the equipment is safely holding?
Restarting	How does the equipment resume production after holding?
Complete	How do you tell when the equipment has finished what it had to do?
Stopping	What happens during a normal shutdown?
Aborting	How does the equipment shut down if a fault or failure happens?
Aborted	How do you tell if the equipment is safely shut down?

How Equipment Changes States

The arrows in the state model show how your equipment can transition from one state to another.

- Each arrow is called a transition.
- A state model lets the equipment make only certain transitions. This transition restriction standardizes equipment behavior so that another piece of equipment using the same model will behave the same way.

Table 28 - PhaseManager Transitions Overview

Table 29 - PhaseManager Transition Types

Transition Type	Description
Command	A command tells the equipment to start doing something or do something different. For example the operator pushes the start button to start production and the stop button to halt production. PhaseManager uses these commands: - Reset - Start - Stop - Hold - Restart - Abort
Done	Equipment goes to a waiting state when it has completed a task. You don't have to command equipment to stop. Instead, set up your code to signal when a task is complete.
Fault	A fault tells you that something unusual has occurred. Set up your code to find and take action for faults. Suppose you want your equipment to shut down as fast as possible in case of a certain fault. In that case, set up your code to look for that fault and give the abort command if it finds it.

Manually Change States

With RSLogix 5000 programming software, you can monitor and command an equipment phase. To manually change states, perform this procedure.

Compare PhaseManager to Other State Models

Table 30 - State Model Comparisons

S88	PackML	PhaseManager
Idle	Starting ? Ready	Resetting ? Idle
Running ? Complete	Producing	Running ? Complete
Pausing ? Paused	Standby	Subroutines and/or breakpoints
Holding ? Held	Holding ? Held	Holding ? Held
Restarting	None	Restarting
Stopping ? Stopped	Stopping ? Stopped	Stopping ? Stopped
Aborting? Aborted	Aborting? Aborted	Aborting? Aborted

Minimum System Requirements

Equipment Phase Instructions

To develop PhaseManager programs, you need:

- a CompactLogix controller with firmware revision 16.0 or later.
- a communication path to the controller.
- RSLogix 5000 programming software, version 15.0 or later.

To enable PhaseManager support, you need the full or professional editions of RSLogix 5000 programming software or the optional PhaseManager add-on (9324-RLDPMENE) to your RSLogix 5000 programming software package.

With CompactLogix controllers, you can issue many ladder diagram (LD) and structured text (ST) instructions to begin various equipment phases.

Instruction Code	Instruction
PSC	Signal a phase that the state routine is complete so go to the next state
PCMD	Change the state or substate of a phase
PFL	Signal a failure for a phase
PCLF	Clear the failure code of a phase
PXRQ	Initiate communication with RSBizWare Batch software
PRNP	Clear the NewlnputParameters bit of a phase
PPD	Set up breakpoints within the logic of a phase • phase phevent another program or RSBizWare Batch software from commanding a - make sure another program or RSBizWare Batch software does not already own a phase
PATT	Relinquish ownership of a phase
PDET	Override a command
POVR	

Use a CompactFlash Card

This chapter explains how to use a CompactFlash card for nonvolatile memory or data storage.

Topic	Page
Use a CompactFlash Card to Load/Store a User Application	122
Use a CompactFlash Card for Data Storage	125
Read and Write User Data to the CompactFlash Card	125

CompactLogix controllers only support nonvolatile storage through CompactFlash removable media. CompactLogix controllers support the 1784-CF128 Industrial CompactFlash memory cards for nonvolatile memory.

CompactLogix controllers 1769- L31, 1769-L32E, 1769-L32C, 1769-L35E, and 1769-L35CR can save and restore user applications to CompactFlash memory.

Of the 1769 CompactLogix controllers, only the 1769-L32E and 1769-L35E can store user data (for example, a recipe) to the CompactFlash card during runtime. This feature is supported on 1769-L35E controllers with serial numbers starting with SS0OR9GE, or greater, and 1769-L32E controllers with serial numbers starting with SS0QZ000, or greater. To find the controller's serial number, look on the label on the outside of the controller, or access it electronically in RSLinx software or RSLogix 5000 programming software. You must use firmware version V16, or greater.

Locate the Controller Serial Number in RSLinx Software

To find the controller's serial number in RSLinx software, follow these steps.

1. Open RSLinx software and from the Communication pull-down menu, choose RSWho.
2. Right-click on the controller in the RSWho browse window and select Device Properties.

- 몸 AB_ETH-1, Ethernet 10.88.44.220, 1769-L35E Ethernet Port, 1769- - Backplane, CompactLogix System (+ - 10 , CompactLogix Processor, 1769-L	Ethernet Port LOGIX5335	DF1
01, 1769-L35E Ethernet Port	Remove	
+... 10.88.45.11, 1756-ENBT/A, 1756-ENBT/A	Station Diagnostics	
+- [] 10.88.45.14, 1756-ENBT/A, 1756-ENBT/A	Configure New DDE/OPC Topic	
\% 10.88.45.85, Unrecognized Device	Data Monitor	
†- $10.88 .45 .86,1768-$ ENBT/A, 1768-ENBT/A	Driver Diagnostics	
+ AB_VBP-1, 1789-A17/A Virtual Chassis	Configure Driver	
+ Chassis, 1756-A7/A	Upload EDS file from device	
+ : 综 USB	Device Properties	

The Device Properties dialog box displays, showing the serial number.

Locate the Controller Serial Number

Via the RSLogix 5000 Project

To find the controller's serial number in your RSLogix 5000 project when using ladder logic or structured text, use the Get System Value (GSV) instruction to obtain the value of the Serial Number attribute of the ControllerDevice object.

Structured Text

```
GSV (ControllerDevice, ,SerialNumber, serialNumber);
```

The value can be shown in RSLogix 5000 programming software's data monitor. When the style is set to Hex, the displayed value is the same as shown in RSLinx software.

Program Tags - MainProgram							$\square 5$
	Show: All Tags	- 7. Encar Mame Forer					
Name $=$-a ${ }^{\text {P }}$	Value \leftarrow	Force Mask \quad -	Style		Data Type	Description	
\pm serialNumber	16\#001a_2586)	Hex	\checkmark	DINT		

TIP If the user wants to access the serial number programmatically, additional logic is needed to obtain the serial number's value.

Via RSLogix 5000 Programming Software
To find the controller's serial number in RSLogix programming software, follow these steps.

1. In the controller organizer, right-click on the controller and select Properties from the pull-down menu.
The Controller Properties dialog box displays.
2. Click the Advanced tab to see the serial number.

Use a CompactFlash Card to Load/Store a User Application

You can load the user application/project from nonvolatile memory/ CompactFlash to the user memory of the controller:

- on every power-up.
- on corrupt memory.
- anytime through RSLogix 5000 programming software.

ATTENTION: Fault conditions can occur if the controller types do not match. For example, if the CompactFlash user program and controller firmware were created for a 1769-L35E controller, and then an attempt was made to load that program and/or firmware into a 1769-L32E controller.
IMPORTANTThe user application and firmware version on the CompactFlash card is loaded into the controller. If the contents of the CompactFlash card are a different revision than the revision that is on the controller, then the controller will be be updated to the revision on the CompactFlash card.
ATTENTION: Do not remove the CompactFlash card while the controller is reading from or writing to the card, as indicated by a flashing green CF status indicator. Doing so could corrupt the data on the card or in the controller, as well as corrupt the latest firmware in the controller.
IMPORTANTCompactFlash card memory stores the contents of the user memory when you store the project.l - Changes made after you store the project are not reflected in CompactFlash card memory. - Ifyou change the project but do not store those changes, you overwrite them when you load the project from the CompactFlash card. If this occurs, you have to upload or download the project to go online. - If you want to store changes such os online edits, tag values, or a Controllet network schedule, store the project again after you make the changes.

When you store a project to a 1784 -CF128 Industrial CompactFlash memory card, the controller formats the card, if required.

Manually Change Which Project Loads

A CompactFlash card stores multiple projects. By default, the controller loads the project that you most recently stored, according to the load options of that project.

IMPORTANT Be aware that when loading a different project, the firmware revisions must be the same.

To assign a different project to load from the CompactFlash card, edit the Load.xml file on the card.

1. To change which project loads from the card, open Load.xml. Use a text editor to open the file.
2. Edit the name of the project that you want to load.

- Use the name of an XML file that is in the CurrentApp folder.
- In the CurrentApp folder, a project is comprised of an XML file and a P5K file.

Manually Change the Load Parameters

When you store a project to a CompactFlash card, you define:

- when the project is to load (On Power Up, On Corrupt Memory, User Initiated).
- mode to which to set the controller (if the keyswitch is in REM and the load mode is not User Initiated).

IMPORTANT Be aware that when loading a different project, the firmware revisions must be the same.

To assign a different project to load from the CompactFlash card, edit the Load.xml file on the card.

1. To change the load parameters for a project, open the XML file with the same name as the project. Use a text editor to open the file.
2. Edit the Load Image option of the project.

If you want to set the Load Image option to	Then enter
On Power Up	ALWAYS
On Corrupt Memory	CORRUPT_RAM
User Initiated	USER_INITIATED

3. Edit the Load Mode option of the project (doesn't apply if the Load Image option is User Initiated).

If you want to set the Load Mode option to	Then enter
Program (Remote Only)	PROGRAM
Run (Remote Only)	RUN

Use a CompactFlash Card for Data Storage

You can also store data to the CompactFlash memory card.

For example:

- A PanelView terminal changes tag values in a controller project. If power to the controller is lost (and the controller is not battery backed up), the program running in the controller, along with any values that were changed by the PanelView terminal, will be lost. Use the CompactFlash file system and logic in the project to store tag values as they change. When the project reloads from the CompactFlash card, it can check the CompactFlash card for any saved tag values and reload those into the project.
- Store a collection of recipes on the CompactFlash card. When you need to change a recipe, program the controller to read data for the new recipe from a CompactFlash card.
- Program the controller to write data logs at specific time intervals.

Read and Write User Data to the CompactFlash Card

A sample controller project that reads and writes from a CompactFlash card is available with RSLogix 5000 Enterprise programming software.

Notes:

Maintain the Battery

This chapter explains how to maintain your battery.

Topic	Page
Battery Handling	127
Check If the Battery Is Low	128
Estimate 1769-BA Battery Life	128
Store Lithium Batteries	129
Battery Removal	129

CompactLogix controllers support the 1769-BA battery.

ATTENTION: The 1769-BA battery is the only battery you can use with the CompactLogix controllers. The 1747-BA battery is not compatible with the CompactLogix controllers and may cause problems.

Battery Handling

Lithium batteries are primary (not rechargeable) cells that give extended memory support for Rockwell Automation products.

ATTENTION: This product contains a sealed lithium battery that may need to be replaced during the life of the product.
At the end of its life, the battery contained in this product should be collected separately from any unsorted municipal waste.
The collection and recycling of batteries helps protect the environment and contributes to the conservation of natural resources as valuable materials are recovered.

Check If the Battery Is Low

The battery indicator (BAT) warns when the battery is low. Once the controller is powered down, the battery retains controller memory as long as the BAT indicator remains on. Temperature dictates how long the BAT indicator remains on.

Figure 24 - Battery Status Indicator

Table 31 - BAT Indicator Duration

Temperature	Duration
$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	8 days
$25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$	25 days

Estimate 1769-BA
Certain conditions affect typical battery life. Battery Life

Table 32 - Battery Life Estimations

Time On/Off	At $\mathbf{2 5}{ }^{\circ} \mathbf{C}\left(\mathbf{7 7}{ }^{\circ} \mathbf{F}\right)$	At $\mathbf{4 0}{ }^{\circ} \mathbf{C}\left(\mathbf{1 0 4}{ }^{\circ} \mathbf{F}\right)$	At $\mathbf{6 0}{ }^{\circ} \mathbf{C}\left(\mathbf{1 4 0}{ }^{\circ} \mathbf{F}\right)$
Always off	14 months	12 months	9 months
On 8 hours per day 5 days per week	18 months	15 months	12 months
On 16 hours per day 5 days per week	26 months	22 months	16 months
Always On	There is almost no drain on the battery when the controller is always on.		

Store Lithium Batteries

\triangle
ATTENTION: Follow these general rules to store your batteries.

- Store batteries in a cool, dry environment. We recommend $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ with $40 . . .60 \%$ relative humidity.
- Regularly monitor the temperature and humidity of the storage area.
- Use a first-in/first-out system for handling stored batteries.
- Store in the original containers away from flammable materials.
- Keep track of storage time. Reference storage time to the date of manufacture.
- Do not store batteries longer than 10 years.
- Do not store used batteries longer than 3 months before disposal.
- Clearly mark the contents of the storage area.
- Place a Lith-X or Class D Powder fire extinguisher in a readily accessible area in or around the storage area.
- Ventilate and protect the storage area against fire. You must have a system that automatically detects and extinguishes fires and automatically activates an alarm signal.
- Do not smoke in the storage area.

Table 33 - Storage Temperatures for 1769-BA Lithium Batteries

Storage Temperature	Capacity Loss
$40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ for 5 years	Loses up to 4% of original capacity
$60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$	Loses 2.5% of capacity each year

- You may store batteries for up to 30 days between $-45 . . .85^{\circ} \mathrm{C}$
$\left(-49 \ldots 185^{\circ} \mathrm{F}\right)$ such as during transportation. Do not store in temperatures above $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$.
- To avoid leakage or other hazards, do not store batteries above $60^{\circ} \mathrm{C}$ for more than 30 days.
- The rate of capacity loss increases as storage temperature increases.

Battery Removal

WARNING: When you connect or disconnect the battery, an electrical arc can occur. This could cause an explosion in hazardous location installations. Be sure that power is removed or the area is nonhazardous before proceeding.

Additional Resources
For additional information, consult this publication.

Resource	Description
Guidelines for Handling Batteries, publication AG 5-4	Detailed information on battery-handling procedures for the 1769-BA lithium battery.

Status Indicators

This appendix explains how to interpret the status indicators on your CompactLogix controllers.

Topic	Page
1769-L3xx Controllers Status Indicators	131
RS-232 Serial Port Status Indicators	133
ControINet Indicators	133
EtherNet/IP Indicators	135

1769-L3xx Controllers Status These are the 1769-L3xx CompactLogix controller status indicators. Indicators

Indicator	Condition	Interpretation
RUN	Off	The controller is in program or test mode.
	Steady green	The controller is in run mode.
	Off	- No tags contain $I / 0$ force values.
	Steady amber $1 / 0$ forces are inactive (disabled).	

Indicator	Condition	Interpretation		
OK	Off	No power is applied.		
	Flashing red	- The controller requires a firmware update. - A major recoverable fault occurred on the controller. To clear the fault, perform this procedure. a. Turn the controller keyswitch from PROG to RUN to PROG. b. Go online with RSLogix 5000 programming software. - A nonrecoverable major fault occurred on the controller. In this case, the controller: a. initially displays a steady red status indicator. b. resets itself. c. clears the project from its memory. d. sets the status indicator to flashing red. e. produces a major recoverable fault. f. generates a fault code in the RSLogix 5000 project. The fault code displayed in RSLogix 5000 programming software, and the subsequent fault recovery method, depends on whether you have installed a CompactFlash card in the controller.		
		Code	Condition	Fault recovery method
		60	CompactFlash card is not installed.	1. Clear the fault. 2. Download the project. 3. Change to Remote Run/Run mode. If the problem persists: 1. Before you cycle power to the controller, record the state of the OK and RS232 status indicators. 2. Contact Rockwell Automation support. See the back cover.
		61	CompactFlash is installed.	1. Clear the fault. 2. Download the project. 3. Change to Remote Run/Run mode. If the problem persists, contact Rockwell Automation support. See the back cover.
	Steady red	The controller detected a nonrecoverable major fault, so it cleared the project from memory. To recover from a major fault, perform this procedure. 1. Cycle power to the chassis. 2. Download the project. 3. Change to Run mode. If the OK status indicator remains steady red, contact your Rockwell Automation representative or local distributor.		
	Steady green	Controller is OK.		
	Flashing green	The controller is storing or loading a project to or from nonvolatile memory.		

CompactFlash Indicator

RS-232 Serial Port Status Indicators

ControlNet Indicators

This is the CompactFlash card status indicator present on all CompactLogix controllers.

ATTENTION: Do not remove the CompactFlash card while the controller is reading from or writing to the card, as indicated by a flashing green CF status indicator. This could corrupt the data on the card or in the controller, as well as corrupt the latest firmware in the controller.

Indicator	Condition	Interpretation
CF	Off	There is no activity.
	Flashing green	The controller is reading from or writing to the CompactFlash card.
	Flashing red	CompactFlash card does not have a valid file system.

These are the RS-232 serial port status indicators present on all CompactLogix controllers.

Indicator	Condition	Interpretation
DCH0	Off	Channel 0 configuration differs from the default serial configuration.
	Steady green	Channel 0 has the default serial configuration.
CH0	Off	No RS-232 activity.
	Flashing green	RS-232 activity.
	Off	No RS-232 activity.
	Flashing green	RS-232 activity.

The ControlNet indicators are only on the 1769-L32C and 1769L35CR controllers.

Use these indicators to determine how your CompactLogix 1769-L32C or 1769L35CR controller is operating on the ControlNet network:

- Module Status
- Network Status

These indicators provide information about the controller and network when the controller is connected to ControlNet via the BNC connectors.

Table 34-ControlNet Network Status Indicator States

Status Indicator State	Interpretation
Steady	The indicator is on continuously in the defined state.
Alternating	When viewed together, two indicators alternate between two defined states; the two indicators are always in opposite states, out of phase.
Flashing	When viewed independent of another, an indicator alternates between the two defined states; if both indicators are flashing, they flash together, in phase.

IMPORTANT Keep in mind that the Module Status indicator reflects the module state (for example, self-test, firmware update, normal operation but no connection established). The network status indicators, A and B, reflect network status. Remember that the host is able to engage in local messaging with the card although it is detached from the network. Therefore, the Modul Status indicator is flashing green if the host has successfully started the card. Note, however, that until the host removes reset, all communication port status indicators.
When you view the indicators, always view the Module Status indicator first to determine the state of the communication port. This information may help you to interpret the network indicators. As a general practice, view all indicators (Module Status and Network Status) together to gain a full understanding of the daughtercard's status.

Module Status (MS) Indicator

These are the ControlNet module indicators.

Indicator	Condition	Recommended Action
Off	The controller has no power.	Apply power.
	The controller is faulted.	Make sure that the controller is firmly seated in the slot.
Steady red	A major fault has occurred on the controller.	1. Cycle power. 2. If the problem persists, replace the controller.
	Normal operation - No action is required.	
	A node address switch change has occurred. The controller's node address switches may have been changed since power-up.	Change the node address switches back to the original setting. The module will continue to operate properly.
	The controller uses invalid firmware.	Update the controller firmware with the ControlFlash Update utility.
	The controller's node address duplicates that of another device.	1. Remove power. 2. Change the node address to a unique setting. 3. Reapply power.
Steady green	Connections are established.	Normal operation - No action is required.
Flashing green	No connections are established.	Establish connections, if necessary.
Flashing red/green	The controller is diagnosing a problem.	Wait briefly to see if problem corrects itself. If problem persists, check the host. If the daughtercard cannot communicate with the host, the card may remain in self-test mode.

Network Channel Indicators

These are the ControlNet network channel indicators.
Channel B is only labelled on the 1769-L35CR controller. The 1769-L32C controller only has channel A but uses the second indicator in some status indicator patterns as described below.

Indicator	Condition	Recommended Action		
Off	A channel is disabled.	Program network for redundant media, if necessary.		
Steady green	Normal operation is occurring.	Normal operation - No action is required.		Flashing green/off
:---				

(1) UMAX is the highest node address on a ControlNet network that can transmit data.

EtherNet/IP Indicators

The EtherNet/IP indicators are only on 1769-L32E and 1769-L35E controllers.

Module Status (MS) Indicator

These are the EtherNet/IP module indicators.

Indicator	Condition	Recommended Action
Off	The controller does not have power.	Check the controller power supply.
Flashing green	The port is in standby mode; it does not have an IP address and is operating in B00TP mode.	Verify that the BOOTP server is running.
Steady green	The port is operating correctly.	Normal operation - No action is required.
Steady red	The controller is holding the port in reset or the controller has faulted.	1. Clear the controller fault. 2. If the fault will not clear, replace the controller.
	The port is performing its power-up self test.	Normal operation - No action is required.
	A nonrecoverable fault has occurred.	1. Cycle power to the controller. 2. If the fault will not clear, replace the controller.
Flashing red	The port firmware is being updated.	Normal operation - No action is required.

Network Status (NS) Indicator

These are the EtherNet/IP network indicators.

Indicator	Condition	Recommended Action
Off	The port is not initialized; it does not have an IP address and is operating in B00TP mode.	Verify that the BOOTP server is running.
Flashing green	The port has an IP address, but no CIP connections are established.	- If no connections are configured, no action is required. - If connections are configured, check connection originator for connection error code.
Steady green	The port has an IP address and CIP connections (Class 1 or Class 3) are established.	Normal operation - No action is required.
Steady red	The port has detected that the assigned IP address is already in use.	Verify that all IP addresses are unique.
Flashing red/green	The port is performing its power-up self test.	Normal operation - No action is required.

Link Status (LNK) Indicator

Indicator	Condition	Recommended Action
Off	The port is not connected to a powered Ethernet device. Therefore, the port cannot communicate on Ethernet.	1. Verify that all Ethernet cables are connected. 2. Verify that Ethernet switch is powered.
Flashing green	The port is performing its power-up self-test.	Normal operation - No action is required.
	The port is communicating on Ethernet.	
Steady green	The port is connected to a powered Ethernet device. Therefore, the port can communicate on Ethernet.	

Dynamic Memory Allocation in CompactLogix Controllers

This appendix explains the dynamic allocation of memory in CompactLogix controllers.

Topic	Page
Messages	138
RSLinx Tag Optimization	138
Trends	139
DDE/OPC Topics	139

Certain operations cause the controller to dynamically allocate and remove useravailable memory, affecting the space available for program logic. As these functions become active, memory is allocated. Memory is then removed when these functions become inactive.

Operations that dynamically allocate memory are:

- messages.
- connections to processors with RSLogix 5000 programming software.
- RSLinx tag optimization.
- trends.
- DDE/OPC topics.

Messages

RSLinx Tag Optimization

Messages come in and go out of the controller via the Ethernet, ControlNet, and serial ports, causing memory allocation. The memory allocations for messages destined to I/O are accounted for in these allocations. To prevent message instructions from using too much memory, do not send messages simultaneously.

Table 35 - Message Types

Message Path		Connection Established?	Memory Allocated
ControlNet Port	Incoming	Yes - The message is connected.	1200 bytes
		No - The message is unconnected.	1200 bytes
	Outgoing	All outgoing messages whether connected or unconnected	1200 bytes
Ethernet Port	Incoming	Yes - The message is connected.	1200 bytes
		No - The message is unconnected.	1200 bytes
	Outgoing	All outgoing messages whether connected or unconnected	1200 bytes
Serial Port	Incoming	All incoming messages whether connected or unconnected	1200 bytes
	Outgoing	All outgoing messages whether connected or unconnected	1200 bytes

With tag optimization, trend objects, trend drivers, and connections allocate memory.

Table 36 - Tag Functions

Item	Description	Memory Allocated
Trend Object	Object is created in the controller to group the requested tags. One trend object can handle approximately 100 tags.	80 bytes
Trend Driver	Drive is created to communicate with the trend object.	36 bytes
Connection	Connection is created between the controller and RSLinx software.	1200 bytes
EXAMPLE	To monitor 100 points: 100 points $\times 36$ bytes $=3600$ bytes (Trend Driver) 3600 (Trend Driver) +80 (Trend Object) +1200 (Connection) $=$ approximately 4000 bytes We estimate that one tag consumes about 40 bytes of memory.	

Trends

DDE/OPC Topics

Each trend created in a controller creates a trend object and allocates a buffer for logging.

Table 37 - Controller Trends

Item	Memory Allocated
Trend Object	80 bytes
Log Buffer	4000 bytes

A DDE/OPC topic uses connections based on these variables:

- Maximum number of messaging connections per PLC controller configured in RSLinx software
- Number of connections needed to optimize throughput
- Configuration of RSLinx software to use connections for writing to a ControlLogix processor

IMPORTANT These variables are per path. For example, if you set up two different DDE/OPC topis, with different paths to the same controller, the variables limit the connections for each path. Therefore, if you have a limit of 5 connections, it is possible to have 10 connections, with 5 over each path.

Specify Connections per PLC Controller

To specify the maximum messaging connections per PLC controller, perform this procedure.

1. In RSLinx programming software, from the Communication pull-down menu, choose Configure CIP Options.

Communications Station DDE/OPC
RSWho
Configure Drivers...
Configure Shortcuts...
Configure Client Applications...
Configure (iP Options...

The Configure CIP Options dialog box appears.

2. In the Max. Messaging Connections per PLC field, enter the maximum number of read connections you want a particular workstation to make to a ControlLogix controller.

3. Click OK.

Specify Number of Connections Needed to Optimize Throughput

To specify the number of connections needed to optimize throughput, perform this procedure.

1. Repeat step 1 from the previous procedure.
2. In the Configure CIP Options dialog box, click the Use Connections for Writes to ControlLogix processor checkbox.

IMPORTANT Once you have selected this feature, you cannot limit the number of connections established.

Number of Connections Needed to Optimize Throughput

RSLinx software only opens the number of connections required to optimize throughput. For example, if you have one tag on scan, but have configured RSLinx software to allow five connections as the maximum number of connections, RSLinx software only opens one connection for the tag. Conversely, if you have thousands of tags on scan and limit the maximum number of CIP connections to five, RSLinx software cannot establish more than five connections to the CompactLogix controller. RSLinx software then funnels all of the tags through those five available connections.

View the Number of Open Connections

To view the number of open connections made from your workstation to the CompactLogix controller, perform this procedure.

1. In RSLinx programming software, from the Communication pull-down menu, choose CIP Diagnostics.

Communications Station DDE/OPC
RSWho
Configure Drivers...
Configure Shortcuts...
Configure Client Applications...
Configure CIP Options...
Configure Gateway...

Driver Diagnostics...
 CIP Diagnostics.. An

The CIP Diagnostics dialog box appears.

2. Click the Connections tab.

Here you see an itemized list of open connections.
3. Click the Dispatching tab.

CIP Diagnostics	$\square \square$	X	
Dispatching \|Messaging	Connections		
"Fast" PCCC requests via Messaging:	0		
"Slow" PCCC requests via Messaging:	0		
"Fast" PCCC requests via DHRIO:	0		
"Slow" PCCC requests via DHRIO:	0		
Requests canceled:	0		
Requests not sent:	0		
Requests sent unconnected:	0		
Requests sent connected:	0		
Requests timed out unconnected:	0		
Requests timed out on connection:	0		
Requests failed with connection:	0		
CIP responses received:	0		
PCCC responses received:	0		
Connections open:	0		
Connections attempted:	0		
Connections established:	0		
Connections rejected:	0		
Connections closed:	0		
Connections timed out:	0		
Connections dropped:	0		

In the Connections Established box you see the total number of connections open to the CompactLogix controller.

Numerics

1769-L3x controllers

status indicator 131

A

add-on instructions 105
address data 91
AOI 105
applications
develop 97
architecture 12
ASCII devices
serial communication 64
assemble the system 22

B

battery

connect 20
life 128
Lithium 129
maintenance 127
storage 129
before you begin 19
B00TP 29
broadcast
messages over serial 67

C

cables
1769 expansion 86 serial 42
cache messages 77
calculate
system power consumption 83
total connections 78
change
equipment states 116
change of state 87
channel 0 default 28
check
low battery 128
communicate
EtherNet/IP network 48
over networks 47
communication
ControlNet network 50
determine timeout with any device 107
determine timeout with I/0 module 108
DeviceNet network 53
DH-485 network 72
format 87

CompactFlash

data storage 125
install 21
read and write user data 125
reader 125
CompactLogix
address I/0 data 91
applications development 97
battery maintenance 127
configure I/O 87
connections example 79
ControlNet network communication 50
ControlNet software combinations 51
COS 87
define programs 101
define routines 101
define tasks 99
design a system 13
DeviceNet network communication 53
DeviceNet software combinations 54
DH-485 network communication 72
display I/O fault data 93
dynamic memory allocation 137
estimate battery life 128
EtherNet/IP network communication 48
EtherNet/IP software combinations 48
I/O communication format 87
I/0 connections 88
I/0 electronic keying 87
Logix5000 connections 77
manage controller communication 75
manage tasks 97
monitor connections 107
monitor controller status 106
monitor I/O modules 93
network communication 47
organize tags 103
overview 11
place local I/0 modules 86
RPI 87
select $\mathrm{I} / 0$ modules 81
select programming language 104
serial communication 55
serial modbus support 67
serial port configuration 56
start 11
use CompactFlash reader 125
validate I/O layout 82
CompactLogix controllers
dynamic memory allocation 137
compatibility 18
configuration
DF1 55
serial 27
configure 43
distributed I/O on ControlNet 89
distributed I/O on DeviceNet 90
distributed I/0 on EtherNet 88
I/0 81, 87
PhaseManager 113
connect
battery 20
ControlNet 32
EtherNet/IP 28
programming terminal 35
RS-232 26
connections 77
calculate 78
consume data 75
ControlNet network 52
determine timeout with any device 107
determine timeout with I/0 module 108
EtherNet/IP network 49
example 79
monitor 107
number needed to optimize throughput 141
produce data 75
view number of open 141
connections per PLC
specify 139
consume data
connection use 75
controller
communication management 75
design 13
fault handler 109
firmware 36
operating modes 39
path selection 45
status monitoring 106
controller properties 67
ControlNet network
communication 50
configure distributed I/0 89
connections 32, 52
example configuration 51
module status indicator 134
node address 19
software combinations 51
tap 33
$\operatorname{COS} 87$

D

data

update 92
data storage
CompactFlash 125
DDE/OPC topics 139
default serial configuration 27

define

programs 101
routines 101
tasks 99
design 13
CompactLogix system 13
develop
applications 97
develop application
fault handler 109

DeviceNet network

communication 53
configure distributed I/0 90
example configuration 55
software combinations 54
DF1
configuration 55
master 67
radio modem support 61
DH-485 network
communication 72
dimensions 24
DIN rail 25
display
fault data 93
dynamic memory allocation 137
CompactLogix controllers 137
messages 138
RSLinx tag optimization 138

E

EDS files 36
electronic keying 87
electrostatis discharge 16
end cap 94
equipment states
change 116
estimate
battery life 128
requested packet interval 82
EtherNet/IP network
communication 48
configure distributed I/0 88
connections 28, 49
example configuration 48
network LED indicators 136
software combinations 48

European hazardous location approval 17

example system 12
expansion cables
configuration 86

F

fault data
display 93
fault handler 109
FBD 104
firmware 36
function block diagram 104

G
ground 24

1/0
address data 91
communication format 87
configure 81, 87
connections 88
COS 87
electronic keying 87
layout validation 82
monitor 81
monitor connection 108
place 81
I/O modules
display fault data 93
end cap detection 94
monitor 93
reconfigure 94
select 81
install 15
IP address 29
isolator 27

L

ladder diagram 104
link status indicator
status indicator 136
Lithium
battery 129
LNK
status indicator 136
load
firmware 36
local I/O modules
place 86
low battery 128

M
maintain
battery 127
manage
controller communications 75
tasks 97
manual state changes 117
master mode 55
messages 138
broadcast over serial 67
cache 77
receive 76
reconfigure I/O module 95
send 76
minimum spacing 23
modbus support 67
modem
radio 67
modes 39
module status indicator
ControlNet network 134
EtherNet/IP network 135
monitor
connections 107
controller status 106
I/0 81
I/0 modules 93
mount
DIN rail 25
panel 25
system 23

N
network communication 47
network LED indicators
EtherNet/IP network 136
node address 19
North American Haxardous location approval
17

0

operating modes 39
optical isolator 27
organize
tags 103

P
parts list 19
path selection
controller 45
PhaseManager
configure 113
terms 113
place
I/0 81
local I/O modules 86
point-to-point 55
port configuration
serial 55, 56
produce data
connection use 75
program definition 101
programming language
select 104
programming terminal 35
programs
define 101
pushbutton 28

R

radio modem 67
read and write user data
CompactFlash 125
receive
messages 76
reconfigure
I/0 module 94
requested packet interval
description 87
estimate 82
routines
define 101
RS-232 connections 26
RS-232 serial port
status indicator 133
RSLinx tag optimization 138

S

select
controller path 45
$1 / 0$ modules 81
programming language 104
send
messages 76
sequential function chart 104
serial
cables 42
communication 55, 67
communication with ASCII devices 64
default configuration 27
driver 43
port configuration 55, 56
port direct connection to controller 41
pushbutton 28
series B 18
set node address 19
SFC 104
slave 67
slave mode 55
software combinations
ControlNet network 51
DeviceNet network 54
spacing 23
specify
connections per PLC 139
ST 104
state model 114
comparisons 117
states
manually change 117
status indicator
1769-L3x 131
link status indicator 136
LNK 136
module 135
RS-232 serial port 133
store batteries 129
structured text 104
system layout 12
system overhead time slice 109
system power consumption
estimate 83

T

tags
organize 103
tasks
define 99
manage 97
management 97
total connections
calculate 78
trends 139

U

update
data 92
use
CompactFlash reader 125

V

validate
I/O layout 82
verify
compatibility 18
view
number of open connections 141

W
wiring 24

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products.
At http://www.rockwellautomation.com/support, you can find technical manuals, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools. You can also visit our Knowledgebase at http://www.rockwellautomation.com/knowledgebase for FAQs, technical information, support chat and forums, software updates, and to sign up for product notification updates.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnect ${ }^{\mathrm{SM}}$ support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/support/.

Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual. You can contact Customer Support for initial help in getting your product up and running.

United States or Canada	1.440 .646 .3434
Outside United States or Canada	Use the Worldwide Locator at http://www.rockwellautomation.com/support/americas/phone en.html, or contact your local Rockwell Automation representative.

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

United States	Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.
Outside United States	Please contact your local Rockwell Automation representative for the return procedure.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication RA-DU002, available at http://www.rockwellautomation.com/literature/.

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

Attachment G-07f

Manufacturers' Submittals and Individual O\&M Manuals

CONTROLS

Telecrane F24-J Radio Controller Cut Sheet

TELECRANE F24-J

The TELECRANE model F24-J Industrial Radio Remote Control system is your key to controlling complex cranes and other industrial equipment. The dual $X-Y$ axis joysticks permit up to 5 steps of control in each direction (up/down/aux-up/auxdown/east/west/south/north motions), and 2 two-position and 2 three-position
 toggle switches allow selection of multiple hoists/trolleys and auxiliary equipment; 6 one-step pushbuttons round out the controls. Many aspects of these controls are customizable- see the configuration sheet for details. The receiver has a large "MAINLINE ON" light and horn and is pre-cabled for easy installation, and two transmitters are provided to maximize your equipment's uptime. The TELECRANE model F24-J is the safe solution to your complex wireless control needs.

Specifications	
Number of buttons	6 pushbuttons, 2 2-axis joysticks, 2 2-position toggles, and 23 -position toggles
Number of button steps	Pushbuttons: 1; Joysticks: 5
Control voltage	110V AC standard; 220V AC and 12-24V AC/DC available
Number of transmitters included	2
Typical applications	4-motion, 5-speed complex crane system
Operating distance	500 ft .
Frequency band	$310-320 \mathrm{MHz}$
Frequency generation	Crystal
Security coding	128-bit framing protocol with 32-bit serial number embedded; error detection and correction encoded
Environmental rating	IP65
Licensing	FCC Part 15 accepted- No license needed
Warranty	1 year against defects in manufacture (casing and consumable parts excepted)
Temperature rating	-35 to 75 deg C (-31 to 167 deg F)
Case material	30% glass-fiber reinforced nylon-6
RX part number	F24-J-RX

RX power supply input	110V AC standard; 220V AC and 12-24V AC/DC available
RX relay rating	10 A at 250 V AC
TX part number	F24-J-TX
TX power source	4 AA alkaline batteries
TX battery power indication	LED
TX button specifications	Buttons tested to 2,000,000 operations; Joysticks tested to 10,000,000 operations
TX start key	2-position, removable ON/OFF rotary key and START pushbutton
TX stop button	Push-to-activate, twist-to-release emergency stop button
Transmitter Specifications	
Operating distance	500 ft .
Frequency band	$310-320 \mathrm{MHz}$
Frequency generation	Crystal
Security coding	128-bit framing protocol with 32-bit serial number embedded; error detection and correction encoded
Environmental rating	IP65
Licensing	FCC Part 15 accepted- No license needed
Warranty	1 year against defects in manufacture (casing and consumable parts excepted)
Temperature rating	-35 to 75 deg C (-31 to 167 deg F)
Case material	30\% glass-fiber reinforced nylon-6
RX part number	F24-J-RX
TX power source	4 AA alkaline batteries
TX battery power indication	LED
TX button specifications	Buttons tested to 2,000,000 operations; Joysticks tested to 10,000,000 operations

TX start key	2-position, removable ON/OFF rotary key and START pushbutton
TX stop button	Push-to-activate, twist-to-release emergency stop button
Receiver Specifications	4-motion, 5-speed complex crane system
Typical applications	500 ft.
Operating distance	$310-320$ MHz
Frequency band	Crystal
Frequency generation	IP65
Environmental rating	FCC Part 15 accepted- No license needed
Licensing	1 year against defects in manufacture (casing and consumable parts excepted)
Warranty	-35 to 75 deg C (-31 to 167 deg F)
Temperature rating	30% glass-fiber reinforced nylon-6
Case material	110 a AC standard; 220V AC and 12-24V AC/DC
RX power supply input relay rating	available

Button and Dials Programming Sheet: F24-J

12.0 Programming and button labeling

Custom Iabels for F24-J

The words in bold appear on the joystick motion if you do not fill in the squares below.

Restrict maximum speed position of any motion

Ciircle the last detent that the that motion can achieve. Default detent is all the way through to the 5th step.

Customize travel path of joystick

To customize where the joystick can travel circle one of the drawings below for each joystick or fill in the blank circle with the path desired. The fully black circle represents the default setting of complete 360 degree range of motion.

Custom relay configuration sheet for model: F24-J

	Standard Configurations											Custom Configurations											
	WEST					EAST							WEST				EAST						
	5	4	3	2	1	0	1	2	3	4	5		5	4	3	2	1	0	1	2	3	4	5
1X1	X	X	X	X	X							1X1											
1X2							X	X	X	X	X	1X2											
1X3	X	X	X	X				X	X	X	X	1X3											
1X4	X	X	X						X	X	X	1X4											
1X5	X	X								X	X	1X5											
1X6	X										X	1X6											

Acceleration delay in seconds: $0.0,0.3, \underline{\mathbf{0 . 5}}, 1.0,1.5,2.0,3.0,4.0$,

Acceleration delay in seconds: $0.0,0.3, \underline{\mathbf{0 . 5}}, 1.0,1.5,2.0,3.0,4.0$,

	AUX DOWN					AUX UP					
	5	4	3	2	1	0	1	2	3	4	5
2X1	X	X	X	X	X						
2×2							X	X	X	X	X
2×3	X	X	X	X				X	X	X	X
2X4	X	X	X						X	X	X
2×5	X	X								X	X
2×6	X										X

Acceleration delay in seconds: $0.0,0.3, \underline{\mathbf{0} 5}, 1.0,1.5,2.0,3.0,4.0$,

	UP					DOWN							UP				DOWN						
	5	4	3	2	1	0	1	2	3	4	5		5	4	3	2	1	0	1	2	3	4	5
2 Y 1	X	X	X	X	X							2 Y 1											
2 Y 2							X	X	X	X	X	2 Y 2											
2 Y	X	X	X	X				X	X	X	X	2 Y 3											
2 Y 4	X	X	X						X	X	X	2 Y 4											
2 Y 5	X	X								X	X	2 Y 5											
2 Y 6	X										X	2 Y 6											

Acceleration delay in seconds: $0.0,0.3, \underline{\mathbf{0 . 5}}, 1.0,1.5,2.0,3.0,4.0$,

Notes:
*The default relay configuration chart is on the left side. If you want the relays to close in different combinations than the default settings then mark the appropriate chart to the right with X 's in the appropriate squares.

Attachment G-07g

Manufacturers' Submittals and Individual O\&M Manuals

CONTROLS

Terminal Base Units

FLEX I/O Terminal Base Units

1794-TB2, -TB3, -TB3K, -TB3S, -TB32, -TB32S, -TB3G, -TB3GK, -TB3GS, -TB3T, -TB3TS, -TBN, -TBNK, -TBNF, -TBNFK, -TBKD, -TB3SK, -TB3GSK, -TB3TK, -TB3TSK
(Modules with a K in the last position of the catalog number are conformally coated to meet noxious gas requirements of ISA/ANSI-71.040 1985 Class G3
Environment.)

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.literature.rockwellautomation.com) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.
Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc. is prohibited.
Throughout this manual we use notes to make you aware of safety considerations.

Throughout this manual we use notes to make you aware of safety considerations.	
WARNING	Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.
IMPORTANT	Identifies information that is critical for successful application and understanding of the product.
Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, or recognize the consequence	

Environment and Enclosure

This equipment is intended for use in a Pollution Degree 2 industrial environment, in overvoltage Category II applications (as defined in IEC 60664-1), at altitudes up to 2000 m (6562 ft) without derating. This equipment is considered Group 1, Class A industrial equipment according to IEC/CISPR 11. Without appropriate precautions, there may be difficulties with electromagnetic compatibility in residential and other environments due to conducted and radiated disturbances.
This equipment is supplied as open-type equipment. It must be mounted within an enclosure that is suitably designed for those specific environmental conditions that will be present and appropriately designed to prevent personal injury resulting from accessibility to live parts. The enclosure must have suitable flame-retardant properties to prevent or minimize the spread of flame, complying with a flame spread rating of $5 \mathrm{VA}, \mathrm{V} 2, \mathrm{~V} 1, \mathrm{~V} 0$ (or equivalent) if non-metallic. The interior of the enclosure must be accessible only by the use of a tool. Subsequent sections of this publication may contain additional information regarding specific enclosure type ratings that are required to comply with certain product safety certifications.
In addition to this publication, see:

- Industrial Automation Wiring and Grounding Guidelines, Rockwell Automation publication 1770-4.1, for additional installation requirements.
- NEMA Standards 250 and IEC 60529, as applicable, for explanations of the degrees of protection provided by different types of enclosure.
When you insert or remove the module while backplane power is on, an
electrical arc can occur. This could cause an explosion in hazardous location
installations. Be sure that power is removed or the area is nonhazardous
before proceeding.

North American Hazardous Location Approval

The following terminal bases are Hazardous Location approved: 1794-TBN, - TBNK, -TB2, -TB3, -TB3K, -TB3S, - TB3SK, -TB3G, TB3GK, -TB3GS, -TB3GSK, -TB3T, -TB3TK, -TB3TS, -TB3TSK, -TB32S, -TB32.
The following information applies when operating

this equipment in hazardous locations: | Informations sur l'stilisation de cet équipement en |
| :--- |
| environnements dangereux : |

European Hazardous Location Approval

The following adapters are European Zone 2 approved: $1794-T B N$, -TBNK, -TB2, -TB3, -TB3K, -TB3S, - TB3SK, -TB3G, TB3GK, -TB3GS, -TB3GSK, -TB3T, -TB3TK, -TB3TS, -TB3TSK.
European Zone 2 Certification (The following applies when the product bears the Ex
or EEx Marking)
This equipment is intended for use in potentially explosive atmospheres as defined by European
Union Directive 94/9/EC and has been found to comply with the Essential Health and Safety
Requirements relating to the design and construction of Category 3 equipment intended for use
in potentially explosive atmospheres, given in Annex II to this Directive.
Compliance with the Essential Health and Safety Requirements has been assured by compliance
with EN 60079-15 and EN 60079-0.

FLEX I/O Cage-clamp Terminal Base Units

Cat. No. 1794-TB2, -TB3, -TB3K, -TB32, -TB3G, -TB3GK, -TB3T, -TB3TK

FLEX I/O Spring-clamp Terminal Base Units

Cat. No. 1794-TB3S, -TB3SK, -TB32S, -TB3GS, -TB3GSK, -TB3TS, -TB3TSK

FLEX I/O Terminal Base Units
Cat. No. 1794-TBN, -TBNK

FLEX I/O Fused Terminal Base Units

Cat. No. 1794-TBNF, -TBNFK

	Description
1	Female flexbus connector
2	Terminal base unit
3	Male flexbus connector
4	Keyswitch - set to the position required for the installed module
5	Mounting holes for panel mounting
6,7,	Input/output terminal strips for connecting inputs/output wiring, commons, power connections, customer power supplies, chassis grounds
9	Locking tab
10	Module locking latch
11	Cover plug for male flexbus connector
12	Cold-junction compensation terminals (1794-TB3T, - TB3TS, -TB3TK, -TB3TSK only)
13	Chassis ground terminations (1794-TB3T, -TB3TS, -TB3TK, -TB3TSK, -TB3G, -TB3GS,
14	-TB3GSK only $)$
15	Fuses - eight 5x20 mm (17994-TBNF, -TBNFK only)
16	Terminal strip cover (1794-TBN, -TBNK -TBNF, -TBNFK only)
	Knife switches (1794-TBKD only)

Mount the Terminal Base Unit on a DIN Rail

ATTENTION	During mounting of all devices, be sure that all debris (such as metal chips or wire strands) is kept from falling into the module. Debris that falls into the module could cause damage upon application of power.

1. Remove the cover plug (if used) in the male connector of the unit to which you are connecting this terminal base unit.
2. Check to make sure the 16 pins in the male connector on the adjacent device are straight and in line so that the mating female connector on this terminal base unit will mate correctly.
3. Make certain the female connector (B) is fully retracted.
4. Position the terminal base unit on the 35×7.5 DIN rail (A) (A-B pt no. 199-DR1).

ATtENTION Do not force the terminal base into the adjacent base/adapter. Forcing the units together can bend or break the hook and allow the units to separate and break communication over the backplane.

Position the terminal base at a slight angle and hook it over the top of the DIN rail.

Make sure the hook (C) on the terminal base slides under the edge of the adapter and the flexbus connector is fully retracted. Slide the terminal base over, tight against the adapter.
5. Rotate the terminal base onto the DIN rail with the top of the rail hooked under the lip on the rear of the terminal base. Use caution to make sure that the female flexbus connector does not strike any of the pins in the mati ng connector .

Press down on the terminal base to lock it on the DIN rail. If the terminal base does not lock into place, use a screwdriver or similar device to open the locking tab, press down on the base, and release the locking lever to lock the base in place.

Gently push the flexbus connector into the side of the side of the adapter to complete the backplane connection.
6. Refer to the installation instructions for specific wiring information for the module you are installing in this terminal base.
7. Repeat the above steps to install the next terminal base.

Wire Connections for the Terminal Base Units

$+\mathrm{V} 1=$ Terminals 35, 37, 39, $41 \quad$ (1794-TB32 shown) $+\mathrm{V} 2=$ Terminals 43, 45, 47, 49
COM1 = Terminals $36,38,40,42$
COM2 $=$ Terminals 44, 46, 48, 50
NC = No connections (terminals 16, 33, 34,51)
Wiring Connections for the 1794-TB2,-TB3,-TB3K,-TB3S, TB3SK

Wiring Connections for the 1794-TB3G, -TB3GK, -TB3GS, -TB3GSK

+24 V dc $=$ Terminals C-34, C-50
$\mathrm{COM}=\mathrm{C}-35, \mathrm{C}-51$
Chassis Ground $=$ Terminals B-16, B-33, C-38, C-40 through 45, C-4
NC = No connection
For daisy-chaining: Supply in - C-34(+), C-35(-)

Wiring Connections for the 1794-TBKD

$+\mathrm{V}($ Voltage In) $=$ Terminals C-34, C-51
-V (Common) $=$ Terminals B-16, B-33, C-35 through C-50
For daisy-chaining: Supply in - C-34 (+), B-16 (-)
Supply out - C-51 (+), B-33 (-)

Typical Wiring Guidelines

Terminal base units are rated at 10 A

For Spring-clamp Terminal Base Units: 1794-TB3S, -TB3TS, -TB3GS, -TB32S, -TB3SK, -TB3TSK, -TB3GSK
" Insert a $2.54 \ldots 3.05 \mathrm{~mm}(0.10 \ldots 0.12 \mathrm{in}$.) wide-bladed screwdriver into the slot and lift up. Insert wire, and remove screwdriver.For Cage-clamp Terminal Base Units: 1794-TB2,
$-T B 3,-T B 3 K,-T B 3 T,-T B 3 T K,-T B 3 G,-T B 3 G K,-T B 32$
" Tighten screws to $0.8 \mathrm{Nm}(7 \mathrm{lb}-\mathrm{in})$.
For Knifeswitch Cage-clamp Terminal Base Unit: 1794-TBKD
" Tighten screws to 0.53 Nm ($6 \mathrm{lb}-\mathrm{in}$).
For NEMA Screw-clamp Terminal Base Units: 1794-TBN, -TBNK, -TBNF, -TBNFK
" Tighten screws to 1.02 Nm (9 lb-in).
Install or Change a Fuse in the 1794-TBNF or 1794-TBNFK Terminal Base Unit
This terminal base unit has fuse holders for $5 \times 20 \mathrm{~mm}$ fuses on each of the eight even-numbered I/O terminals (0 through 14 - row B). To install or change a fuse:

1. Press the fuse holder down toward the terminal strip.

2. Remove the fuse from the fuse holder.
3. Insert a known good $5 \times 20 \mathrm{~mm}$ fuse into the fuse holder.
4. Rotate the fuse holder back to vertical until it snaps into the locked position.
The 1794-TBNF and 1794-TBNFK terminal base units are shipped with eight 5×20 $\mathrm{mm}, 1.6 \mathrm{~A}, 250 \mathrm{~V}$ AC slow-blow fuses, one for each even-numbered terminal (0 through 14 on row B). These fuses are suitable for use with the 1794-OA8 AC output module. Refer to the specific installation instructions for fusing recommendations for your particular module.

Use the Knifeswitch Terminal Base

The knifeswitch terminal base has 16 individual mechanical-knifeswitch circuit breakers (two for each channel). Each switch opens or closes one side (input/output and return) for a channel.

1. Place a small-bladed screwdriver into the slot of the knifeswitch of the I / O point circuit that you wish to break.
2. Rotate downward to open the circuit. This opens the path of an individual circuit.
3. To reestablish the circuit, rotate the knifeswitch back into the terminal base unit until it snaps into place.

General						General			
						North American temp code	TAA (1794-TB3G, -TB3GS, -TB3GSK, -TB3GK, -TB3, -TB3K, -TB3T, -TB3TK,$-T B 3 S,-T B 3 S K,-T B 3 T S,-T B 3 T S K,-T B N, ~-T B N K, ~-T B 32, ~-T B 32 S) ~$		
Attribute	Value						T6 (1794-TB2)		
Terminal screw torque	```0.56..0.79 Nm (5...7 lb-in) (1794-TB3TK, -TB3G, -TB3GK, -TB2, -TB32, -TB3, -TB3K, -TB3T) 0.3...0.6 Nm (2.6...5.3 Ib-in) (1794-TBKD) 1.4 Nm (12 lb-in) (1794-TBN, -TBNF, -TBNFK, -TBNK)```					IEC temp code	```T4 (1794-TB3G, -TB3GS, -TB3GSK, -TB3GK, -TB3, -TB3K, -TB3T, -TB3TK, -TB3S, -TB3SK, -TB3TS, -TB3TSK, -TBN, -TBNK) T6 (1794-TB2)```		
Supply voltage range (max)	FLEXBUS: 5V DC, 640 mA I/O Terminals: 2A max V/COM Terminals: 125 V DC/AC, $50 / 60 \mathrm{~Hz}, 10 \mathrm{~A}$ (1794-TB3SK,-TB3TK,-TB2,-TB3, -TB3K, -TB3S, -TB3TK, -TB3TS) V/COM Terminals: 31.2V DC/AC, 50/60Hz, 10A (1794-TB3GSK, -TB3G, -TB3GS, -TB3GK, -TB32, -TB32S V/COM Terminals: 250V DC/AC, 50/60Hz, 10A (1794-TBN, -TBNF, -TBNFK, -TBNK)					Dimensions, approx.	$94 \times 94 \times 69 \mathrm{~mm}(H \times W \times D)(3.7 \times 3.7 \times 2.7$ in. $)$ (with module installed in terminal base)		
						(1) Use this Conductor Category information for planning conductor routing. Refer to Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1. Environmental			
						Attribute		Value	
	1794-TBK FLEXBUS: Terminal Disconnec ATTENTIO A disconn only under	ly DC, 640 : 120V Switch: ng switch -load con	50/60Hz $\mathrm{A}, 20 \mathrm{~m} \Omega$ oes not st tions.	off the cu	t. Make or break a circuit	Operating temperature		IEC 60068-2-1 (Test Ad, Operating Cold), IEC 60068-2-2 (Test Bd, Operating Dry Heat), IEC 60068-2-14 (Test Nb, Operating Thermal Shock): $-20 \ldots 70^{\circ} \mathrm{C}\left(-4 \ldots 15{ }^{\circ} \mathrm{F}\right)(1794-T B 3 G,-T B 3 G S,-T B 3 G S K,-T B 3 G K$, -TB3, -TB3K, -TB3T, -TB3TK, -TB3S, -TB3SK, -TB3TS, -TB3TSK, TB32, -TB32S, -TBN, -TBNK) $0 \ldots 55^{\circ} \mathrm{C}$ ($32 \ldots 131^{\circ} \mathrm{F}$) (1794-TBKD) $-20 \ldots 55^{\circ} \mathrm{C}\left(-4 \ldots 131^{\circ} \mathrm{F}\right)(1794-T B N F,-T B N F K,-T B 2)$	
Isolation voltage	Capable of 250V (continuous) maximum, Basic Insulation Type, Field Wiring								
	Terminals -TBNFK, - Capable of Terminals -TB3TK, - Capable o Terminals		the lesser ous) maxi the lesse , -TB2, -T us) maxim the lesse	the insta , Basic the insta -TB3K, Basic In the insta	module. (1794-TBN, -TBNF, lation Type, Field Wiring module (1794-TB3SK, , -TB3TS) tion Type, Field Wiring module. (1794-TB3G,	Non-operating temperature		IEC 60068-2-1 (Test Ab, Unpackaged Non-operating Cold), IEC 60068-2-2 (Test Bb, Unpackaged Non-operating Dry Heat), IEC 60068-2-14 (Test Na, Unpackaged Non-operating Thermal Shock): $-40 \ldots 85^{\circ} \mathrm{C}\left(-40 \ldots 185^{\circ} \mathrm{F}\right)$ $-20 \ldots 85^{\circ} \mathrm{C}\left(-4 \ldots 185^{\circ} \mathrm{F}\right)$ (1794-TBKD)	
	-TB3GS, -TB3GK, -TB3GSK, -TB32, -TB32S)					Relative humidity		IEC 60068-2-30 (Test Db, Unpackaged Damp Heat): $5 . . .95 \%$ noncondensing	
	2500 V DC/sec, Field Wiring Terminals to FLEXBUS. 220 V DC/sec, Field Wiring Terminals to Functional Ground. (1794-TBKD)					Vibration		$\begin{aligned} & \text { IEC 60068-2-6 (Test Fc, Operating): } \\ & 5 \mathrm{~g} @ 10 \ldots 500 \mathrm{~Hz} \end{aligned}$	
Voltage rating	See Working Voltage and Isolation Voltage Ratings for nominal values					Operating shock		IEC 60068-2-27 (Test Ea, Unpackaged Shock): 30 g (Except for 1794-TBKD)	
Enclosure type rating	None (open-style)								
						Non-operating shock		IEC 60068-2-27 (Test Ea, Unpackaged Shock): 50 g (Except for 1794-TBKD)	
Working Voltage and Isolation Voltage Ratings									
Terminal Base 1794-		24V	120V	230V	Isolation Voltage	Certifications (when product is marked) ${ }^{(1)}$			
TBN, TBNK, TBNF, TBNFK		AC/DC	AC/DC	AC/DC	Dependent upon installed module - refer to individual installation instructions for your specific module.	Attribute	Value		
TB2, TB3, TB3K, TB3S, TB3SK		AC/DC	AC/DC						
TB3T, TB3TS, TB3TK, TB3TSK		AC/DC	AC/DC			UL	(1794-TB2) UL Listed Industrial Control Equipment. See UL File E65584.		
TB3G, TB3GK, TB3GS, TB3GSK		AC/DC				c-UL-us			
TB32, TB32S		AC/DC					(1794-TB3G, -TB3GS, -TB3GSK, -TB3GK, -TB3, -TB3K, -TB3T, -TB3TK, -TB3S, -TB3TS, -TB3SK, -TB3TSK, -TBN, -TBNK, -TB32, -TB32S) UL Listed Industrial Control Equipment, certified for US and Canada. See UL File		
TBKD		DC	AC						
General							(1794-TBKD, -TBNF, -TBNFK) UL Listed Industrial Control Equipment, certified for US and Canada. See UL File E65584.		
Attribute	Value								
Wire size	$0.34 \ldots 3.3 \mathrm{~mm}^{2}$ (22 ...12 AWG) solid or stranded copper wire rated at $75^{\circ} \mathrm{C}\left(167{ }^{\circ} \mathrm{F}\right.$ l or greater, 1.2 mm ($3 / 64 \mathrm{in}$.) insulation max. Strip Length: $5-6 \mathrm{~mm}$ ($0.20 . . .0 .24 \mathrm{in}$.) (1794-TB3SK, -TB3GSK, -TB3TSK, -TB3GK, -TB3GS, -TB32S, -TB3, -TB3K, -TB3S, -TB3TS, -TBN, -TBNF, -TBNFK, -TBNK) $0.34 \ldots 2.1 \mathrm{~mm}^{2}(22 \ldots 14 \mathrm{AWG})$ solid or stranded copper wire rated at $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right.$ l or greater, 1.2 mm (3/64 in.) insulation max (1794-TBKD)					CSA	(1794-TB2, -TB3, -TB3K, -TB3T, -TB3S, -TB3TS, -TB3TK, -TB3SK, -TB3TSK, -TBN, -TBNK, -TB3G, -TB3GK, -TB3GS, -TB3GSK) CSA Certified Process Control Equipment. See CSA File LR54689C. CSA Certified Process Control Equipment for Class I, Division 2 Group A,B,C,D Hazardous Locations. See CSA File LR69960C. (1794-TBNF, -TBNFK) CSA Certified Process Control Equipment. See CSA File LR54689C.		
	$0.21 \ldots 1 . .3 \mathrm{~mm}^{2}(24 \ldots 16 \mathrm{AWG})$ stranded copper wire rated at $75^{\circ} \mathrm{C}\left(167{ }^{\circ} \mathrm{F}\right)$ or greater, 1.2 mm (3/64 in.) insulation max (1794-TB3TK, -TB3G, -TB2, -TB32)					CE	European Union 2004/108/EC EMC Directive, compliant with: EN 61326-1; Meas./Control/Lab., Industrial Requirements EN 61000-6-2; Industrial Immunity EN 61000-6-4; Industrial Emissions EN 61131-2; Programmable Controllers (Clause 8, Zone A \& B)		
Wiring category ${ }^{(1)}$	Established by installed module						European Union 2006/95/EC LVD, compliant with: EN 61131-2; Programmable Controllers (Clause 11)		

Certifications (when product is marked) ${ }^{(1)}$

C-Tick	Australian Radiocommunications Act, compliant with: AS/NZS CISPR 11; Industrial Emissions
Ex	(1794-TB3G, -TB3GS, -TB3GSK, -TB3GK, -TB3, -TB3K, -TB3T, -TB3S, -TB3TS, TB3TK, -TB3SK, -TB3TSK, -TBN, -TBNK) European Union 94/9/EC ATEX Directive, compliant with: EN 60079-15; Potentially Explosive Atmospheres, Protection "n" (II 3 G Ex nA IIC T4 X) EN 60079-0; General Requirements (Zone 2) (1794-TB2) European Union 94/9/EC ATEX Directive, compliant with: EN 60079-15; Potentially Explosive Atmospheres, Protection "n" (II 3 G Ex nA IIC T6 X) EN 60079-0; General Requirements (Zone 2)
TÜV	(1794-TB3G, -TB3GS, -TB3GSK, -TB3GK, -TB3, -TB3K, -TB3T, -TB3S, -TB3TS, -TB3TK, -TB3SK, -TB3TSK, -TBNF, -TBNFK) TUV Certified for Functional Safety: Capable of SIL 2

(1) See the Product Certification link at http://www.ab.com for Declaration of Conformity, Certificates, and other certification details

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

Attachment G-08a

Manufacturers' Submittals and Individual O\&M Manuals

FILTERS

Dessicant Tank Breather Filter

Desiccant Air Breather - Type SDB

1FB1 \& 1FB2 - Dessicant Tank Filter Breather Cap Part No. SDB-122-FM

Drying Agent Capable in changing colours with increasing moisture

REPLACE

2088890888.8080808

This product does not contain any dangerous substances according to EC Council directives 99/45/EC and 2001/60/EC.

Dimensions and Technical Data

Type	Thread G	Dimensions (${ }^{\text {m/ } / \mathrm{in} \text {) }}$				Weight (g/lbs)		Volume $\left(\mathrm{cm}^{3} / \mathrm{in}^{3}\right)$ Drying Agent	Max. Water Absorption (g/lbs)	Air Filter Elements				
				L2	Hex	Comple	Drying Agent				Filter Material	Micron Rating	Filter Surface	Max. Air Flow Rate
SDB-093/2	$\begin{aligned} & \text { Male G3/4 BSP } \\ & \text { (ISO 228) } \end{aligned}$	100	160	20	32	1200	225	300	86	SGB-090-03-B	Synthetic Fibre	$3 \mu \mathrm{~m}$	$752 \mathrm{~cm}^{2}$	0,70 m ${ }^{3} / \mathrm{min}$
		3.94	6.30	. 79	1.26	2.65	. 50	18.3	. 19				$115 \mathrm{in}^{2}$	24.71 cfm
SDB-096/2	$\begin{aligned} & \text { Male G3/4 BSP } \\ & \text { (ISO 228) } \end{aligned}$	100	220	20	32	1500	450	600	172	SGB-090-03-B	Synthetic Fibre	$3 \mu \mathrm{~m}$	$752 \mathrm{~cm}^{2}$	0,70 m ${ }^{3} / \mathrm{min}$
		3.94	8.66	. 79	1.26	3.31	. 99	36.6	. 38				$115 \mathrm{in}^{2}$	24.71 cfm
SDB-121/2	$\begin{aligned} & \text { Male G1-1/4 BSP } \\ & \text { (ISO 228) } \end{aligned}$	130	256	>25	50	2700	750	1000	288	SGB-120-03-B	Synthetic Fibre	$3 \mu \mathrm{~m}$	$2095 \mathrm{~cm}^{2}$	1,50 m ${ }^{3} / \mathrm{min}$
		5.12	10.08	>. 98	1.98	5.92	1.65	61.0	. 63				$320 \mathrm{in}^{2}$	52.97 cfm
SDB-122/2	Male G1-1/4 BSP (ISO 228)	130	366	>25	50	4000	1500	2000	576	SGB-120-03-B	Synthetic Fibre	$3 \mu \mathrm{~m}$	$2095 \mathrm{~cm}^{2}$	1,50 $\mathrm{m}^{3} / \mathrm{min}$
		5.12	14.41	>. 98	1.98	8.82	3.31	122.0	1.27				$320 \mathrm{in}^{2}$	52.97 cfm

Characteristics

Combination of air breather and water removal filter

When a reservoir or gearbox breathes, air containing water vapor is ingested into the system. Temperature fluctuations will cause this water vapor to condense which can speed up the oxidation of the fluid and lead to damage in the system.

While inhaling, Desiccant Air Breathers SDB first dry the air as it passes through the drying agent. The air then passes through a $3 \mu \mathrm{~m}$ air filter element to remove any solid contamination particles.

Accessories / Spare Parts

Adaptor plate

- for SDB-093/2 and SDB-096/2
- for SDB-121/2 and SDB-122/2:

Visual contamination indicator

- for all sizes (in conjunction with adaptor plate only):

Drying agent refilling material (supplied in air tight container)

- for SDB-093/2 ($300 \mathrm{~cm}^{3} / 18.3 \mathrm{in}^{3}$):
- for SDB-096/2 ($600 \mathrm{~cm}^{3} / 26.6 \mathrm{in}^{3}$):
- for SDB-121/2 ($1000 \mathrm{~cm}^{3}$ / $61.0 \mathrm{in}^{3}$):
- for SDB-122/2 (2000 $\left.\mathrm{cm}^{3} / 122.0 \mathrm{in}^{3}\right)$:

Active carbon refilling material (supplied in air tight container)

- for SDB-093/2, SDB-096/2 and SDB-121/2 ($300 \mathrm{~cm}^{3} / 18.3 \mathrm{in}^{3}$): - for SDB-122/2 ($600 \mathrm{~cm}^{3} / 18.3 \mathrm{in}^{3}$): RC-093/096/121 RC-122
Please note: Use one layer of active carbon (1/3) and one layer of regular drying agent (2/3).

Replacement air filter element (sealing included)

As moisture is absorbed, the drying agent will gradually change from red to orange. When it is orange, replace the drying agent. If required, an optional visual indicator gives an indication of the status of the air breather. With the moisture absorbed, the oxidation process can be decreased and the lifetime of the oil and the entire machinery will be extended.

Desiccant Air Breathers SDB can also be re-fitted with a layer of active carbon ($1 / 3$) and a layer of regular drying agent (2/3) for vapor filtration.

Features

- Available in 4 different sizes
- Diameter of $\varnothing 100 \mathrm{~mm} / \emptyset 3.94$ in or $\varnothing 130 \mathrm{~mm} / \emptyset 5.12$ in
- Refillable with drying agent (non-toxic ZR gel grain) or a mix of drying agent and active carbon
- Replaceable air filter element SGB
- Connection: Male BSP thread (ISO 228) on Stainless Steel tube
- Available with adaptor plate to simplify installation and to enable the use of a visual contamination indicator

Order Codes

Drying Agent
Capable in changing colours with increasing moisture
 \%aracTIVE:ュ月

REPLACE

This product does not contain any dangerous substances according to EC Council directives 99/45/EC and 2001/60/EC.

Dimensions and Technical Data

Type	Thread G	$\begin{aligned} & \text { Dimens } \\ & \emptyset \mathrm{D} \end{aligned}$	L1	L2	Weight (g/lbs) Complete Unit	Drying Agent	Volume (cm ${ }^{3} \mathrm{in}^{3}$) Drying Agent	Max. Water Absorption (g/lbs)	Max. Air Flow Rate
SVDB-093	$\begin{aligned} & \text { Female G3/4 BSP } \\ & \text { (ISO 228) } \end{aligned}$	94	109	18	400	225	300	86	0,70 m ${ }^{3} / \mathrm{min}$
		3.70	4.68	. 71	. 88	. 50	18.3	. 19	24.71 cfm
SVDB-096	$\begin{aligned} & \text { Female G3/4 BSP } \\ & \text { (ISO 228) } \end{aligned}$	94	179	18	700	450	600	172	$0,70 \mathrm{~m}^{3} / \mathrm{min}$
		3.70	7.05	. 71	1.54	. 99	36.9	. 38	24.71 cfm

Characteristics

Combination of air breather and water removal filter

When a reservoir or gearbox breathes, air containing water vapor is ingested into the system. Temperature fluctuations will cause this water vapor to condense which can speed up the oxidation of the fluid and lead to damage in the system.

Desiccant Air Breathers SVDB are the light-weight alternative to the proven SDB series, offering an almost identical filtration and absorption performance.

While inhaling, Desiccant Air Breathers SVDB also first dry the air as it passes through the drying agent. The air then passes through a $10 \mu \mathrm{~m}$ coarse filter to remove any solid contamination particles.

As moisture is absorbed, the drying agent will gradually change from red to orange. When it is orange, replace the entire unit. If required, an optional visual indicator gives an indication of the status of the air breather. With the moisture absorbed, the oxidation process can be decreased and the lifetime of the oil and the entire machinery will be extended.

Order Codes

(1) Type	
Desiccant Air Breather (Economy Version)	SVDB
(2) Max. Water Absorption and Size	
$86 \mathrm{~g} / .19 \mathrm{lbs}$ at $994 \mathrm{~mm} / 03.70$	093
$172 \mathrm{~g} / .38 \mathrm{lbs}$ at $\varnothing 94 \mathrm{~mm} / \mathrm{\square} 3.70$	096

Please see table above for further technical details.
(3) Connection Adaptor

Without connection adaptor
With connection adaptor TBA-075-B
A

Please see page E29 for details
Consult STAUFF for alternative adaptors.
(4) Adaptor Plate

Without adaptor plate	-
With adaptor plate (in conjunction	

(5) Contamination Indicator Without contamination indicator With visual contamination indicator FM (in conjunction with adaptor plate AP only)

Please see page E33 for details

Features
Light-weight alternative to the SDB series
Available in 2 different sizes
Diameter of $\emptyset 94$ mm / $\emptyset 3.70$ in

- Filled with drying agent (non-toxic ZR gel grain)

Connection: Female BSP thread (ISO 228) in Plastic housing

Please note that neither the air filter element nor the drying agent can be replaced when saturated.

Accessories / Spare Parts

Connection adaptor (see page E29 for details)

- for all sizes:

Adaptor plate

for all sizes (in conjunction with adaptor plate only)

Visual contamination indicator

- for all sizes (in conjunction with adaptor plate only):

Desiccant Air Breather with
 Check Valves - Type SDB-CV

Drying Agent Capable in changing colours with increasing moisture

This product does not contain any dangerous substances according to EC Council directives 99/45/EC and 2001/60/EC.

Dimensions and Technical Data

Type	Thread G	Dimensions ($\mathrm{mm} / \mathrm{in}$)				Weight (g/lbs)		Volume $\left(\mathrm{cm}^{3} / \mathrm{in}^{3}\right)$ Drying Agent	Max. Water Absorption (g/lbs)	Air Filter Elements				
							Drying Agent			Type	Filter 67	Micron Rating	Filter Surface	Max. Air Flow Rate
SDB-061-CV	Male G3/8	68	143	14	22	350	75	100	29	SGB-060-03-B	Synthetic Fibre	$3 \mu \mathrm{~m}$	$415 \mathrm{~cm}^{2}$	0,05 m³/min
	BSP (ISO 228)	2.68	5.63	. 55	. 87	. 77	. 17	6.1	. 06				$63 \mathrm{in}^{2}$	1.77 cfm
SDB-096-CV	Male G3/4	100	220	20	32	1500	450	600	172	SGB-090-03-B	Synthetic Fibre	$3 \mu \mathrm{~m}$	$752 \mathrm{~cm}^{2}$	0,70 m³/min
	BSP (ISO 228)	3.94	8.66	. 79	1.26	3.31	. 99	36.6	. 38				$115 \mathrm{in}^{2}$	24.71 cfm
SDB-121-CV	Male G1-1/4	130	256	>25	50	2700	750	1000	288	SGB-120-03-B	Synthetic Fibre	$3 \mu \mathrm{~m}$	$2095 \mathrm{~cm}^{2}$	1,50 m³/min
	BSP (ISO 228)	5.12	10.08	$>.98$	1.98	5.92	1.65	61.0	. 63				$320 \mathrm{in}^{2}$	52.97 cfm
SDB-122-CV	Male G1-1/4	130	366	>25	50	4000	1500	2000	576	SGB-120-03-B	Synthetic Fibre	$3 \mu \mathrm{~m}$	$2095 \mathrm{~cm}^{2}$	1,50 m³/min
	BSP (ISO 228)	5.12	14.41	$>.98$	1.98	8.82	3.31	122.0	1.27				$320 \mathrm{in}^{2}$	52.97 cfm

Characteristics

Combination of air breather and water removal filter with integrated check valves to increase the lifetime of the desiccant material; particularly suited for gearbox applications

When a reservoir or gearbox breathes, air containing water vapor is ingested into the system. Temperature fluctuations will cause this water vapor to condense which can speed up the oxidation of the fluid and lead to damage in the system.

While inhaling, Desiccant Air Breathers SDB-CV first dry the air as it passes through the drying agent. The air then passes through a $3 \mu \mathrm{~m}$ air filter element to remove any solid contamination particles.

Accessories / Spare Parts

Adaptor plate

- for SDB-096-CV:
- for SDB-121-CV and SDB-122-CV:

Visual contamination indicator

- for SDB-096-CV, SDB-121-CV and SDB-122-CV (in conjunction with adaptor plate only):

Drying agent refilling material (supplied in air tight container)

- for SDB-061-CV ($100 \mathrm{~cm}^{3} / 6.1 \mathrm{in}^{3}$): RD-061
- for SDB-096-CV ($600 \mathrm{~cm}^{3} / 26.6 \mathrm{in}^{3}$): RD-096
- for SDB-121-CV and SDB-122-CV ($1000 \mathrm{~cm}^{3} / 61.0 \mathrm{in}^{3}$): RD-121
- for SDB-122-CV (2000 $\left.\mathrm{cm}^{3} / 122.0 \mathrm{in}^{3}\right)$: RD-122

Active carbon refilling material (supplied in air tight container)

- for SDB-096-CV and SDB-121-CV $\left(300 \mathrm{~cm}^{3} / 18.3 \mathrm{in}^{3}\right.$):
- for SDB-122-CV ($600 \mathrm{~cm}^{3} / 18.3 \mathrm{in}^{3}$):

RC-093/096/121
RC-122
Please note: Use one layer of active carbon (1/3)
and one layer of regular drying agent $(2 / 3)$.
Replacement air filter element (sealing included)

- for SDB-061-CV
SGB-060-03-B
- for SDB-096-CV:
SGB-090-03-B
- for SDB-121-CV and SDB-122-CV:
SGB-120-03-B

Thanks to the spring-loaded check valves with an opening pressure of 0,01 bar / .15PSI, the drying agent will be isolated from the atmosphere unless inhaling or exhaling, which increases the lifetime of the Desiccant Air Breather SDB-CV as well As moisture is absorbed, the drying agent will gradually change from red to orange. When it is orange, replace the drying agent. If required, an optional visual indicator (not for the SDB-061-CV) gives an indication of the status of the air breather. With the moisture absorbed, the oxidation process can be decreased and the lifetime of the oil and the entire machinery will be extended. Desiccant Air Breathers SDB-CV can also be re-fitted with a layer of active carbon ($1 / 3$) and a layer of regular drying agent $(2 / 3)$ for vapor filtration.

Order Codes

Features

- Available in 4 different sizes with diameter of $\emptyset 68 \mathrm{~mm} / \emptyset 2.68$ in, $\emptyset 100 \mathrm{~mm} / \emptyset 3.94$ in or $\emptyset 130 \mathrm{~mm} / \emptyset 5.12$ in
- Equipped with spring-loaded check valves in opposing directions with an opening pressure of $0,01 \mathrm{bar} / .15 \mathrm{PSI}$
- Refillable with drying agent (non-toxic ZR gel grain) or a mix of drying agent and active carbon
- Replaceable air filter element SGB
- Connection: Male BSP thread (ISO 228)

Please note: Using an Desiccant Air Breather with integrated spring-loaded check valves may cause an under or over pressure of $0,01 \mathrm{bar} / .15 \mathrm{PSI}$ inside the system, which does not cause any problems for the majority of gearboxes and reservoirs. In case of doubt, please consult your equipment supplier.

(1) Type Desiccant Air Breather SDB
(2) Max. Water Absorption and Size

$29 \mathrm{~g} / .06 \mathrm{lbs}$ at $\emptyset 68 \mathrm{~mm} / \emptyset 2.68 \mathrm{in}$	$\mathbf{0 6 1}$
$172 \mathrm{~g} / .38 \mathrm{lbs}$ at $\emptyset 100 \mathrm{~mm} / \emptyset 3.94 \mathrm{in}$	$\mathbf{0 9 6}$
$288 \mathrm{~g} / .63 \mathrm{lbs}$ at $\emptyset 130 \mathrm{~mm} / \emptyset 5.12$ in	$\mathbf{1 2 1}$
$576 \mathrm{~g} / 1.27 \mathrm{lbs}$ at $\emptyset 130 \mathrm{~mm} / \emptyset 5.12 \mathrm{in}$	$\mathbf{1 2 2}$

Please see table above for further technical details.
(3) Check Valves

With integrated spring-loaded
check valves (0,01 bar / .15PSI)
(4) Drying Agent 67

Regular drying agent (standard option)
One layer of active carbon ($1 / 3$) and one layer of regular drying agent ($2 / 3$) for vapor filtration
(5) Adaptor Plate

Without adaptor
With adaptor plate (not for SDB-061-CV)
(6) Contamination Indicator

Without contamination indicator
With visual contamination indicator FM
(in conjunction with adaptor plate AP only)
Please see page E33 for details.

Order Code and Dimensions

Order Code	Thread G1 (Breather Port)	Thread G2 (Indicator Port)	Dimensions ($\mathrm{mm} / \mathrm{in}$) H \quad D		Socket Cap Screws included	For Use with Desiccant Air Breathers
AP-1	Female G3/4 BSP (ISO 228)	Female G1/8 BSP (ISO 228)	50 1.98	88 3.46	$\text { M5 x } 60-8.8$ (Steel, zinc-plated)	$\begin{aligned} & \text { SDB-096/2 } \\ & \text { SDB-093/2 } \\ & \text { SVDB-096 } \\ & \text { SVDB-093 } \end{aligned}$
AP-2	Female G1-1/4 BSP (ISO 228)	Female G1/8 BSP (ISO 228)	70 2.76	100 3.94	$\text { M5 x } 80-8.8$ (Steel, zinc-plated)	$\begin{aligned} & \text { SDB-121/2 } \\ & \text { SDB-122/2 } \\ & \text { SDB-121-CV } \end{aligned}$

Characteristics

Designed to simplify the installation of Desiccant Air
Breathers and enable the use of a visual contamination
indicator
With Adaptor Plates AP, desiccant air breathers can be directly
mounted to existing connections with a six-hole bolt pattern
for flange interfaces similar to DIN 24557, part 2.
They are also equipped with a female G1/8 BSP thread (ISO
228) to connect with the Visual Contamination Indicator FM.
Adaptor Plates AP are made of Polyamide (PA). A blind plug,
0 -ring made of NBR (Buna-N®) and 6 socket cap screws (ISO
4762) are supplied with AP as a standard.

Visual Contamination Indicator • Type FM

Characteristics

Designed to indicate the status of air filter elements
Visual Contamination Indicators FM - the so-called
Filter Minders ${ }^{\circledR}$ - are connected to the female G1/8 BSP thread (ISO 228) of the Adaptor Plate AP and give a visual indiation of the contamination level of the air filter element SGB. A red marking indicates when the air filter element has to be replaced.

Visual Contamination Indicators FM can be reset afterwards.

Consult STAUFF for alternative types of monitoring devices (such as Graduated Switch Indicators FME, etc.).

Attachment G-08b

Manufacturers' Submittals and Individual O\&M Manuals

FILTERS

High Pressure Filter SF Series

Product Description

STAUFF SF series High Pressure Filters are designed for in-line hydraulic applications, with a maximum operating pressure of 420 bar / 6000 PSI. Used together with STAUFF SE series Filter Elements, a high efficiency of contaminant removal is assured. The high dirt-hold capacity of the elements ensures long service life and, as a result, reduced maintenance costs.

Technical Data

Construction

- Designed for in-line assembly, with threaded mounting holes on top of head.

Materials

- Filter head:
- Filter bowl:
- 0-rings:
- Support ring:

Port Connections

- BSP
- NPT
- SAE 0-ring thread
- SAE Code 61 flange
- SAE Code 62 flange

Other port connections available on request.

Operating Pressure

- Max. 420 bar / 6000 PSI

Burst Pressure

- Min. 1260 bar / 18275 PSI

Temperature Range

- $-10^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C} /+14^{\circ} \mathrm{F} \ldots+212^{\circ} \mathrm{F}$

Filter Elements

- Specifications see page C22 / C41

Media Compatibility

- Mineral oils, other fluids on request

Options and Accessories

Valve

- Bypass valve: Allows unfiltered oil to bypass the contaminated element once the opening pressure has been reached, a differential pressure of $6^{+0,5} \mathrm{bar} / 87^{+7.25} \mathrm{PSI} \Delta \mathrm{p}$ is the standard setting. Other settings available upon request.
- Reverse flow valve: Allows reverse flow through the filter head without backflushing the element.
- Non-return valve: Prevents draining of the delivery line during element change.
- Multi-function
valve: \quad Opening pressure $6^{+0,5} \mathrm{bar} / 87^{+7.25} \mathrm{PSI}$
Bypass, reverse flow capability and non-return valve combined in one valve.

Clogging Indicator

- Standard actuating
pressure: $\quad 5_{-0,5}$ bar $/ 72.5_{-7.25} \mathrm{PSI} \Delta \mathrm{p}$ Other actuating pressure settings are available upon request.
- Available indicators: Visual
Electrical
- Available indicators: Visual
Electrical

Visual-electrical (24 V DC, 110 V AC, 230 V AC versions)

High Pressure Filters - Type SF

Thread Connection G	Filter Size SF								
	014	030	045	070	125	090	160	250	300
BSP	3/4	3/4	1-1/4	1-1/4	1-1/4	1-1/2	1-1/2	1-1/2	1-1/2
NPT	3/4	3/4	1-1/4	1-1/4	1-1/4	1-1/2	1-1/2	1-1/2	1-1/2
SAE 0-ring Thread	1-1/16-12	1-1/16-12	1-5/8-12	1-5/8-12	1-5/8-12	1-7/8-12	1-7/8-12	1-7/8-12	1-7/8-12
SAE Flange 6000 PSI	3/4	3/4	1-1/4	1-1/4	1-1/4	1-1/2	1-1/2	1-1/2	1-1/2
Weight (kg/lbs) incl. Elements with Filter Bowl in One-Part Style	5,3	6,2	10,3	12	16,3	27	35,5	-	-
	11.7	13.7	22.7	26.5	35.9	59.9	78.3	-	-
Weight (kg/lbs) incl. Elements with Filter Bowl in Two-Part Style	5,9	6,9	12,2	13,7	20	32	39,3	49	57,3
	13	15.2	26.9	30.2	44.1	70.5	86.5	108	126.3

Dimensions (mm/in)		Filter								
		014	030	045	070	125	090	160	250	300
b1		104	104	128	128	128	178	178	178	178
		4.10	4.10	5.04	5.04	5.04	7.01	7.01	7.01	7.01
d2		91	91	116	116	116	159	159	159	159
		3.58	3.58	4.57	4.57	4.57	6.26	6.26	6.26	6.26
h3		48	48	49,5	49,5	49,5	72	72	72	72
		1.89	1.89	1.95	1.95	1.95	2.84	2.84	2.84	2.84
h4		12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5
		. 49	. 49	. 49	. 49	. 49	. 49	. 49	. 49	. 49
	d1	68	68	95	95	95	130	130	130	130
		2.68	2.68	3.74	3.74	3.74	5.12	5.12	5.12	5.12
	h1	188	254	239	298	483	323	494	-	-
		7.40	10.00	9.41	11.73	19.11	12.72	19.45	-	-
	h2	78	144	103	161	343	148	319	-	-
		3.07	5.67	4.06	6.34	13.5	5.83	12.56	-	-
	h5 Rec.*	100	170	140	200	380	190	360	-	-
		3.94	6.69	5.51	7.87	14.96	7.48	14.17	-	-
		85	85	120	120	120	150	150	-	-
	Min.*	3.35	3.35	4.72	4.72	4.72	5.91	5.91	-	-
		27	27	32	32	32	36	36	36	36
	Hex	1.06	1.06	1.26	1.26	1.26	1.42	1.42	1.42	1.42
	d1	70	70	101,6	101,6	101,6	133	133	133	133
		2.76	2.76	4	4	4	5.24	5.24	5.24	5.24
	d3	84	84	115	115	115	155	155	155	155
		3.31	3.31	4.53	4.53	4.53	6.10	6.10	6.10	6.10
	h5	65	130	100	160	340	120	290	425	590
		2.56	5.12	3.94	6.30	13.39	4.72	11.42	16.73	23.23
	h6	190	256	241	300	485	329,5	500,5	656,5	821,5
		7.48	10.08	9.49	11.81	19.10	12.97	19.71	25.85	32.34
	h7	80	146	103	163	344	154,5	325,5	481,5	646,5
		3.15	5.75	4.06	6.42	13.54	6.08	12.82	18.96	25.45
	Hex	27	27	32	32	32	36	36	36	36
		1.06	1.06	1.26	1.26	1.26	1.42	1.42	1.42	1.42

Reference: Rec.*: Recommended I Min.*: Minimum

Dimensions (mm/in)		Filter Size SF								
		014	030	045	070	125	090	160	250	300
	b2	23,8	23,8	31,6	31,6	31,6	36,7	36,7	36,7	36,7
	b2	. 94	. 94	1.24	1.24	1.24	1.45	1.45	1.45	1.45
		50,8	50,8	66,7	66,7	66,7	79,4	79,4	79,4	79,4
\vdash	b3	2.00	2.00	2.63	2.63	2.63	3.13	3.13	3.13	3.13
	G2	M10 $\times 15$		M14 $\times 20$			M16 x 20			
	G3	3/8-16 UNC x. 59		1/2-13 UNC x 79			5/8-11 UNC x 79			
	b4	23,8	23,8	31,6	31,6	31,6	36,7	36,7	36,7	36,7
		. 94	. 94	1.24	1.24	1.24	1.45	1.45	1.45	1.45
	b5	50,8	50,8	66,7	66,7	66,7	79,4	79,4	79,4	79,4
		2.00	2.00	2.63	2.63	2.63	3.13	3.13	3.13	3.13
	G4	M10 $\times 15$		M14 x 17			M16 x 20			

High Pressure Filter Housings / Complete Filters - Type SF

Filter Elements - Type SE

(1) Type			
Filter Element Series			SE
2 Group			
According to filter housing			
(3) Filter Material			
Material	max. Δp^{*} collapse	Micron ratings available	Code
Inorg. glass fibre	25 bar / 363 PSI	$\begin{aligned} & 3,5,10, \\ & 20 \end{aligned}$	G
Inorg. glass fibre	210 bar / 3045 PSI		H
Stainless fibre	210 bar / 3045 PSI		A
Stainless mesh	$30 \mathrm{bar} / 435$ PSI	$\begin{aligned} & 25,50, \\ & 100,200 \end{aligned}$	B, S

SE - 014 G 10 B I X
 1

4 Micron Rating	
$3 \mu \mathrm{~m}$	$\mathbf{0 3}$
$5 \mu \mathrm{~m}$	$\mathbf{0 5}$
$10 \mu \mathrm{~m}$	$\mathbf{1 0}$
$20 \mu \mathrm{~m}$	$\mathbf{2 0}$
$25 \mu \mathrm{~m}$	$\mathbf{2 5}$
$50 \mu \mathrm{~m}$	$\mathbf{5 0}$
$100 \mu \mathrm{~m}$	$\mathbf{1 0 0}$
$200 \mu \mathrm{~m}$	$\mathbf{2 0 0}$

Note: Other micron ratings on request.

* Collapse/burst resistance as per IS0 2941. Bold types identify preferred materials, other materials on request.

5 Sealing Material	
NBR (Buna-N®)	B
FPM (Viton®)	V
EPDM	
Note: Other sealing materials on request.	
6 Design Code	
\quad Only for information	X

High and Medium Pressure Filters - Type SF / SF-TM / SF-SM / SFA

The following characteristics are valid for mineral oils with a density of $0,85 \mathrm{~kg} / \mathrm{dm}^{3}$ and the kinematic viscosity of $30 \mathrm{~mm}^{2} / \mathrm{s}(30 \mathrm{cSt})$. The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. Consult STAUFF for details.

Valve Configuration	Flow direction	Curve
Housing with HV-O or HV-B	In \rightarrow Out	A
HVM, HV-R, HV-N	In \rightarrow Out	B
HV-M, HV-B - Element 100\% blocked Bypass only - In reality always mixed mode	In \rightarrow Out	C
HV-M,HV-R Reverse mode	Out \rightarrow In	D

Housing \& Valves SF090/160/250/300

Housing \& Valves SF090/160/250/300

Housing \& Valves SF/SFA045/070/125

Attachment G-08c

Manufacturers' Submittals and Individual O\&M Manuals

FILTERS

Return Line Filter

1FR1 \& 1FR2 - Return Line Filter
Options

Return Line Filters

Return Line Filters • Type RFS

Visual Clogging Indicator

The gauge visually displays the degree of contamination of the element. The colored segments allow quick visual checking.

green	$0 \ldots 2,5 \mathrm{bar} / 0 \ldots 36.25 \mathrm{PSI}$	Element has service life left
yellow	$2,5 \ldots 3,0 \mathrm{bar} / 36.25 \ldots 43.5 \mathrm{PSI}$	Element is contaminated and should be changed
red	$>3,0 \mathrm{bar} />43.5 \mathrm{PSI}$	Bypass valve open, unfiltered oil passing to tank

Electrical Clogging Switch

The switch is used where an electrical signal is needed to indicate when the element needs changing. The switch can turn on a light, or shut the machine down, or any further function controlled by an electric signal. The switching pressure is $2,5 \mathrm{bar} /$ 36.25 PSI and this allows the element to be changed before the bypass setting of 3 bar / 43.5 PSI is reached.

Maximum Voltage	Switch Type
42 V (normally open)	G42NO
42 V (normally closed)	G42NC
110 V (two-way contact)	G110
230 V (two-way contact)	G230

Order Code

Return Line Filters • Type RFS Flow Characteristics

The following characteristics are valid for mineral oils with a density of $0,85 \mathrm{~kg}_{\mathrm{dm}}{ }^{3}$ and the kinematic viscosity of $30 \mathrm{~mm}^{2} / \mathrm{s}(30 \mathrm{cSt})$. The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details.
$\nabla^{20^{55}} \nabla^{10^{205}} \quad \begin{array}{r}\text { Housings } \\ \text { RFSO45 }\end{array}$
RFS045

Filter Elements
RE-090A

Filter Elements
RE-160A

Filter Elements RE-090G

Filter Elements
RE-160G

Return Line Filters • Type RFS Flow Characteristics
The following characteristics are valid for mineral oils with a density of $0,85 \mathrm{~kg} / \mathrm{dm}^{3}$ and the kinematic viscosity of $30 \mathrm{~mm}^{2} / \mathrm{s}$ (30 cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Consult STAUFF for details.

Filter Elements RE-300A

Filter Element
RE-...S

Filter Elements RE-300G

Product Description

STAUFF RFS Carbon Steel Return Line Filters are designed as tank top or in-line filters. They are mounted directly on the tank top and if 100% of the system oil is filtered, they provide the optimum removal of contaminants from the system. This provides the pump with clean oil thus reducing contaminant generated wear. The filter bowl is designed with a connection, threaded or flanged, for extending the return oil beneath the surface thus preventing the entrainment of air. A high efficiency of contaminant removal is assured by using STAUFF RE Replacement Filter Elements. The high dirt-hold capacity of STAUFF Elements ensures a long service life and as a result reduced maintenance costs.

Technical Data

Construction

- Tank Top mounting or in-line mounting

Materials

- Filter Housing:
- Sealings:

Carbon Steel
NBR (Buna-N®)
FPM (Viton®)
EPDM (Ethylene Propylene Diene Monomer Rubber)
Other sealing materials on request

Options and Accessories

Valves

- Bypass valve (integrated in the filter element)

Clogging Indicators

- Visual clogging indicator 0... 4 bar / 0... 58 PSI coloured segments
- Electrical clogging switch, setting 2,5 bar / 36.25 PSI

Other clogging indicators available on request

Opening pressure 3 bar $\pm 0,3$ bar / 43.5 PSI $\pm 4.35 \mathrm{PS}$
Other settings available on request

Port Connection

- BSP
- SAE flange 3000 PSI

Flow Rating

- Up to 1135 I/min / 300 US GPM

Operating Pressure

- Max. 25 bar / 365 PSI

Proof Pressure

- Min. 37,5 bar / 545 PSI

Temperature Range

- $-10^{\circ} \mathrm{C} \ldots+100^{\circ} \mathrm{C} /+14^{\circ} \mathrm{F} \ldots+212^{\circ} \mathrm{F}$

Filter Elements

- Specifications see page C94

Media Compatibility

- Mineral oils, other fluids on request

Return Line Filters - Type RFS

Dimensions (mm/in)	Filter Size RFS				
	045	090	160	250	300
b1	120	150	196	255	255
	4.72	5.91	7.72	10.04	10.04
b2	95,5	120	155,5	205	205
	3.76	4.72	6.12	8.07	8.07
b3	66	85	110	135	145
	2.60	3.35	4.33	5.32	5.71
b4	-	77,8	106,4	120,7	130,2
		3.06	4.19	4.75	5.13
b5	-	42,9	61,9	69,5	77,8
		1.69	2.44	2.74	3.06
d1	100	135	180	208	208
	3.94	5.32	7.09	8.19	8.19
d2	6,5	9	13,5	17,5	17,5
	. 26	. 35	. 53	. 69	. 69
d3	-	M12	M16	M16	M16
		1/2-UNC	5/8-UNC	5/8 UNC	$5 / 8$ UNC
h1	120	138	243	251	332
	4.72	5.43	9.57	9.88	13.07
h2	88	131	167	198	241
	3.47	5.16	6.57	7.80	9.49
h3	43	63	84	93	121
	1.69	2.48	3.31	3.66	4.76
h4	13	13	13	13	13
	. 51	. 51	. 51	. 51	. 51
h5	7	12	12	12	12
	. 28	. 47	. 47	. 47	. 47
h6	130	180	320	350	460
	5.11	7.09	12.60	13.78	18.11

Attachment G-09a

Manufacturers' Submittals and Individual O\&M Manuals

GAUGES \& SWITCHES

Local Mount Temp Switch

Local Mount Temperature Switches

Features

- Reliable \& accurate
- Local sensing
- NEMA 4 \& IP 65
- UL, CSA \& CE approved
- Single or dual switching

Applications

- Oil \& gas
- Mining
- Tanks and reservoirs
- Compressors
- Plastic machinery
- Factory automation
- Process equipment
- Machine tools and industrial equipment

General Specifications*

Accuracy: (Repeatability)	$\pm 1 \%$ of mid-60\% of full range. At constant ambient $\pm 0.5 \%$ of full scale. (Knob indication is reference only)
Switch:	Single: 1 SPDT Dual switching: 2 independent SPDT circuits
Electrical Characteristics:	All models incorporate Underwriters' Laboratories, Inc. and CSA listed single pole double throw snap-action switching elements. Switches may be wired normally open or normally closed.
Wetted Parts:	Brass or 304 stainless steel
Electrical Connection:	Single: 3-pin terminal strip Dual: 6-pin terminal strip
Electrical Ratings:	AC value at 75\% power factor -10 amps $125,250 ~ v o l t s ~ A C, ~ 3 ~ a m p s ~ 480 ~ v o l t s ~ A C . ~$ Automatically reset by snap-action of switch.
Enclosure/Housing:	Water-tight and dust-tight indoor and outdoor (NEMA 4) / oil-tight and dust-tight indoor (NEMA 13).
Local Mount:	Immersion length 2-1/16 inches

\(\left.$$
\begin{array}{|l|l|}\hline \text { Approvals/Listings: } & \begin{array}{l}\text { Underwriters' Laboratories, Inc. and } \\
\text { Canadian Standard Assoc. are listed } \\
\text { under temperature indicating and } \\
\text { regulating equipment. } \\
\text { UL: } \\
\text { CSA: }\end{array}
$$

\hline File No. E56247, Guide No. XAPX

File No. LR34555, Guide 400-E-O

Class 4813\end{array}\right]\)| Semperature Range: |
| :--- |
| Adjustment: |
| Tamper resistant external adjustment.
 Turn knob clockwise to increase
 setpoint.
 (Knob indication is reference only) |
| Weight: |
| Single: approximate 1.5 lbs.
 Dual: approximate 3.0 lbs. |

* See Product Configurator for additional options.

Wiring Diagram

Wiring Code

Lead	Circuit \#1	Circuit \#2
Normally Closed	Blue	Orange
Common	Purple	Brown
Normally Open	Red	Yellow

Local Mount Temperature Switches

Technical Drawing

Enclosure

$\square \mathrm{H}$| NEMA 4 \& IP65 |
| :--- |
| enclosure |

NOTES:

${ }^{1}$ Changing limit switch will effect dead band; See sales drawing.
${ }^{2}$ Use G limit switch for single set point models that need this option.
When selecting the manual reset option on dual setting switches (L2H), the manual reset limit switch will be on the high circuit. The low circuit
limit switch must be specified by the customer.
${ }^{3}$ When selecting the ' S ' adjustable differential limit switch option on a dual setting switch (L2H), a standard ' H ' switch will be paired with an ' S ' switch. Dual ' S ' pricing will apply.
${ }^{4} \mathrm{Not}$ available with hermetically sealed limit switches.
${ }^{5}$ Add ' S ' wetted material. FX models require stainless steel sensor.

Options

Attachment G-09b

Manufacturers' Submittals and Individual O\&M Manuals

GAUGES \& SWITCHES

STAUFF Access Level Gauges
®
Level Gauges - SNA Series

Specifications

- Black Epoxy Coated Metal Shroud with Polyamid Sight Tube
- Suitable for Use with Mineral and Petroleum Based Hydraulic Fluids and Lubricants.
- Maximum Operating Temperature $194^{\circ} \mathrm{F}\left(90^{\circ} \mathrm{C}\right)$
- Thermometer Calibration from $-14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$ to $176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$
- SNA 076 has M10 Bolts as Standard
- SNA 127, SNA 254, SNA305 have M12 Bolts as Standard
- Tightening Torque 70 in/lb (7.9 Nm)

Options

- Viton Seals
- Dial Thermometer Available with 7.9 in $(200 \mathrm{~mm})$ or 11.8 in (300mm) Probe
- Other Special Seals Available upon Request
- Special Customized Scale Plates Available
- 1/2" UNC Bolts Available on SNA 127, 254 or 305
- M12 Bolts Available on SNA 076
- Special Lengths Available on Request
- Special plastic sight tubes available for improved UV resistance or special fluids

Dimensions

	SNA 076		SNA 127		SNA 254		SNA 305	
	mm	in	mm	in	mm	in	mm	in
A	45	1.77	45	1.77	45	1.77	45	1.77
B	34.5	1.34	34.5	1.34	34.5	1.34	34.5	1.34
C	8 MAX	0.32 MAX	8 MAX	0.32 MAX	8 MAX	0.32 MAX	8	0.32
D	27	1.06	27	1.06	27	1.06	27	1.06
E	M10		M12		M12		M12	
L1	108	4.25	159	6.25	286	11.25	336	13.2
L2	76	3.00	127	5.00	254	10.00	305	12.0
L3	39	1.45	76	3.00	203	8.00	255	10.0
T1	200	7.88	200	7.88	200	7.88	200	7.88
T2	302	11.88	302	11.88	302	11.88	302	11.88

Ordering Information

Specifications

- Black Epoxy Coated Metal Shroud with Polyamid Sight Tube
- Suitable for Use with Mineral and Petroleum Based Hydraulic Fluids, Lubricants and Gasoline.
- Maximum Operating Temperature $194^{\circ} \mathrm{F}\left(90^{\circ} \mathrm{C}\right)$
- Thermometer Calibration from $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$ to $176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$
- Electrical Contact Made at Minimum Oil Level.
- Viton Seals, M12 Bolts
- Tightening Torque 70 in-lbs
- Standard Plug Type "C" or "O" per DIN ISO 6952

Options

- Dial Thermometer Available with 200mm (7.9") or 300mm (11.8") Probe
- 1/2" UNC Bolts Available
- Special Improved UV Resistant Plastic Sight Tube
- Special Lengths Available upon Request
- PT100 Sensor for Constant Temperature Feedback
- PT100-D Display Unit for Display and Analysis of PT100 Signals

Dimensions

	SNK 127		SNK 254		SNK 305	
	mm	in	mm	in	mm	in
A	56	2.20	56	2.20	56	2.20
B	34.5	1.36	34.5	1.36	34.5	1.36
C	8.2 MAX	0.32 MAX	8.2 MAX	0.32 MAX	8 MAX	0.32 MAX
D	35.1	1.38	35.1	1.38	35.1	1.38
E	49.8	1.96	49.8	1.96	50	1.96
L1	203.2	8.00	330	13.00	363	14.3
L2	127	5.00	254	10.00	305	12.0
T1	200	7.88	200	7.88	200	7.88
T2	302	11.88	302	11.88	302	11.88

Ordering Information

Switch Function	
C	Make Contact, Closes at Minimum Level (n/o)
O	Break Contact, Opens at Minimum Level (n/c)
DD	SPDT Contacts, Switches at Minimum Level*

Temperature Sensor TS-SNA/SNK-PT100

Indication of oil temperature in conjunction with level gauges SNA, SNK and SNKK

- Replaces the lower banjo bolt of the level gauge
- Measuring range: $-40^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \ldots 302^{\circ} \mathrm{F}\right)$
- Connection: M12 connector
- Analysis of signals with system-sided measuring amplifier or with display unit TS-SNA/SNK-PT100-D

Display Unit TS-SNA/SNK-PT100-D

Sensing, displaying and evaluation of temperatures; generation of corresponding output signals

- Precise accessory for service staff to easily and quickly locate problems on the spot
- Measuring range: $-40^{\circ} \mathrm{C} \ldots+300^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \ldots 572^{\circ} \mathrm{F}\right)$
- Operating voltage: 20...30V
- Two output signals with options to choose:
- signal 1: normally open / closed (programmable, incl. hysteresis func.)
- signal 2: analog (4... $20 \mathrm{~mA} / 0 . .10 \mathrm{VDC}$, scalable)

Characteristics / Materials:

Visual / electrical fluid level indication
in hydraulic reservoirs

- Ideal for all areas of application in which space is limited: compact design and space-saving installation
- 40 mm shorter in comparison with level gauge SNK with plug according to industry standard DIN EN 175301-803-B/ISO6952
- Protection class IP67 (IP69K on request) enables the use of the SNKK even under rough conditions (e.g. for construction, forestry and agricultural machinery) and also cleaning with a high-pressure washer
- Equipped with plug M12 according to IEC-61076-2-101 and with a changeover switch as delivery standard
- Also available with dial thermometer with probe, with thermo switch or with temperature sensor and a display unit

Area of Application:

Oil temperature indicator is to be used in conjunction with STAUFF level gauges SNA, SNK and SNKK.

Characteristics / Materials:

- Available with $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right), 70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$ or $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$ switching temperature
- Activation takes place when the respective switching temperature is exceeded.
- Electrical function: Type O break contact, normally closed
- Steel parts made out of Steel (1.0718)

- Plastic parts made out of glass fiber reinforced polyamide

Thermo switches are available for the standard mounting size M12 only.
Dimensions Dimensions in mm (inch) Technical Data (Break contact):

Alternating current

- max voltage 250 VAC
- max current at 10.000 cycles $\approx 2,5 \mathrm{~A}$ at $\cos \varnothing=1,0$ $\approx 1,6 \mathrm{~A}$ at $\cos \varnothing=0,6$
- max current at 100.000 cycles $\approx 0,5 \mathrm{~A}$ at $\cos \varnothing=1,0$ $\approx 0,25 \mathrm{~A}$ at $\cos \varnothing=0,6$
- min current 50 mA

Direct current

- max voltage
- max current at 10.000 cycles 1 A

Example of application

Ordering Code and Temperature Range

[^8]Fluid Level Sight Glasses SLW, OLG Series

Specifications

- Electroless Nickel Plated Steel Construction
- Maximum Operating Temperature $500^{\circ} \mathrm{F}\left(260^{\circ} \mathrm{C}\right)$
- Hermetically Sealed Glass Prism Lenses
- Easy Installation

Options

- SAE Thread (contact factory)
- Stainless Steel (contact factory)

Dimensions

Part Number	Thread Size A	Diameter B		C		D		E Hex.		Maximum Operating Pressure	
		mm	in	mm	in	mm	in	mm	in	PSI	bar
SLW-04	1/4"-18 NPT	8.6	0.34	4.8	0.19	16.0	0.63	16.0	0.63	4000	275
SLW-06	3/8"-18 NPT	11.2	0.44	5.6	0.22	18.3	0.72	19.1	0.75	3700	250
SLW-08	1/2"-14 NPT	14.2	0.56	5.6	0.22	19.8	0.78	23.9	0.94	3500	240
SLW-12	$3 / 4 " 14$ NPT	19.1	0.75	8.1	0.32	23.9	0.94	26.9	1.06	3000	200
SLW-16	1"-111/2 NPT	23.9	0.94	8.1	0.32	31.8	1.25	35.1	1.38	2500	170
SLW-20	11/4"-111/2 NPT	30.5	1.20	10.4	0.41	31.0	1.22	44.5	1.75	2000	138
SLW-24	11/2"-111/2 NPT	36.6	1.44	10.4	0.41	31.0	1.22	50.8	2.00	1500	100
SLW-32	2"-111/2 NPT	47.8	1.88	10.4	0.41	32.5	1.28	63.5	2.50	1000	70

Plastic Sight Glasses OLG Series

Specifications

- Polyamid Construction (TR-90-UV)
- Operating Temperature $-22^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right)$ to $194^{\circ} \mathrm{F}\left(90^{\circ} \mathrm{C}\right)$
- Maximum Operating Pressure 75 PSI (5 bar)
- SAE Thread
- Easy Installation

Dimensions

Part Number	Thread	SW		D1		D2		L1		L2	
			mm	in	mm	in	mm	in	mm	in	mm
in											
OLG-U08-P-P	$3 / 4^{4}-16$ UNF	22	0.9	22	0.9	14	0.55	8	0.31	11	0.43
OLG-U12-P-P	$11 / 16^{4}-12$ UNF	32	1.26	32	1.26	20	0.79	11.9	0.47	15.1	0.54
OLG-U16-P-P	$15 / 16^{4}-12$ UNF	41	1.61	41	1.61	25	1.00	12.9	0.51	15.1	0.54
OLG-U20-P-P	$15 / 8^{\prime \prime}-12$ UNF	50	1.97	50	1.97	30	1.18	15.9	1.63	15.1	0.54

Attachment G-09c

Manufacturers' Submittals and Individual O\&M Manuals

GAUGES \& SWITCHES

STAUFF Level Temp Switches

General

The Stauff Level / Temperature Switches (SLTSseries) are unique in their design and modularity. One of the greatest advantages is the ability of the end-user to adjust the switching level. The internal support wire carrying the level and temperature switches makes it a simple and quick job to change the level switch position. See the drawings on the next page for the max and min level switch points and the total available switching range. This design permits changing the level switch function from Normally Closed (NC) to Normally Open (NO). 12" and 18" stem lengths are standard. Custom lengths are available upon request.

Contact Life Time

Due to their design Reed contacts have a very high life expectancy. However, it is worthwhile to note the following information.

Contact protection

To reduce the high reverse voltage produced when a reed switch opens, the following contact protection can be applied.
a) DC voltage: a diode parallel to the load, see figure A

VA	$\mathbf{1 0}$	$\mathbf{2 5}$	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$
Open contact voltage \mathbf{V}	$\mathrm{R} / \mathrm{Ohm}-\mathrm{C} / \mu \mathrm{F}$	$\mathrm{R} / \mathrm{Ohm}-\mathrm{C} / \mu \mathrm{F}$	$\mathrm{R} / \mathrm{Ohm}-\mathrm{C} / \mu \mathrm{F}$	$\mathrm{R} / \mathrm{Ohm}-\mathrm{C} / \mu \mathrm{F}$	$\mathrm{R} / \mathrm{Ohm}-\mathrm{C} / \mu \mathrm{F}$
$\mathbf{2 4}$	$22-0,022$	$1-0,1$	$1-0,47$	$1-1$	$1-1$
$\mathbf{4 8}$	$120-0,0047$	$22-0,022$	$1-0,1$	$1-0,47$	$1-0,47$
$\mathbf{1 1 0}$	$470-0,001$	$120-0,0047$	$22-22$	$22-0,047$	$22-0,1$

Wiring Diagram Please refer to the following connection diagrams and the relevant data in the specification sheets.

Dimensional Data

Standard Factory Settings For Level Switch Position			
	Option 1: Low Level Only (from tank top to switch position)	Option (from ta	
SLTS Type	X (in / mm)	X (in / mm)	Y (in / mm)
SLTS 12	10.5 / 266	10.5 / 266	2.6 / 66
SLTS 18	16.5 / 418	16.5 / 418	2.6 / 66

Option 1

Option 2

Ordering Code

Switching Temperature	
140	$60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$
158	$70^{\circ} \mathrm{C} / 158^{\circ} \mathrm{F}$
\mathbf{O}	without temperature switch

Voltage (Volt AC/DC)

G115 115 Volt max (for thread N16 only)

Thread

B12	G $3 / 4$ (on request)
N16	1 NPT (standard)

Number of Level Switches
1 1 level switch (L, H)*
2 2 level switch (L, H)*

* please indicate level position(s): $\mathrm{L}=$ low, $\mathrm{H}=$ high

Specifications

- Brass Stem, Plastic float
- Compatible with mineral oils and petroleum based fluids
- Switches normally closed (NC)
- Max. operating temp $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$
- Max. operating voltage 115 V
- Max. current level contact 0.5 A
- Max. current temp contact 2.0A
- Contact load level contact 10VA
- Hysterisis $18^{\circ} \mathrm{F}$

Options

- Any combination of three level temperature contacts
- Easy adjustable switch level
- Wide range of temperature switches
- Custom sizes, configuration and materials available upon request

Type	L
SLTS -12	12" $(305 \mathrm{~mm})$
SLTS- 18	$18^{\prime \prime}(457 \mathrm{~mm})$
SLTS - SL	Custom Length

Type	\mathbf{L}	A
SLTS -12	$12.3^{\prime \prime}(312 \mathrm{~mm})$	$6.3^{\prime \prime}(160 \mathrm{~mm})$
SLTS -18	$18.3^{\prime \prime}(464 \mathrm{~mm})$	$12.3^{\prime \prime}(312 \mathrm{~mm})$
SLTS - SL	Custom Length	Custom Range

Attachment G-09d

Manufacturers' Submittals and Individual O\&M Manuals

GAUGES \& SWITCHES

STAUFF Test Pressure Gauge

Pressure Gauge
SPG

Area of Application

- Mechanical pressure measurement

Characteristics

- Suitable for hydraulic oil and gaseous media that do not corrode any copper base alloy
- Available in nominal sizes 63 and 100
- Thread form: BSP (G1/4 and G1/2),

NPT (1/4NPT and 1/2NPT), -4 SAE

- Housing made of Stainless Steel (1.4301)
- Sight glass made of Acrylic
- Glycerine filled
- Standard dual scales with pressure indication in bar and PSI
- U-bolt or flange mounting kit on request

Consult STAUFF before you use SPG with other media.

Further information and order codes on pressure gauges please see pages D6-D7, Diagtronics section.

Technical Data

Protection rating: IP 65 (EN 60529 / IEC 529)
Accuracy class SPG-063: 2/1/2 \% of span (per ASME B 40.100 Grade A)
Accuracy class SPG-100: 1\% of span (per ASME B 40.100 Grade 1A)
Enviromental temp. range: $-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F} \ldots+140^{\circ} \mathrm{F}$
Temperature range medium: max. $+60^{\circ} \mathrm{C} / \mathrm{max} .+140^{\circ} \mathrm{F}$
Subject to technical modifications
Options (on request)

- Protective rubber cap
- Additional scale readings including personalisation
- U-bolt and flange mounting kits are available separately as spare parts
- Additional pressure ranges up to 1000 bar / 14503 PSI max.

Further information and order codes on gauge isolator valves please see the Valves section.

Standard Pressure Range Options	
(${ }^{\text {bar/psi) }}$	(${ }^{\text {bar/psi) }}$
-1,02 bar ... 0 bar	68,95
-30 inHg ... 0 PSI	1000
-1,02 bar ... 2.07 PSI	103,42
-30 inHg ... 30 PSI	1500
2,07	137,90
30	2000
4,14	206,84
60	3000
6,89	275,79
100	4000
11,03	344,74
160	5000
13,79	413,69
200	6000
20,68	517,11
300	7500
34,74	689,48
500	10000
41,37	Others on request
600	Oners on request

Adjustable Gauge Fitting

EMV

Metal Parts

Standard material: Steel, zinc/nickel-plated = C6F (CrVI-free) For ordering V2A (1.4305 / AISI 303) replace "C6F" with "V2A". For ordering V4A (1.4571 / AISI 316Ti) replace "C6F" with "V4A".

Sealings

For ordering NBR sealings replace "V" with "P".
For ordering EPDM sealings replace "V" with "E".

* Standard option for North America is FPM (Viton®).

$\begin{array}{\|l} \hline \text { Dimensions } \\ (\mathrm{mm} / \mathrm{in}) \\ \text { G1 } \\ \hline \end{array}$	G2	h	Hex	Order Codes NBR	FPM* (Standard Option-North America)
G1/4	G1/4	42	19	EMV-G1/4-P-OR-PC-C6F	EMV-G1/4-V-OR-VC-C6F
		1.65	. 75		
G1/4	G1/2	47	19	EMV-G1/4G1/2-P-OR-PC-C6F	EMV-G1/4G1/2-V-0R-VC-C6F
		1.85	. 75		
G1/2	G1/4	51	27	EMV-G1/2G1/4-P-OR-PC-C6F	EMV-G1/2G1/4-V-OR-VC-C6F
		2.01	1.06		
G1/2	G1/2	55,5	27	EMV-G1/2-P-OR-PC-C6F	EMV-G1/2-V-OR-VC-C6F
		2.19	1.06		

Single Gauge Kit SMB20-A1 Component Parts	Order Codes
1 Hose assembly (60 in)	SMS20-1524mm-B
1 Direct gauge adaptor 1/4 NPT	SMD20-1/4NPT-C6F
1 Union	SSV20-C6F
1 Pressure gauge 7500 PSI	WPG-063-07500-5-S-N04
2 Test coupling $1 / 8$ NPT	SMK20-1/8NPT-VD-C6F
3 Test coupling $1 / 4$ NPT	SMK20-1/4NPT-VD-C6F
2 Test coupling 7/16 UNF	SMK20-7/16UNF-VE-C6F
2 Test coupling 9/16 UNF	SMK20-9/16UNF-VE-C6F
1 Female QD fitting 1/4 NPT	SQD-04NF-C

Pressure Test Kit

Double Gauge Kit SMB20-B1 Component Parts	Order Codes
1 Hose assembly (60 in)	SMS20-1524mm-B
2 Direct gauge adaptor $1 / 4$ NPT	SMD20-1/4NPT-C6F
1 Union	SSV20-C6F
1 Pressure gauge 7500 PSI	WPG-063-07500-5-S-N04
1 Pressure gauge 1000 PSI	WPG-063-01000-5-S-N04
2 Test coupling $1 / 8$ NPT	SMK20-1/8NPT-VD-C6F
2 Test coupling $1 / 4$ NPT	SMK20-1/4NPT-VD-C6F
1 Test coupling 7/16 UNF	SMK20-7/16UNF-VE-C6F
1 Test coupling 9/16 UNF	SMK20-9/16UNF-VE-C6F
1 Female QD fitting $1 / 4$ NPT	SQD-04NF-C

Triple Gauge Kit SMB20-C1 Component Parts	Order Codes
2 Hose assembly 60 in)	SMS20-1524mm-B
3 Direct gauge adaptor $1 / 4$ NPT	SMD20-1/4NPT-C6F
2 Union	SSV20-C6F
1 Pressure gauge -30 inHg ... 30 PSI	WPG-063-03030-5-S-N04
1 Pressure gauge 7500 PSI	WPG-063-07500-5-S-N04
1 Pressure gauge 1000 PSI	WPG-063-01000-5-S-N04
2 Test coupling $1 / 8$ NPT	SMK20-1/8NPT-VD-C6F
2 Test coupling $1 / 4$ NPT	SMK20-1/4NPT-VD-C6F
1 Test coupling 7/16 UNF	SMK20-7/16UNF-VE-C6F
1 Test coupling 9/16 UNF	SMK20-9/16UNF-VE-C6F
1 Female QD fitting $1 / 4$ NPT	SQD-04NF-C

Custom kits available upon request.
For further information please see page D10, Diagtronics section.

Port Connections and Sealing Details

Type D	Type D - Parallel threaded port type Z according to DIN 3852 Part 2 (inch) Sealing: Taper Type D suitable sealant required		
	Thread G	Dimensions (${ }^{m \mathrm{~m}} / \mathrm{in}$) t1 min.	t2 min.
	Rp1/8	5,5	9,5
	Rp1\%	. 22	. 37
		8,5	13,5
	Rpl/4	. 33	. 53
		8,5	13,5
	Rp3/8	. 33	. 53
	Rp1/2	10,5	16,5
	Rp1/2	. 41	. 65

Attachment G-09e

Manufacturers' Submittals and Individual O\&M Manuals

GAUGES \& SWITCHES

SUN Adjustable Snubbers NSAB

Circuit Savers

What are Circuit Savers?

Circuit savers are unique Sun cartridges that have been designed to solve numerous, usually specific, hydraulic control or circuit problems. Many of them are not commonly found in any general hydraulic products catalog, and often, if they are available at all, are offered only as custom or specialty products. Most of the products that are included here simply do not fit into any general standard product category.

Design Concepts and Features

Three port, Pilot-to-close Check Valve Cartridges - CO*A and CODD

Sun pilot-to-close CO*A and CODD check valve cartridges allow flow in one direction only, but will stop free flow with the application sufficient pilot pressure. These valves are especially useful in multi-function systems, such as regenerative circuits. (See Figure 1.) Features and performance parameters include:

- The free flow direction is from port 1 to 2.
- The seats are steel for long wear and maximum dirt tolerance.
- The CO*A nominal pilot ratio is 1.8:1 (e.g. 1000 psi [70 bar] at port 3 will hold the valve closed against 1800 psi [125 bar] at port 1, provided the pressure at port 2 is zero.)
- The CODD nominal pilot ratio is 20:1:1 (e.g. 150 psi [11 bar] at port 3 will hold the valve closed against 3000 psi [210 bar] at port 1, provided the pressure at port 2 is zero.)
- Any pressure at port 2 directly opposes pilot pressure.
- The CO*A versions are available in five frame sizes, with flows up to 160 gpm.
- The CODD cartridge is available in series 1 frame size only, and capacity is the equivalent of a $0.11 \mathrm{in} .(2,8 \mathrm{~mm})$ dia. orifice.
- Maximum leakage is 1 drop $/ \mathrm{min}(0,07 \mathrm{cc} / \mathrm{min})$.

This drawing is not a real circuit and is intended for description only.

Figure 1.
A CO*A pilot to close check valve is commonly used in a regeneration circuit.

Three port, Pilot-to-close Check Valve Cartridges - COFO

Sun pilot-to-close COFO-XDN check valve cartridges are similar to CO*A cartridges with the following exceptions:

- Available in series 2 frame size only.
- Flow capacity is $0.6 \mathrm{gpm}(1,27 \mathrm{~L} / \mathrm{min})$.
- The nominal pilot ratio is 120:1 (e.g. 30 psi [2 bar] at port 3 will hold the valve closed against 3600 psi [252 bar] at port 1, provided the pressure at port 2 is zero.)
- Any pressure at port 2 directly opposes pilot pressure.
- This valve is very useful in accumulator discharge circuits.
- The small flow capacity may make discharge time too long where large accumulators with low pre-charge pressures are involved. (The equivalent orifice diameter is 0.05 in . [1.27 $\mathrm{mm}]$).
- Where higher discharge flows are required, the COFO can be used to pilot a higher flow 2-way valve, such as an LODA.
- Maximum leakage is 5 drops $/ \mathrm{min}(0,3 \mathrm{cc} / \mathrm{min})$.

Two port, Air Bleed and Start-up Cartridges NQEB

Sun NQEB air bleed and start-up cartridge valves are useful in both reducing start-up power requirements plus facilitating pump priming during initial system start-up, especially with a blocked center circuit. The valve will allow the pump to come up to speed under a light load, purging the system of air, before it closes allowing full system pressure to be established. Performance parameters include:

- System flow and pressure must be greater than 4 gpm ($15 \mathrm{~L} / \mathrm{min}$), and $80 \mathrm{psi}(5,5 \mathrm{bar})$.
- After air has been purged, closing times vary from approximately 12 seconds at $4 \mathrm{gpm}(15 \mathrm{~L} / \mathrm{min})$ to 0.5 seconds at 50 gpm ($200 \mathrm{~L} / \mathrm{min}$). (See Figure 2.)
- The valve will re-open when system pressure drops below 25 psi (1,7 bar).

These NQEB curves show the relationship between flow and time to close after air is purged, as well as overall pressure drop as a function of flow through the valve.

Two port Flow Fuse Cartridges - FQ*A

Sun fixed-orifice $F Q^{*} A$ valves are used to maintain the position of a hydraulic actuator in the event of a hose line break. The valve normally allows flow to and from the actuator but closes instantly if the flow from the actuator exceeds the setting of the valve. Features, circuit considerations and performance parameters include:

- The valve closes when the flow from port 1 to port 2 exceeds the setting of the valve.
- The valve will reset when pressures become equal at both ports.
- With spool type construction, maximum leakage is equal to $2 \mathrm{in}^{3} / \mathrm{min}$ at $1000 \mathrm{psi}(30 \mathrm{cc} / \mathrm{min}$ at 70 bar$)$. (This leakage could allow some actuator drift to occur.)
- The flow setting is specified by the customer and is factory set to a tolerance of $+/-10 \%$ of the required setting.
- The flow setting should be at least 25% above the maximum system flow.
- It is not advisable to select a valve where the $+25 \%$ flow rating is at the top end of its flow range. (There will be no room to increase the flow setting if a higher than expected transient flow develops!)
- Because these valves respond so rapidly, they can be sensitive to transient flows above the valve setting. (An example would be the surge in flow if decompression takes place upon actuator reversal.)
- These valves are available in four frame sizes, with flows up to 50 gpm .

Three port Accumulator Sense, Pump Unload, Pilot Cartridges - QPA*

Sun QPA* pilot valves are primarily used in accumulator circuits to unload a pump when the accumulator has reached the desired maximum system pressure. They have a fixed, user selectable, pilot ratio differential. The differential determines the pressure span between the pump unload pressure and the pump reset ("cut in") pressure. This differential is expressed as a
percentage of the valve's pressure setting. Features, circuit considerations and performance parameters include:

- Port 1 is the accumulator sensing port, port 2 is connected to the device controlling the unloading function, and port 3 is connected to drain.
- The pilot flow capacity is $46 \mathrm{in}^{3} / \mathrm{min}(0,75 \mathrm{~L} / \mathrm{min})$
- When the valve's setting is reached, port 2 will connect to port 3 , thus venting the unloading (relief) valve. When the sensing pressure drops to the reset pressure, as determined by the selected differential, port 2 is blocked, de-venting the unloading valve and loading the pump again.
- There are four user selectable pressure differentials: "A" = 15\%, "B" = 20\%, "C" = 30\%, and "D" = 50\%.
- The pressure differential between unload and reset will be within $+/-1 \%$ of the stated ratio of the valve, with up to an additional $25 \mathrm{psi}(1,7 \mathrm{bar})$ due to dynamic seal friction.
- When applying this cartridge, a separate drain line is required to prevent erratic operation that can be caused by tank line pressure fluctuations.
- The spool design of this valve allows it to maintain a fixed differential ratio because the areas are created by diameters on the spool that will not wear or change with use.
- Minimum clearances between the spool and sleeve and a seal on the pilot piston diameter significantly reduce the potential for silting.

Four port Accumulator Sense, Pump Unload, Pilot Cartridges with integral Check Valve-QCD*

Sun QCD* pilot valves include an integral check valve at port 1. They are similar to QPA* pilot valves with the following exceptions:

- Port 1 is the pump inlet port, port 2 is the accumulator sensing port, port 3 is connected to the device controlling the unloading function, and port 4 is connected to drain.
- The flow capacity, from port 1 to port 2 , for the " A " differential is $12 \mathrm{gpm}(45 \mathrm{~L} / \mathrm{min})$, while the flow capacity for the " B ", " C ", and "D" differentials is $15 \mathrm{gpm}(60 \mathrm{~L} / \mathrm{min})$. (At 15 gpm [60 L/ min], the pressure drop is 100 psi [60 bar])
- The pilot flow capacity is $46 \mathrm{in}^{3} / \mathrm{min}(0,75 \mathrm{~L} / \mathrm{min})$
- When the valve's setting is reached, port 3 will connect to port 4, thus venting the unloading (relief) valve. When the sensing pressure drops to the reset pressure, as determined by the selected differential, port 3 is blocked, de-venting the unloading valve and loading the pump again.

Important notes regarding Accumulator Sense, Pump Unload, Pilot Cartridges:

1. Careful consideration should be given when selecting an adjustment range. Total system pressure drops and flows tend to affect the operation of unloading valves. (Low operating pressures combined with low differentials result in a very narrow band between unload and reset. High flow rates typically mean high pressure drops, which subtract from the effective differential of the valve.)
2. Sun has designed a variety of standard accumulator/pump unload assemblies with a variety of features. These assemblies are not currently viewable on the Sun website, but are readily available. If you have an immediate need, please contact your Sun distributor.
3. For additional information, please see Sun Highlight :
"Accumulator Sense, Pump Unload Valves".

Two port Adjustable Gauge Snubber-NSAB-KX****

The Sun NSAB series adjustable gauge snubber is a simple, effective, throttling and shut-off device used to isolate hydraulic system indicating devices such as gauges and other sensitive instruments. It can be used to positively shut off the gauge from the line pressure, or, when partially opened, reduce or eliminate gauge pointer fluctuation due to line pressure transients. Features include:

- Stainless steel construction (303 and 416 series).
- Finger-tip adjustment knob and lock nut (glass-filled nylon).
- Buna seals standard (Viton seals available).
- Available in eight port selections (e.g. both male/female configuration plus thread size/type).
- Can be used to quickly verify/predict/trouble shoot systems when orifice/pilot flows need to be analyzed or documented (See Figure 3).

Figure 3.
Flow vs. turns for an NSAB adjustable gauge snubber at a 1000 psi (70 bar) pressure drop (150 SUS fluid).

Circuit Savers Overview

Function	Description	Nominal Capacity	Model	Cavity	Symbol
2 Port	Flow Fuse Valve	$\begin{aligned} & 6 \mathrm{gpm}(23 \mathrm{~L} / \mathrm{min} .) \\ & 15 \mathrm{gpm}(60 \mathrm{~L} / \mathrm{min} .) \\ & 25 \mathrm{gpm}(95 \mathrm{~L} / \mathrm{min} .) \\ & 50 \mathrm{gpm}(200 \mathrm{~L} / \mathrm{min} .) \end{aligned}$	$\begin{aligned} & \frac{\text { FQCA }}{\text { FQEA }} \\ & \text { FQGA } \\ & \text { FQIA } \end{aligned}$	$\begin{aligned} & \text { T-13A } \\ & \text { T-5A } \\ & \text { T-16A } \\ & \text { T-18A } \end{aligned}$	
2 Port	Air Bleed Start-up Valve	4-50 gpm (15-200 L/min.)	NQEB	T-3A	
3 Port	Pilot-to-Close Check Valve	$10 \mathrm{gpm}(40 \mathrm{~L} / \mathrm{min}$. $20 \mathrm{gpm}(80 \mathrm{~L} / \mathrm{min}$. 40 gpm ($160 \mathrm{~L} / \mathrm{min}$.) $80 \mathrm{gpm}(320 \mathrm{~L} / \mathrm{min}$. 160 gpm ($640 \mathrm{~L} / \mathrm{min}$.)	$\begin{aligned} & \frac{\text { COBA }}{\text { CODA }} \\ & \frac{\text { COFA }}{} \\ & \frac{\text { COHA }}{\text { COJA }} \end{aligned}$	$\begin{aligned} & \text { T-163A } \\ & \text { T-11A } \\ & \text { T-2A } \\ & \text { T-17A } \\ & \text { T-19A } \end{aligned}$	$\begin{array}{l\|l} 2 & 1 \\ 2 & 3 \\ \hline & 4 \\ \hline & 1 \end{array}$
3 Port	Pilot-to-Close Check Valve, 20:1 Pilot Ratio	. $11 \mathrm{in} .(2,8 \mathrm{~mm})$	CODD	T-11A	
3 Port	Pilot-to-Close Check Valve, 120:1 Pilot Ratio	. 05 in. (1,27 mm)	COFO	T-2A	

Circuit Savers Overview (continued)

Function	Description	Nominal Capacity	Model	Cavity	Symbol	
3 Port	Accumulator Sense, Pump Unload, Pilot Valve, 15\%	$46 \mathrm{in} 3 / \mathrm{min}$. (0,75 L/min.)	QPAA	T-11A		$<-1-$
3 Port	Accumulator Sense, Pump Unload, Pilot Valve, 20\%	$46 \mathrm{in} 3 / \mathrm{min}$. (0,75 L/min.)	QPAB	$\mathrm{T}-11 \mathrm{~A}$		
3 Port	Accumulator Sense, Pump Unload, Pilot Valve, 30\%	$46 \mathrm{in}^{3} / \mathrm{min}$. (0,75 L/min.)	QPAC	$\mathrm{T}-11 \mathrm{~A}$		
3 Port	Accumulator Sense, Pump Unload, Pilot Valve, 50\%	$46 \mathrm{in}^{3} / \mathrm{min} .(0,75 \mathrm{~L} / \mathrm{min}$. $)$	QPAD	T-11A		
4 Port	Accumulator Sense, Pump Unload, Pilot Valve with Check, 15\%	$12 \mathrm{gpm}(45 \mathrm{~L} / \mathrm{min}$.	QCDA	$\mathrm{T}-21 \mathrm{~A}$		
4 Port	Accumulator Sense, Pump Unload, Pilot Valve with Check, 20\%	$15 \mathrm{gpm}(60 \mathrm{~L} / \mathrm{min}$.	QCDB	$\mathrm{T}-21 \mathrm{~A}$		

Circuit Savers Overview (continued)

Circuit Savers Overview (continued)

Function	Description	Nominal Capacity	Model	Cavity	Symbol
Adjustable Snubber	Male 1/4 BSPP to Female 1/4 BSPP (Viton)	. 035 in (0,9 mm) dia.	$\frac{\text { NSAB- }}{\text { KXV-BT }}$		
Adjustable Snubber	Female 1/4 BSPP to Female 1/4 BSPP (Viton)	. 035 in (0,9 mm) dia.	$\frac{\text { NSAB- }}{\text { KXV-TT }}$		

Attachment G-09f

Manufacturers' Submittals and Individual O\&M Manuals

GAUGES \& SWITCHES

Turck Angular Position Sensor

Housing	Part Number	ID Number	Features		Output
20 mm - Embeddable, M12 eurofast ${ }^{\circledR}$ Connection	B2N 10H-Q20L60-2LU3-H1151	M1534006	- Shock Resistant - EMC Immunity - Extended Temperature Range	-10° to $+10^{\circ}$	4-Wire DC Analog Voltage
	B2N 45H-Q20L60-2LU3-H1151	M1534007		-45° to $+45^{\circ}$	4-Wire DC Analog Voltage
	B2N 60H-Q20L60-2LU3-H1151	M1534008		-60° to $+60^{\circ}$	4-Wire DC Analog Voltage
	B2N 85H-Q20L60-2LU3-H1151	M1534027		-85° to $+85^{\circ}$	4-Wire DC Analog Voltage
20 mm - Embeddable, M12 eurofast ${ }^{\circledR}$ Connection	B2N 10H-Q20L60-2LI2-H1151	M1534012	- Robust Sealing and Environmental	-10° to $+10^{\circ}$	4-Wire DC Analog Current
	B2N 45H-Q20L60-2LI2-H1151	M1534013	- Logic Level Outputs	-45° to $+45^{\circ}$	4-Wire DC Analog Current
	B2N 60H-Q20L60-2LI2-H1151	M1534014		-60° to $+60^{\circ}$	4-Wire DC Analog Current
	B2N 85H-Q20L60-2LI2-H1151	M1534032		-85° to $+85^{\circ}$	4-Wire DC Analog Current

Dual Axis Inclinometer Sensor

The TURCK inclinometer is a dual axis sensor for angular tilt detection. These sensors feature compact rectangular housings, and may be mounted up to a maximum of +/- 85 degree angles. Inclinometer sensors may be used in a wide variety of applications to solve unique feedback requirements where the customer needs to level platforms, control tilt angle or control a dancer.
The new TURCK inclinometer measures angular tilt in reference to gravity. At the heart of the TURCK inclinometer is a MEMS (micro-electro-mechanical system) device that incorporates a micro-electromechanical capacitive element into the sensor that utilizes two parallel plate electrodes, one stationary and one attached to a springmass system. Movement causes acceleration that produces deflection in the nonstationary electrode. This results in a measurable change in the capacitance between the two plates that is proportional to the angle of deflection. These signals are conditioned to provide two voltage outputs (0.1-4.9 VDC) or two current outputs (4-20 mA). The micro board design in the MEMS technology allows for a compact, precise inclinometer in a very robust, industrialized package. The inclinometer is IP 67 rated, with a temperature range of $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The sensor is also available in the optional $-40^{\circ} \mathrm{C} / \mathrm{S} 97$ option.

Automation

Voltage				은 쁜 은	$\begin{aligned} & \text { 음 } \\ & \text { © } \\ & \text { 묻 } \end{aligned}$						Wiring Diagrams
10-30 VDC	≤ 12	0.1-4.9 V	-30 to +70	IP 67	PBT	$\begin{gathered} 30 \mathrm{~g} \\ (11 \mathrm{~ms}) \end{gathered}$	+/-5 ${ }^{\circ}$	VB2-SP4	$\begin{aligned} & \text { RK 4.5T-* } \\ & \text { /S618 } \end{aligned}$	1	Diagram 1 bn
10-30 VDC	≤ 12	0.1-4.9 V	-30 to +70	IP 67	PBT	$\begin{gathered} 30 \mathrm{~g} \\ (11 \mathrm{~ms}) \end{gathered}$	+/- 15°	VB2-SP4	$\begin{aligned} & \text { RK 4.5T-* } \\ & \text { /S618 } \end{aligned}$	1	
10-30 VDC	≤ 12	0.1-4.9 V	-30 to +70	IP 67	PBT	$\begin{gathered} 30 \mathrm{~g} \\ (11 \mathrm{~ms}) \end{gathered}$	+/- 15°	VB2-SP4	$\begin{aligned} & \text { RK 4.5T-* } \\ & \text { /S618 } \end{aligned}$	1	Diagram 2
10-30 VDC	≤ 12	$0.1-4.9 \mathrm{~V}$	-30 to +70	IP 67	PBT	$\begin{gathered} 30 \mathrm{~g} \\ (11 \mathrm{~ms}) \end{gathered}$	+/- 15°	VB2-SP4	$\begin{aligned} & \text { RK 4.5T-* } \\ & \text { /S618 } \end{aligned}$	1	
10-30 VDC	≤ 12	4-20 mA	-30 to +70	IP 67	PBT	$\begin{gathered} 30 \mathrm{~g} \\ (11 \mathrm{~ms}) \end{gathered}$	+/- 5°	VB2-SP4	$\begin{aligned} & \text { RK 4.5T-* } \\ & \text { /S618 } \end{aligned}$	2	$\underset{\text { Tr }}{\substack{w H \\ \text { Teoch }}}$
10-30 VDC	≤ 12	4-20 mA	-30 to +70	IP 67	PBT	$\begin{gathered} 30 \mathrm{~g} \\ (11 \mathrm{~ms}) \end{gathered}$	+/- 15°	VB2-SP4	$\begin{aligned} & \hline \text { RK 4.5T-* } \\ & \text { /S618 } \end{aligned}$	2	
10-30 VDC	≤ 12	4-20 mA	-30 to +70	IP 67	PBT	$\begin{gathered} 30 \mathrm{~g} \\ (11 \mathrm{~ms}) \end{gathered}$	+/- 15°	VB2-SP4	$\begin{aligned} & \text { RK 4.5T-* } \\ & \text { /S618 } \end{aligned}$	2	
10-30 VDC	≤ 12	4-20 mA	-30 to +70	IP 67	PBT	$\begin{gathered} 30 \mathrm{~g} \\ (11 \mathrm{~ms}) \end{gathered}$	+/- 15°	VB2-SP4	$\begin{aligned} & \text { RK 4.5T-* } \\ & \text { /S618 } \end{aligned}$	2	

Note: Operating temperature of $-40^{\circ} \mathrm{C}$ available with / S 97 option.

* Length in meters.

Zero Setpoint Teach Function

The zero point, or level reference, of the inclinometer may be reset to the unique grade of your application. Depending on the model, it is adjustable up to +/- 15 degrees from the factory setting of absolute horizon level. This allows you to effectively shift the sensing window to accommodate slightly non-level rest positions of your equipment, such as the difference between an empty and a loaded dump truck. We offer a teaching pendant to make this a simple, single push-button task.

Optional Teaching Pendant: VB2-SP4

Inclinometer Teach Range Example: B2N 10H-Q20L60-2LU3-H1151

Attachment G-10a

Manufacturers' Submittals and Individual O\&M Manuals

HYDRAULIC FLUID

Panolin HLP Synth, EPA Compliance

PANOLIN HLP SYNTH

Compliance of EPA Vessel General Permit 2013

PANOLIN HLP SYNTH, ISO VG 15/22/32/46/68/100

Characteristics of test	Units	Specification	Result	Method
Biodegradability ${ }^{\text {a }}$	\% ThOD	>60	>60	ASTM 5864, OECD 301, 306
Toxicity ${ }^{\text {b }}$				
Algae	LC_{50}	$>100 \mathrm{mg} / \mathrm{l}$	>100	OECD 201
Daphnia	EC_{50}	$>100 \mathrm{mg} / \mathrm{l}$	>100	OECD 202
Fish	LC_{50}	$>100 \mathrm{mg} / \mathrm{l}$	>100	OECD 203
Bioaccumulation ${ }^{\text {c }}$	Log K ${ }_{\text {ow }}$	<3 or >7	pass	$\begin{aligned} & \text { OECD 107, } \\ & 117 \end{aligned}$
Visible sheen	Gloss, visual color etc.	- d	no visual color	58 FR 12507

a VGP accepts result based on formulation and main constituents

- see Appendix A, VGP 2013 final version
b VGP accepts testing of formulation - see Appendix A, VGP 2013 final version
c OECD test method valid for single substances testing only; data reported should be seen as a summary of all single > 1% components in stated formulation
d Report
Assessment in accordance to requirements of Vessel General Permit 2013 Agency

EPA test requirements state, all vessels must use an EAL in all oil to sea interfaces. "Environmentally Acceptable Lubricants" means lubricants that are "biodegradable" and "minimally-toxic" and are "not bioaccumulative" as defined in Appendix A of the Vessel General Permit. PANOLIN has conducted the EPA test requirements for all standards described in the 2013 Vessel General Permit (review above chart for test results)

Attachment G-10b

Manufacturers' Submittals and Individual O\&M Manuals

HYDRAULIC FLUID

Panolin HLP Synth, Bio-Hydraulic Fluid

PANOLIN HLP SYNTH
 Bio-hydraulic fluid - saturated synthetic ester basis, environment-friendly

PANOLIN HLP SYNTH:

- fully synthetic high-performance hydraulic fluid, zinc-free and environmentfriendly, on synthetic ester basis with special additives
- prevents gumming and deposits of ageing products, even at high temperatures
- extremely long oil-change interval «lifetime filling"
- reduces CO_{2} emissions
- far greater reserve capaciifes than conventional hydraulic oils
- outstanding high-pressure characteristics
- excellent cold flow characleristics lextremely low pour point)
- oxidation-resistant al high temperatures

Application/new filling (follow manufacturer's instructions)

- for earthmoving and forestry hydraulic systems, the machine industry, construction and hydroelectric engineering
- compressors, bearing lubrication and oil circulation systems
- before changing over to PANOLIN HLP SYNTH, please ask for our filling instructions

Note: PANOLIN HIP SYNTH may loosen any deposits in the hydralic system.
Environmental compatibility \qquad
PANOLIN HIP SYNTH is decomposed by micro-organisms in waler and/or soil almost without any residues.

- ASTM D-6046-98a: $P_{w} 1, T_{w} 1, T_{s} 1$
- Biodegradablity acc. to OECD $301 \mathrm{~B}: \approx 70 \%$
- CO_{2} reduction thanks to longer oil-change intervals
- Eco Labels from: Croctia, Czech Republic, Germany, Japan, Korea, Sweden
- Water hazard classifications/ VwVwS; nwg (35020-35040), WGK-1 (35050-35070)

Technical data (mean values, subject to normal tolerances)

| PANOLIN | Product | Densily $\mathrm{g} / \mathrm{cm}^{3}$
 HIP SYNTH | Viscosily in $\mathrm{mm}^{2} / \mathrm{s}$
 No. | $15^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Safety-relevant notes:

Please refer to the drum label, or for detailed information, to the safely dala sheet (available from PANOLIN)

Attachment G-10c

Manufacturers' Submittals and Individual O\&M Manuals

HYDRAULIC FLUID

Material Safety Data Sheet

1. Identification of the substance/preparation and of the company/ undertaking Product name : PANOLIN HLP SYNTH 22 (35030)

Use of the substance / preparation :
Hydraulic oil
Manufacturer/ Supplier :
Panolin AG
Street/ P.O.Box :
Country code/ Postal code/ Town/ City :
Bläsimühle

Country :
Telephone :
8322 Madetswil
$+41(0) 449566565$

Supplier in USA :
Street/ P.O.Box :
Country code/ Postal code/ Town/ City :
PANOLIN AMERICA INC

Country :
Telephone :
4882 McGrath Street, Suite 220

Telefax :
Ventura CA 93003
USA
+1 (805) 676-1193
+1(805) 676-1194

Contact :

Emergency information :
info@panolin.com
Swiss toxicological information center (24h)
Phone: +41 442515151
02. Hazards identification

Hazard designation
unclassified.
Particular information pertaining specific risk for human and environment
The product is not classified according to the calculation method of the General Classification guideline for preparations of the EU in the latest version.
Additional information
None.
03. Composition/information on ingredients

Chemical characterization
Mixture of different substances.
Hazardous components

None.
Additional information
None.
04. First-aid measures

After inhalation
Remove concerned person out of danger area. Call a doctor, should the air passages be affected.
After skin contact
Wash away with soap and water and rinse.
After eye contact
Flush with plenty of water (10-15 min.).

After ingestion

If symptoms occur consult a doctor
05. Fire-fighting measures

Suitable extinguishing media Foam, CO2, powder extinguisher, water haze, water spray jet.
Unsuitable extinguishing media
Waterjet.
Special risk posed by the substance or by the actual preparation, its combustion
products or gases discharged
In case of fire toxic gases may be formed.
Special protective equipment
In case of fire do not breathe fumes When extinguishing fires, use breathing apparatus with an independent source of air.

Additional information

Cool endangered containers with water in case of fire. Do not allow the quenching water into the sewage system. Under extreme heating in closed containers polymerisation, decomposition Pressure formation and bursting of containers possible.
06. Accidental release measures
Personal precautions
Particular danger of slipping on leaked/spilled product.
Environmental precautions
Take up with a liquid absorbing material and proceed according to the waste disposal regulations. Do not empty into drains.
Methods for cleaning up/ collecting
Contain and collect spillage with non-combustible absorbent materials, e.g. sand, earth, vermiculite, diatomaceous earth and
place in container for disposal according to local regulations (see section 13).

Additional information

There will be no release of hazardous substances
07. Handling and storage

I nformation for safe handling
Prevent formation of oil mist.
I nformation about protection against explosions and fires
No particular measures required.
Requirements to be met by storerooms and containers
No specific requirement.
Information about separation of incompatible products
Keep away from oxidizing agents, from strongly alkaline and strongly acid materials. Store the foodstuffs separately.
Further information about storage conditions
Do not store outside. Avoid heating over $40^{\circ} \mathrm{C}$.
Storage class (VCI) :
10

08. Exposure controls/personal protection

Additional information about engineering measures
No further details, see Section 7.
Personal protective equipment
General protective and hygiene measures
The usual precautionary measures for the handling of chemicals have to be observed. Do not eat or drink during work - no smoking. Wash hands before breaks and after work. Keep away from food, drink and animal feeding stuff

Respiratory protection

None, but avoid breathing vapours if possible.
Hand protection

Use protective gloves.
Eye protection
Use safety glasses.
Body protection
No particular measures required.
09. Physical and chemical properties

I mage
Form : Liquid.
Colour: Yellow.
Odour: Characteristic.
Relevant safety data

Physical state :		liquid		
Melting point / range :		-58	${ }^{\circ} \mathrm{C}$	
Boiling point / range :	$(1013 \mathrm{hPa})$	$>$	250	${ }^{\circ} \mathrm{C}$
Decomposition point / range :		no data available		
Flash point :	$\left(15^{\circ} \mathrm{C}\right)$	220	${ }^{\circ} \mathrm{C}$	
Density :	$\left(20^{\circ} \mathrm{C}\right)$	0.92	$\mathrm{~g} / \mathrm{cm}^{3}$	
Solubility in water :	$\left(40^{\circ} \mathrm{C}\right)$	0.5	$\%$ b.w.	
Viscosity :			21.8	$\mathrm{~mm}^{2} / \mathrm{s}$

10. Stability and reactivity

Conditions to avoid
None, if handled according to order.
Materials to avoid
Reaction with oxidizing agents possible. Reactions with strong acids or alkalines possible.
Hazardous decomposition products
No dangerous reactions known When exposed to high temperatures may produce hazardous decomposition products such as carbon monoxide and dioxide, smoke, oxides of nitrogen.
11. Toxicological information

Toxicological tests
LD50/ LC50 values that are relevant for classification

Specification :	LD-50
Routes of entry :	oral
Test species:	Rat
Value / dosage :	$>2000 \mathrm{mg} / \mathrm{kg}$

Experience on practice

This product is unlikely to harm health, given normal and proper handling and hygenic precautions.

Additional toxicological information

The product was classified in toxicological terms on the basis of the results of the calculation procedure outlined within General Directive on Preparations (1999/45/EC).
12. Ecological information

Details on elimination (persistance / degradibility)
Possibility to eliminate the product out of sewage : Oil and fat separators.
Biological degradiation / elimination
Readily biodegredable (OECD 301 B)
Additional ecological information
General ecological information
Do not empty into waters or drains.

Product name :
Revision :
PANOLIN HLP SYNTH 22
Print date : 14.10.2010 Version
04.01.2011
2.0.0

13. Disposal considerations Product
 Recommendation

In accordance with local official regulations.

Waste key

Waste code (91/689/EEC) : 1301 12*

Contaminated packaging

Empty containers should be scrapped or reconditioned. Containers, which have not been emptied properly must be treated as special waste.
Recommendation
Disposal, in accordance with local official regulation.
Recommended detergent
Water, possibly with the additin of detergent.

14. Transport information

The product does not constitute a hazardous substance in national / international road, rail, sea and air transport.

Land transport ADR/ RID

Classification
Class :
Maritime transport I MDG/ GGVSea
Classification
IMDG-Code :
Air transport ICAO-TI and IATA-DGR
Classification
Class:
Packaging

15. Requlatory information

Classification according to EC directives
Regulatory information
National regulatory information
Emission control act ("TA-Luft")
Sum organic substances class I: < 5 \%
Water pollution classification
Class: - according VwVwS
16. Other information

The details in this material safety data sheet satisfy national and EC legislation.
Further information
Relevant changes
15. Water pollution classification

R-Phrases of components
R-Phrases of components
These data are based on our present knowledge. However, they shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship.

Attachment G-10d

Manufacturers' Submittals and Individual O\&M Manuals

HYDRAULIC FLUID

Panolin HLP Synth Safety Data Sheet

SAFETY DATA SHEET

PANOLIN HLP SYNTH

1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND THE COMPANY/UNDERTAKING

Chemical characterization
Supplier

Emergency telephone number

Saturated, synthetic esters with additives No mineraloil.
PANOLIN AG
Bläsimühle
CH-8322 Madetswil
Switzerland
++41 (0) 1 / 9566565 (Mo. - Fr. 08.00-17.00)

2. COMPOSITION/INFORMATION ON INGREDIENTS

Hazardous components The product contains no substances which at their given concentration, are considered to be hazardous to health. CAS-No: preparation EINECS: preparation.
3. HAZARDS IDENTIFICATION

None.

4. FIRST AID MEASURES

General advice	Wash contaminated clothing before re-use.
Inhalation	Move to fresh air in case of accidental inhalation of vapours.
Skin contact	Wash with water and soap as a precaution.
Eye contact	Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.
Ingestion	Do not induce vomiting. Drink water as a precaution. Obtain medical attention.

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media Foam. Dry chemical. Carbon dioxide $\left(\mathrm{CO}_{2}\right)$.
Extinguishing media which must not be used for safety reasons
High volume water jet.
Specific hazards During a fire, smoke may contain the original material in addition to unidentified toxic and/or irritating compounds.

Special protective equipment for firefighters
In case of fire, wear a self contained breathing apparatus.
Specific methods
Do not use a solid water stream as it may scatter and spread fire.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions	Sweep up to prevent slipping hazard.
Environmental precautions	Do not flush into surface water or sanitary sewer system. Advise water authority if spillage has entered water course or drainage system.
Methods for cleaning up	Dam up. Soak up with oil absorbent material. Shovel into suitable container for disposal.

7. HANDLING AND STORAGE

Handling	Spilling onto the container's outside will make container slippery. The product is flammable but not readily ignited.
Storage	Keep containers dry and tightly closed to avoid moisture absorption and contamination. Keep out of reach of children. CEA F4 I Fu Y3

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering measures to reduce exposure
General industrial hygiene practice.
Personal protection equipment
Respiratory protection No personal respiratory protective equipment normally required.

Hand protection
Rubber or plastic gloves.
Eye protection
Skin and body protection
Safety glasses with side-shields.
Remove and wash contaminated clothing before re-use.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form	Liquid.	
Colour	Yellow-orange.	
	Mild.	
Odour		
Physical and chemical properties		
	Flash point (COC):	$>210^{\circ} \mathrm{C}$.
	Relative density	$0.92 \mathrm{~g} / \mathrm{ml}$.
	Viscosity:	according to datasheet.
	Pour point:	$<-35^{\circ} \mathrm{C}$.
	Water solubility:	insoluble.

10. STABILITY AND REACTIVITY

Stability	No decomposition if stored and applied as directed.
Conditions to avoid	Fire or intense heat may cause violent rupture of packages.
Materials to avoid	Strong oxidizing agents.
Hazardous decomposition products	
None under normal use. Thermal decomposition can lead to release of irritating gases and vapours.	

11. TOXICOLOGICAL INFORMATION

Acute toxicity	LD50/oral/rat $=>2^{\prime} 000 \mathrm{mg} / \mathrm{kg}$.
Local effects	Negligible. Experience shows no unusual dermatitis hazard from routine handling.
Long term toxicity	Negligible.
Sensitization	Negligible.
Specific effects	No data is available on the product itself.
Human experience	No data is available on the product itself.
Further information	The product contains no substances which at their given concentration, are considered to be hazardous to health. Health injuries are not known or expected under normal use. No persistent or cumulative effects were observed.

12. ECOLOGICAL INFORMATION

Ecotoxicity	Ecological injuries are not known or expected under normal use.
Persistence / degradability	According to the results of tests of biodegradability this product is considered as being readily biodegradable. Readily biodegradable, according to appropriate OECD test.

13. DISPOSAL CONSIDERATIONS

Waste from residues / unused products

\[\)| Can be incinerated, when in compliance with local |
| :--- |
| regulations. Where possible recycling is preferred to |
| disposal or incineration. In accordance with local and |
| national regulations. |
| European Waste catalogue code (EWC-code): 130112 |
| biodegradable hydraulic oils |

\]

Contaminated packaging

Store containers and offer for recycling of material
according to local regulations.

14. TRANSPORT INFORMATION

Further Information

Not classified as dangerous in the meaning of transport regulations.

15. REGULATORY INFORMATION

Regulatory Information

Symbol(s)
R-phrase(s)
S-phrase(s)

The product does not need to be labelled in accordance with (national equivalent of EC-Directive 88/379).
BAG T No: 611'500
Water Pollution Class WGK (self-assesment).

HLP SYNTH	German Water Pollution Class (WGK)	
	VCl conception	German VwVwS
$15,22,32$	0	nwg $\left.^{*}\right)$
$46,68,100$	0	1

$\left.{ }^{*}\right)$ nwg: not water contaminating.
None.
None.
None.

16. OTHER INFORMATION

Recommended use
 Further information

Disclaimer

Revision Date

Number

According to datasheet.
Modifications in the following chapters since the last version:

Date	Chapter
10.06 .2002	13; EWC Code

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.
10.06.2002

2

Attachment G-11a

Manufacturers' Submittals and Individual O\&M Manuals

VALVES \& PIPING

Check Valve STAUFF RV40-65-S
®
Check Valves - RV Series

Specifications

- Sizes to 2"
- Carbon Steel Body, Zinc Plated
- Working Pressure to 7250 PSI (500 bar)
- Metal to Metal Seat

Options

- NPT or SAE
- Two Spring Cracking Pressures - 7 PSI (0.5 bar) or 65 PSI (4.5 bar)
- Special Spring Cracking Pressures Available On Request

1CV1 \& 1CV2 - No. RV40-65-S

- Stainless Steel construction

Dimensional Information

Ordering Information

Product Type
RV - Check Valve

Port Size	
8	$1 / 4^{\prime \prime}$
10	$3 / 8^{\prime \prime}$
12	$1 / 2{ }^{\prime \prime}$
16	$3 / 4^{\prime \prime}$
20	$1 "$
25	$11 / 4^{\prime \prime}$
30	$1 / 2 "$
40	$2 "$

Spring Setting	
7	7 PSI (0.5 Bar)
65	$65 \mathrm{PSI}(4.5 \mathrm{Bar})$

Check Valves RVM Series - Medium Duty (5000 PSI)

Specifications

- Sizes to $3 / 4$ " NPT
- Carbon Steel Body, Zinc Plated
- Working Pressure to 5000 PSI (350 bar)
- Metal to Metal Seat

Options

- Field replaceable springs available with 30 PSI or 60 PSI settings

Dimensional Information

				$- \text { "A }$		Type Dep		"B"-			
Part Number	A - Length		B - Width		C - Port Diameter	$\begin{aligned} & \text { D - Thread } \\ & \text { Depth } \end{aligned}$		Operating		Weight	
	mm	in	mm	in	NPT	mm	in	Bar	PSI	kg	Ibs
RVM8-7N	63.0	2.48	22	0.87	1/4" NPT	12.5	0.49	350	5000	0.2	0.44
RVM10-7N	69.0	2.71	27	1.06	3/8" NPT	12.5	0.49	350	5000	0.4	0.88
RVM12-7N	80.5	3.17	32	1.26	$1 / 2$ " NPT	15.5	0.61	350	5000	0.7	1.54
RVM16-7N	99.5	3.92	36	1.42	3/4" NPT	17.0	0.67	350	5000	1.2	2.64

Ordering Information

Attachment G-11b

Manufacturers' Submittals and Individual O\&M Manuals

VALVES \& PIPING

Counterbalance Valve

MODEL
CBIA-LHV

CONFIGURATION

L	Control	Standard Screw Adjustment
H	Functional Setting Range	1000-4000 psi w/25 psi Check (70 - 280 bar w/1,7 bar Check), 3000 psi (210 bar) Standard Setting
V	Seal Material	Viton
(none)	Material/Coating	Standard Material/Coating

rial/Coating

3:1 pilot ratio, standard capacity counterbalance valve CAPACITY: 120 gpm | CAVITY: T-19A

Counterbalance valves with pilot assist are meant to control an overrunning load. The check valve allows free flow from the directional valve (port 2) to the load (port 1) while a direct-acting, pilot-assisted relief valve controls flow from port 1 to port 2 . Pilot assist at port 3 lowers the effective setting of the relief valve at a rate determined by the pilot ratio.

Other names for this valve include motion control valve and over center valve.

TECHNICAL DATA

Cavity	T-19A
Series	4
Capacity	120 gpm
Pilot Ratio	$3: 1$
Maximum Recommended Load Pressure at Maximum Setting	3075 psi
Maximum Setting	4000 psi
Factory Pressure Settings Established at	$2 \mathrm{in} 3 / \mathrm{min}$.
Maximum Valve Leakage at Reseat	5 drops/min.
Adjustment - Number of Counterclockwise Turns to Increase Setting	3.75
Operating Characteristic	Standard
Reseat	$>85 \%$ of setting
Valve Hex Size	$15 / 8 \mathrm{in}$.
Valve Installation Torque	$350-375 \mathrm{lbf} \mathrm{ft}$
Adjustment Screw Internal Hex Size	$7 / 32 \mathrm{in}$.
Locknut Hex Size	$3 / 4 \mathrm{in}$.
Locknut Torque	$25-30 \mathrm{lbf} \mathrm{ft}$
Seal kit - Cartridge	Buna: 990-019-007
Seal kit - Cartridge	Polyurethane: 990-019-002
Seal kit - Cartridge	Viton: $990-019-006$
Model Weight	3.00 lb.

TECHNICAL FEATURES

- Counterbalance valves should be set at least 1.3 times the maximum load induced pressure.
- Turn adjustment clockwise to decrease setting and release load.
- Full clockwise setting is less than 200 psi (14 bar).
- Backpressure at port 2 adds to the effective relief setting at a ratio of 1 plus the pilot ratio times the backpressure.
- Reseat exceeds 85% of set pressure when the valve is standard set. Settings lower than the standard set pressure may result in lower reseat percentages.
- Sun counterbalance cartridges can be installed directly into a cavity machined in an actuator housing for added protection and improved stiffness in the circuit.
- Two check valve cracking pressures are available. Use the 25 psi (1,7 bar) check unless actuator cavitation is a concern.
- This valve has positive seals between all ports.
- All 3-port counterbalance, load control, and pilot-to-open check cartridges are physically interchangeable (i.e. same flow path, same cavity for a given frame size).
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.

PERFORMANCE CURVES

Copyright © 2002-2014 Sun Hydraulics Corporation. All rights reserved.

Attachment G-11c

Manufacturers' Submittals and Individual O\&M Manuals

VALVES \& PIPING

Directional Poppet Valve

MODEL DTDAS

2-way, direct-acting, soft shift, solenoid-operated directional poppet valve CAPACITY: 4 gpm I CAVITY: T-13A

CONFIGURATION

C	Poppet Configuration	Normally Closed
N	Seal Material	Buna-N
(none)	Coil	No coil

NOTES

Please verify cartridge clearance requirements when choosing a Sun manifold. Different valve controls and coils require different clearances.
An additional 2.00 inches ($50,8 \mathrm{~mm}$) beyond the valve extension is needed for coil installation and removal.

This solenoid-operated 2-way, 2-position cartridge is a direct-acting, poppet-style valve with a soft shift feature. The soft shift feature greatly reduces system shock due to valve actuation. The valve is available in either a normally open or normally closed configuration. Due to its poppet-style construction, this valve has extremely low leakage.

TECHNICAL DATA

Cavity	$\mathrm{T}-13 \mathrm{~A}$
Series	1
Capacity	4 gpm
Maximum Operating Pressure	5000 psi
Maximum Valve Leakage at 110 SUS (24 cSt)	$10 \mathrm{drops} / \mathrm{min} . @ 5000 \mathrm{psi}$
Manual Override Force Requirement	$5 \mathrm{lbs} / 1000 \mathrm{psi} @$ Port 1
Manual Override Stroke	.10 in.
Solenoid Tube Diameter	.75 in.
Valve Hex Size	$7 / 8 \mathrm{in}$.
Valve Installation Torque	$30-35 \mathrm{lbf} \mathrm{ft}$
Seal kit - Cartridge	Buna: $990-413-007$
Seal kit - Cartridge	Polyurethane: $990-413-002$
Seal kit - Cartridge	Viton: 990-413-006
Model Weight	0.65 lb.

TECHNICAL FEATURES

- The soft shift cartridge is interchangeable with the standard cartridge, however, the performance limits are lower.
- The soft shift feature can greatly reduce shock due to valve actuation but should not be counted upon in applications where timing is critical. If you need accurate ramping or timing control, consider Sun's electro-proportional valves.
- The soft shift feature results in significant increase in response time over Sun's standard solenoid. Response time is dependant on flow, pressure, coil
voltage, oil viscosity and ambient temperature. Typical response time ranges from 150 ms to 300 ms .
- For consistent soft shift performance, port 1 should be at a positive pressure.
- This valve includes a push-type manual override control. Other manual control options such as T or D, cannot be ordered with the soft shift control but can be installed easily in the field. See Twist/Lock Manual Override link above for details. Please note: Manual override functionality is not compatible with weatherized coils.
- The solenoid tube assembly is fatigue rated for 5000 psi (350 bar) service.
- This valve is suitable for load holding applications when using the Normally Closed option. In the event of power failure, the valve will spring closed.
- This valve utilizes a wet armature design. This means that the working fluid surrounds the armature and is exposed to the heat generated by the coil. This can be a factor if the coil is energized for long periods of time. Some fluids, notably water/glycol mixtures, break down at these temperatures over time and form varnishes that will affect the function of the cartridge.
- The solenoid's unique magnetic design results in a high efficiency solenoid, yielding high spool actuating force per Watt expended, leading to reliable valve shifting.
- Coil connector options offer ratings up to IP69K. See individual coil product pages for details. Additional weatherized coils and kits are available for more complete environmental protection.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.

PERFORMANCE CURVES

CONFIGURATION OPTIONS

POPPET CONFIGURATION

		Normally Closed
Preferred Options	Normally Open	
	C	SEAL MATERIAL
Preferred Options	N	Buna-N
Standard Options	V	Viton
	COIL	

No coil

DIN 436503 pin (Hirschman), 115 VAC
212 DIN 436503 pin (Hirschman), 12 VDC
212N DIN 436503 pin (Hirschman), 12 VDC, no transient voltage suppression (TVS) diodes
214 DIN 436503 pin (Hirschman), 14 VDC
214N DIN 436503 pin (Hirschman), 14 VDC, no transient voltage suppression (TVS) diodes
223 DIN 436503 pin (Hirschman), 230 VAC
224 DIN 436503 pin (Hirschman), 24 VDC
224N DIN 436503 pin (Hirschman), 24 VDC, no transient voltage suppression (TVS) diodes
228 DIN 436503 pin (Hirschman), 28 VDC
236 DIN 436503 pin (Hirschman), 36 VDC
248 DIN 436503 pin (Hirschman), 48 VDC
297 DIN 436503 pin (Hirschman), 24 VAC
298 DIN 436503 pin (Hirschman), 220 VDC
299 DIN 436503 pin (Hirschman), 127 VDC
514 SAE J858A, 14 VDC

	524	SAE J858A, 24 VDC
	528	SAE J858A, 28 VDC
	536	SAE J858A, 36 VDC
	612	AMP Junior Timer, 12 VDC
	612N	AMP Junior Timer, 12 VDC, no transient voltage suppression (TVS) diodes
	614	AMP Junior Timer, 14 VDC
	624	AMP Junior Timer, 24 VDC
	624N	AMP Junior Timer, 24 VDC, no transient voltage suppression (TVS) diodes
	628	AMP Junior Timer, 28 VDC
Standard Options	636	AMP Junior Timer, 36 VDC
	712	Twin Lead, 12 VDC
	712N	Twin Lead, 12 VDC, no transient voltage suppression (TVS) diodes
	724	Twin Lead, 24 VDC
	724N	Twin Lead, 24 VDC, no transient voltage suppression (TVS) diodes
	728	Twin Lead, 28 VDC
	736	Twin Lead, 36 VDC
	812	Metri-Pack, 12 VDC
	812N	Metri-Pack, 12 VDC, no transient voltage suppression (TVS) diodes
	814	Metri-Pack, 14 VDC
	814N	Metri-Pack, 14 VDC, no transient voltage suppression (TVS) diodes
	824	Metri-Pack, 24 VDC
	828	Metri-Pack, 28 VDC
	836	Metri-Pack, 36 VDC
	848	Metri-Pack, 48 VDC
	912	Deutsch DT04-2P, 12 VDC
	912N	Deutsch DT04-2P, 12 VDC, no transient voltage suppression (TVS) diodes
	914	Deutsch DT04-2P, 14 VDC
	914 N	Deutsch DT04-2P, 14 VDC, no transient voltage suppression (TVS) diodes
	924	Deutsch DT04-2P, 24 VDC
	924N	Deutsch DT04-2P, 24 VDC, no transient voltage suppression (TVS) diodes
	928	Deutsch DT04-2P, 28 VDC
	936	Deutsch DT04-2P, 36 VDC
	948	Deutsch DT04-2P, 48 VDC
	HN24AA	Hazardous environment duty, $1 / 2$ inch NPT mechanical conduit, 24 VDC, 10 feet twin lead, ATEX Certification Ex mb IIC T3 Gb.
	HN24AB	Hazardous environment duty, 1/2 inch NPT mechanical conduit, 24 VDC, 10 feet twin lead, CSA Certification

RELATED MODELS

DTDA
2-way, direct-acting, solenoid-operated directional poppet valve

RELATED ACCESSORIES

773-812
12 VDC weatherized coil with Metri-Pack, Series 150-2M connector
773-814
14 VDC weatherized coil with Metri-Pack, Series 150-2M connector
773-824

24 VDC weatherized coil with Metri-Pack, Series 150-2M connector
773-828
28 VDC weatherized coil with Metri-Pack, Series 150-2M connector
991-056
T-13A and T-31A cavities, weatherized coil seal kit

Copyright © 2002-2014 Sun Hydraulics Corporation. All rights reserved.

Attachment G-11d

Manufacturers' Submittals and Individual O\&M Manuals

VALVES \& PIPING

Directional Valve Catalog

MREN	SOLENOID CONTROLLED PILOT OPERATED DIRECTIONAL VALVES DSHG-01/03/04/06/10 PILOT OPERATED DIRECTIONAL VALVES DHG/04/06/10 MANUALLY OPERATED DIRECTIONAL VALVES DMG-01/03/04/06/10 DMT-03/06/10	$\begin{aligned} & \text { DIRECTIONAL } \\ & \text { CONTROLS } \end{aligned}$
	General Information	
Up	31.5 MPa (4570 PSI), 1100L/min (291 U.S	M)

Solenoid contorolled Pilot Operated

Yilayes ${ }_{\text {alves }}$ are composed of a solenoid operated Page 4 tiot valve and a pilot operated slave valve. When a solenoid is energised the pilot valve directs the flow to move the spool of the slave valve, thus changing the direction offlow in the hydraulic circuit.

- High Pressure High Flow

In these valves, the nominal size " 04 " can provide $300 \mathrm{~L} / \mathrm{min}$ (79.3 U.S. GPM), " 06 " can provide $500 \mathrm{~L} / \mathrm{min}$ ($132 \mathrm{U} . \mathrm{S} . \mathrm{GPM}$) and " 10 " can provide $1100 \mathrm{~L} / \mathrm{min}$ ($291 \mathrm{U} . \mathrm{S} . \mathrm{GPM}$) in the maximum flow respectively and they can also withstand such a high pressure as $31.5 \mathrm{Mpa}\{4570 \mathrm{PSI}\}$ as the maximum operating pressure. With these features of high pressure and high flow, the valves can make the size or configuration of the equipment compact.

- Low Pressure Drop

As the pressure drop of each size of the valve becomes minimal, the more of energy saving of the equipment is possible.

- Easy Change of Pilot and Drain System

The change of the pilot from external to internal and the change of the drain from internal to external or viceversa can be done easily by putting on or removing the relevant plug on the valve.

\square Pilot Operated Directional Valves

These valves perform a change over of spool by hydraulic pilot and shift the direction of oil flow.

Page 34

Manually Operated Directional Valves

Page 40

These valves may be used to manually shift the spool position and change the direction of oil flow.

Solenoid Controlled Pilot Operated Directional Valves Pilot Operated Directional Valves Manually Operated Directional Valves

Solenoids / Mounting

Solenoids
(Only for Solenoid Controlled Pilot Operated Directional Valves)

- Solenoid connectors (DIN Connector)

The solenoid connectors are conform to the international standard ISO 4400 (Fluid power systems and components-Three-pin electrical plug connectors-Characteristics and requirements).

- AC Solenoids

$50-60 \mathrm{~Hz}$ common service solenoids do not require rewiring when the applied frequency is changed.

- DC Solenoids (Reputable K-Series)

These DC solenoids have surge absorbers for K-series functions. The three advantages of them are as mentioned below:-

1. Since surge voltage can be controlled to a very low figure, electric control devices, such as a computer, can be used without any interference like noise.
2. There being no spark between contacts, the life of the relay becomes longer.
3. Time lag for spool return after de-energisation of the solenoid is very short.

- R Type Solenoids

These are rectifier and surge absorber incorporated direct current solenoids which can be used by connecting directly to the AC power source. They have, like other DC solenoids, such advantages that the sound in on-offoperation is quite low and the coils are hardly burnt out even if the spool is stuck at the half way of its changeover for contaminant particles etc. Moreover, they can be used almost permanently without being affected by a surge voltage from the outside. Thus, they are the solenoids of high reliability and durability.

- Insulation Class of Solenoid

Class H
Mounting
Mounting surface dimensions confrom to ISO 4401, Hydraulic fluild power-Four-port directional control valvesMounting surfaces.

Model Num bers	ISO Code of Mounting Surface
DSHG-01 DMG-01	ISO 4401-AB-03-4-A
DMG-03	ISO 4401-AC-05-4-A
DSHG-03	ISO 4401-AC-05-4-A
(S)-DSHG-04 DHG-04 DMG-04	ISO 4401-AD-07-4-A
(S)-DSHG-06 DHG-06 DMG-06	ISO 4401-AE-08-4-A
(S)-DSHG-10 DHG-10 DMG-10	
The main ports conform to ISO 4401-AC-05-4-A. The pilotand	
train ports conform to the ISO.	

Solenoid Controlled Pilot Operated Directional Valves Pilot Operated Directional Valves Manually Operated Directional Valves

Hydraulic Fluids / Instructions

Hydraulic Fluids

- Fluid Types

Any type of hydraulic fluid, listed in the table below can be used.

Ty pe of Fluids	Remarks
Petroleum Base Oil	Use fluids equivalent to ISO VG32 or VG46.
Sy nthetic Fluids	Use phosphate ester or poly ol ester fluid. When phosphate ester fluid is used, prefix "F-" to the model num ber because the special seals (fluororubber) are required to be used.
Water Containing Fluids	Use water-gly col fluids or W/O emulsion fluids.

Note) 1: For two types of manually operated directional valves, DMT-06, 06X and DMT-10, 10X, only petroleum base oils and polyol ester type fluids are available.
2: For use with hydraulic fluids other than those listed above, consult your Yuken representatives in advance.

- Recommended Viscosity and Oil Temperatures

Always be sure to use hydraulic fluids within the stipulated conditions shown below:
Viscosity: 15 to $400 \mathrm{~mm}^{2} / \mathrm{s}(77$ to 1800 SSU$)$, Temperature: -15 to $+70^{\circ} \mathrm{C}\left(5\right.$ to $160^{\circ} \mathrm{F}$)

- Control of Contamination

Due caution must be paid to maintaining control over contamination of the hydraulic fluids which may otherwise lead to breakdowns and shorten the life of the valve. Please maintain the degree of contamination within NAS 1638-Grade 12. Use $25 \mu \mathrm{~m}$ or finer line filter.

Instructions

- Mounting Posture

In case No-spring detent type and No-spring type valves are used in the solenoid de-energised state, install the valve in such a way that the axis L-L' becomes horizontal to get the detent effect firmly. For the valve types other than the above, there are no restrictions on the mounting posture.

- Solenoid Energisation

In no-spring type, either solenoid of the two should be ener-gised continuously to avoid malfunction.
For double solenoid valves do not energise both at the same time as it will result in coils burning out.

- Valve Tank Port

Avoid connecting the valve tank port to a line with possible surge pressure.
Piping end of tank line should be submerged in oil.

- Pilot Drain Port for Solenoid Controlled Pilot Operated Directional Valve

Avoid connecting the valve pilot drain port to a line with possible surge pressure.
Piping end of drain should be submerged in oil.

Shockless Type

In order to benefit from a shockless operation, it is necessary to fill the drain line with operating oil.
Only after the tank line has been filled with operating oil, start the operation of the valve on a regular basis.

- Operating Force for Manual Override Push Pin

Please note that as the back pressure of the drain line rises, manually override push pin turns hard to operate (See the graph below).

Solenoid Controlled Pilot Operated Directional Valves DSHG-01/03/04/06/10 S-DSHG-04/06/10 Sub-plate Mounting

Specifications

Specifications

Valve Type	Model Numbers	$\begin{aligned} & \text { Max. Flow } \\ & \text { L/m in } \\ & \text { (U.S.GPM) } \end{aligned}$	Max. Operating Pressure MPa(PSI)	Max. Pilot Pressure MPa(PSI)	Min *2 Required Pilot Pres. MPa(PSI)	Max. T-Line Back Pressure $\mathrm{MPa}(\mathrm{PSI})$		Max. Changeover Frequency min^{-1} (Cycles/Min)			$\begin{gathered} \text { Approx. } \\ \text { Mass } \\ \mathrm{kg}(1 \mathrm{bs} .) \end{gathered}$
						Ext.Drain	Int.Drain	AC	DC	R	
Standard Ty pe	DSHG-01-3C $*$ - $*-13 / 1380 / 1390$	40 (10.6)	21 (3050)	21 (3050)	1.0 (150)	16 (2320)	16 (2320)	120	120	120	3.5 (7.7)
	DSHG-01-2B $*-*-13 / 1380 / 1390$										2.9 (6.4)
	DSHG-03-3C *-*-13/1390	160 (42.3)	25 (3630)	25 (3630)	0.7 (100)	16 (2320)	16 (2320)	120	120	120	7.2(15.9)
	DSHG-03-2N $*-*-13 / 1390$										7.2(15.9)
	DSHG-03-2B*-*-13/1390										6.6(14.6)
	(S-)DSHG-04-3C $*-*-51 / 5190$	300 (79.3)	31.5 (4570)	25 (3630)	0.8 (120)	21 (3050)	16 (2320)	120	120	120	8.8(19.4)
	(S-)DSHG-04-2N *-*-51/5190										8.8(19.4)
	(S-)DSHG-04-2B *-*-51/5190										8.2(18.1)
Shockless Type	(S-)DSHG-06-3C $*-*-52 / 5290$	500 (132)	31.5 (4570)	25 (3630)	$0.8(120)^{\star 3}$	21 (3050)	16 (2320)	120	120	120	12.7 (28)
	(S-)DSHG-06-2N *-*-52/5290										12.7 (28)
	(S-)DSHG-06-2B*-*-52/5290										12.1 (27)
	(S-)DSHG-06-3H*-*-52/5290			21 (3050)	1.0 (150)			110	110	110	13.5 (30)
	(S-)DSHG-10-3C $*-*-42 / 4290$	1100 (291)	31.5 (4570)	25 (3630)	$1.0(150)^{\star 3}$	21 (3050)	16 (2320)	120	120	100	45.3(100)
	(S-)DSHG-10-2N *-*-42/4290							100	100	100	45.3(100)
	(S-)DSHG-10-2B*-*-42/4290			21 (3050)				60	60	50	44.7 (99)
	(S-)DSHG-10-3H*-*-42/4290										53.1(117)

* 1. The maximum flow means the limited flow without inducing any abnorm ality to the operation (changeover) of the valve. For details, please refer to the "Listof Standard Models and Maxim um Flow" on pages 9 to 13 .
* 2. In case of internal drain ty pe valve, the differential pressure between pilot pressure and back pressure at tank port should be kept more than the minimum pilot pressure.
太 3. The minim um pilot pressure for the valve with pilot piston is 1.8 MPa (260 PSI).

Yuken can offer flanged connection valves described below. Consult Yuken for the details.

Model Numbers	Rated Flow L/min (U.S.GPM)	$\begin{gathered} \text { Max. Pressure } \\ \text { MPa (PSI) } \\ \hline \end{gathered}$
DSHF-10-***-*-27	315 (83)	21 (3050)
DSHF-16-***-*-37	500 (132)	
DSHF-24-***-*-28	1200 (317)	
DSHF-32-***-*-27	2400 (634)	

Solenoid Controlled Pilot Operated Directional Valves
YITREN
Solenoid Ratings / Sub-plates

Solenoid Ratings

Valve Type	Electric source	$\begin{gathered} \text { Coil } \\ \text { Type } \end{gathered}$	Frequency (Hz)	Voltage (V)		Current \& Power at Rated Voltage		
				Source Rating	Serviceable Range	Inrush (A)*	Holding (A)	Power (W)
Standard Type	AC	A 100	50	100	80-110	2.42	0.51	-
			60	100	90-120	2.14	0.37	
				110		2.35	0.44	
		A120	50	120	96-132	2.02	0.42	
			60		108-144	1.78	0.31	
		A200	50	200	160-220	1.21	0.25	
			60	200	180-240	1.07	0.19	
				220		1.18	0.22	
		A240	50	240	192-264	1.01	0.21	
Shockless			60		216-288	0.89	0.15	
Type	DC (K Series)	D12	-	12	10.8-13.2	-	2.45	29
		D24		24	21.6-26.4		1.23	
		D48		48	43.2-52.8		0.61	
	AC \rightarrow DC Rectified (R)	R100	50/60	100	90-110	-	0.33	29
		R200		200	180-220		0.16	

太 Inrush current in the above table show rms values at maximum stroke.

The coilty pe num bers in the shaded column are handled as optionalextras. In case these coils are required to be chosen, please confirm the time of delivery with us before ordering.

CSA Approved Solenoid

The "DSHG" series valve have been approved by the CSA(Candian Standards Association). consult us for details.

Sub-plates

Valve Model Numbers	Japanese Standard "JIS"			European Design Standard			N. American Design Standard		
	Sub-plate Model Numbers	Thread Size	Approx. Mass kg (1bs.)	Sub-plate Model Numbers	Thread Size	Approx. Mass kg (1bs.)	Sub-plate Model Numbers	Thread Size	Approx. Mass kg (1bs.)
DSHG-01	DSGM-01-30	Rc 1/8	0.8 (1.8)	DSGM-01-3080	1/8 BSP.F	0.8 (1.8)	DSGM-01-3090	1/8 NPT	0.8 (1.8)
	DSGM-01X-30	Rc $1 / 4$	0.8 (1.8)	DSGM-01X-3080	1/4 BSP.F	0.8 (1.8)	DSGM-01X-3090	$1 / 4 \mathrm{NPT}$	0.8 (1.8)
	DSGM-01Y-30	Rc 3/8	0.8 (1.8)	-		-	DSGM-01Y-3090	3/8 NPT	0.8 (1.8)
DSHG-03	DSGM-03-40	Rc 3/8	3.0 (6.6)	DSGM-03-2180*	3/8 BSP.F	3.0 (6.6)	DSGM-03-2190*	$3 / 8 \mathrm{NPT}$	3.0 (6.6)
	DSGM-03X-40*	Rc $1 / 2$	3.0 (6.6)	DSGM-03X-2180 ${ }^{+}$	1/2 BSP.F	3.0 (6.6)	DSGM-03X-2190*	$1 / 2 \mathrm{NPT}$	3.0 (6.6)
	DSGM-03Y-40 ${ }^{\text {² }}$	Rc 3/4	4.7 (10.4)	DSGM-03Y-2180*	3/4 BSP.F	4.7 (10.4)	DSGM-03Y-2190*	$3 / 4 \mathrm{NPT}$	4.7 (10.4)
	DHGM-03Y-10	Rc 3/4	4.7 (10.4)	DHGM-03Y-1080	3/4 BSP.F	4.7 (10.4)	DHGM-03Y-1090	3/4 NPT	4.7 (10.4)
DSHG-04	DHGM-04-20	Rc	4.4 (9.7)	DHGM-04-2080	1/2 BSP.F	4.4 (9.7)	DHGM-04-2090	1/2 NPT	4.4 (9.7)
	DHGM-04X-20	Rc 3/4	4.1 (9.0)	DHGM-04X-2080	3/4 BSP.F	4.1 (9.0)	DHGM-04X-2090	3/4 NPT	4.1 (9.0)
DSHG-06	DHGM-06-50	Rc 3/4	7.4 (16.3)	DHGM-06-5080	3/4 BSP.F	8.5 (18.7)	DHGM-06-5090	3/4 NPT	7.4 (16.3)
	DHGM-06X-50	Rc 1	7.4 (16.3)	DHGM-06X-5080	1 BSP.F	8.5 (18.7)	DHGM-06X-5090	1 NPT	7.4 (16.3)
DSHG-10	DHGM-10-40	Rc 1-1/4	21.5 (47.4)	DHGM-10-4080	1-1/4 BSP.F	21.5 (47.4)	DHGM-10-4090	1-1/4 NPT	21.5 (47.4)
	DHGM-10X-40	Rc 1-1/2	21.5 (47.4)	DHGM-10X-4080	1-1/2 BSP.F	21.5 (47.4)	DHGM-10X-4090	1-1/2 NPT	21.5 (47.4)

\star DSGM- $03 *$ is available only for Internal pilot-Internal drain ty pe (Use DHGM-03Y for other valves).
Sub-plates are available. Specify the sub-plate model number from the table above.
When sub-plates are not used, the mounting surface should have a good machined finish.

Solenoid Controlled Pilot Operated Directional Valves
DSHG-01/03/04/06/10
S-DSHG-04/06/10

Mounting Bolt

Model Numbers	Mouting Bolt					
	Name	Japanese Standard "JIS" European Design Standard	N. American Design Standard	Qty .	Tighte Nm	ng Torque in. 1bs.)
DSHG-01	Mtg. Bolt Kit ${ }^{\star 3}$	MBK-01-01-30 ${ }^{\star 1}$ MBK-01-02-30 *2	$\begin{aligned} & \text { MBK-01-01-3090 } \\ & \text { MBK- } 01-02-3090^{\star 2} \end{aligned}$	1 set	5-6	(43-52)
DSHG-03	Soc. Hd. Cap Screw	M6 $\times 35 \mathrm{Lg}$.	$1 / 4-20$ UNC $\times 1-3 / 4 \mathrm{Lg}$.	4	12-15	(104-130)
(S-)DSHG-04	Soc. Hd. Cap Screw	$\begin{gathered} \mathrm{M} 6 \times 45 \mathrm{Lg} . \\ \mathrm{M} 10 \times 50 \mathrm{Lg} . \end{gathered}$	$\begin{aligned} & \text { 1/4-20 UNC } \times 1-3 / 4 \mathrm{Lg} . \\ & 3 / 8-16 \mathrm{UNC} \times 2 \mathrm{Lg} . \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{array}{r} 12-15 \\ 58-72 \end{array}$	$\begin{array}{r} (104-130) \\ (504-625) \end{array}$
(S)-DSHG-06	Soc. Hd. Cap Screw	$\mathrm{M} 12 \times 60 \mathrm{Lg}$.	$1 / 2-13 \mathrm{UNC} \times 2-1 / 2 \mathrm{Lg}$.	6	100-123	(868-1068)
(S)-DSHG-10	Soc. Hd. Cap Screw	$\mathrm{M} 20 \times 75 \mathrm{Lg}$.	$3 / 4-10 \mathrm{UNC} \times 3 \mathrm{Lg}$.	6	473-585	4106-5078)

丸 1. For Internal Pilot-Internal Drain.
丸 2. For External Pilot or External Drain.

* 3. Mounting bolt kit is common to that of 01 series modular valves. Refer to figure below for the dimensions of bolt kit.

- Stud Bolt

- Nut

Options

- Models with Pilot Choke Adjustment

When the adjustment screw is turned clockwise, changeover speed ofthe main spool becomes slow. In case of the spring centred valves in particular, making slow of the returning speed of the main spool to the neutral position is possible with a C2 choke valve. These choke valves can be used in combination with the valves of spring centred, no-spring, offset, pressure centred and the valves with stroke adjustment.

Graphic Symbols (Ex.: Spring Centred)

- DSHG-03, 04

- Models with Pilot Piston(P2, PA, PB)

The valves with a pilot piston can be used when the high speed changeover of the main spool is required. However, please not that in case of spring centered valves, there is no change in the returning speed ofthe main spool to the neutral position even with the pilot piston.

Graphic Sy mbols (Ex.: Spring Centred)

- "P2" Models

- "PA" Models

- Pressure Centred Models ($\mathbf{3 H}$ *)

The pressure centered type can be used when the returning of the main spool to the neutral position is required to be firmily.

Graphic Sy mbols (Ex.: External Pilot-External Drain)
(Only for 3H6, 3H60)

- Models with Stroke Adjustment (R2, RA, RB)

When the adjustment screw is screwed in, the main spool stroke becomes short and flow rate reduces.

Graphic Sy mbols (Ex.: Spring Centred)

- Additional Mass of Options

Add the mass described below to the mass of standard models on page 4 , if options are required.

Model Numbers	Model with Pilot Choke Adj.		Models with Pilot Piston		Models with Stroke Adj.	
	C1, C2	C1C2	P2	PA PB	P2	PA PB
	$0.65(1.4)$	$1.3(2.9)$	-	-	$0.6(1.3)$	$0.3(.7)$
(S-)DSHG-04	$0.65(1.4)$	$1.3(2.9)$	-	-	$1.0(2.2)$	$0.5(1.1)$
(S-)DSHG-06	$0.65(1.4)$	$1.3(2.9)$	$1.0(2.2)$	$0.5(1.1)$	$1.2(2.6)$	$06(1.3)$
(S-)DSHG-10	$0.65(1.4)$	$1.3(2.9)$	$3.6(7.9)$	$1.8(4.0)$	$3.7(8.2)$	$1.85(4.1)$

- Options on Pilot Valve

The same options to DSG-01 series valves are available. Please refer to the Catalogue No. Pub. EC-0402 for the details.

Solenoid Controlled Pilot Operated									
Directional Valves									
DSHG-01									
List of Standard Models and Maximum How									
Spool Ty pe	Three Positions				Two Positions				
	Spring Centred				Spring Centred				
	Graphic Sy mbol	Maximum Flow L/min (U.S.GPM)			Graphic Sy mbol $w_{P}^{A} \\|_{T}^{B} \mathbb{D}^{b}$	Maximum Flow L/min (U.S.GPM)			
	Model Numbers	$\begin{array}{\|c\|} \hline 7 \mathrm{MPa} \\ (1020 \mathrm{PSI}) \\ \hline \end{array}$	14 MPa $(2030 \mathrm{PSI})$	$\begin{array}{\|c\|} \hline 21 \mathrm{MPa} \\ (3050 \mathrm{PSI}) \\ \hline \end{array}$	Model Numbers	$\begin{array}{\|c\|} \hline 7 \mathrm{MPa} \\ (1020 \mathrm{PSI}) \\ \hline \end{array}$	14 MPa $(2030 \mathrm{PSI})$	$\begin{gathered} 21 \mathrm{MPa} \\ (3050 \mathrm{PSI}) \\ \hline \end{gathered}$	
"2"	DSHG-01-3C2	40 (10.6)	40 (10.6)	40 (10.6)	DSHG-01-2B2	40 (10.6)	40 (10.6)	40 (10.6)	
"3"	DSHG-01-3C3	40 (10.6)	40 (10.6)	40 (10.6)	DSHG-01-2B3	40 (10.6)	40 (10.6)	40 (10.6)	
	DSHG-01-3C4	40 (10.6)	40 (10.6)	40 (10.6)	DSHG-01-2B4	40 (10.6)	40 (10.6)	40 (10.6)	
"40"	DSHG-01-3C40	40 (10.6)	40 (10.6)	40 (10.6)	DSHG-01-2B40	40 (10.6)	40 (10.6)	40 (10.6)	
"5" 隹隹	DSHG-01-3C5	40 (10.6)	40 (10.6)	40 (10.6)					
	DSHG-01-3C60	40 (10.6)	40 (10.6)	40 (10.6)					
"7"	DSHG-01-3C7	40 (10.6)	40 (10.6)	40 (10.6)	DSHG-01-2B7	40 (10.6)	40 (10.6)	40 (10.6)	
"9"	DSHG-01-3C9	40 (10.6)	40 (10.6)	40 (10.6)					
"10"	DSHG-01-3C10	40 (10.6)	40 (10.6)	40 (10.6)					
"11"	DSHG-01-3C11	40 (10.6)	40 (10.6)	40 (10.6)					
"12"	DSHG-01-3C12	40 (10.6)	40 (10.6)	40 (10.6)					

Notes) 1. Max. flow shows value at pilot pressure more than 1 MPa (150 PSI)
2. Max. flow in the table above represents the value in the flow condition of $\mathrm{P} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{T}$ (or $\mathrm{P} \rightarrow \mathrm{B}$ $\rightarrow \mathrm{A} \rightarrow \mathrm{T}$) as shown in the circuit diagram right.
In case the valve is used in the condition thateither A or B port is blocked, the maximum flow differs according to a hy draulic circuit, therefore, please consult us for details.

Solenoid Controlled Pilot Operated Directional Valves DSHG－03

List of Standard Models and Maximum How
－Three Positions

Spool Type	Spring Centred			
	Graphic Sy mbol	Maximum Flow L／min（U．S．GPM）		
	Model Numbers	$\begin{gathered} 7 \mathrm{MPa} \\ (1020 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 14 \mathrm{MPa} \\ (2030 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \end{gathered}$
＂2＂	DSHG－03－3C2	160 （42．3）	85 （22．5）	60 （15．9）
			160 （42．3）	$95 \quad(25.1)$
＂3＂	DSHG－03－3C3	160 （42．3）	160 （42．3）	160 （42．3）
＂4＂仙安区	DSHG－03－3C4	160 （42．3）	85 （22．5）	60 （15．9）
			160 （42．3）	$95 \quad(25.1)$
	DSHG－03－3C40	160 （42．3）	85 （22．5）	60 （15．9）
			160 （42．3）	$95 \quad(25.1)$
	DSHG－03－3C5	160 （42．3）	85 （22．5）	$60 \quad(15.9)$
			160 （42．3）	95 （25．1）
	DSHG－03－3C60	160 （42．3）	160 （42．3）	125 （33．0）
				160 （42．3）
＂7＂An	DSHG－03－3C7	160 （42．3）	85 （22．5）	60 （15．9）
			160 （42．3）	95 （25．1）
＂9＂What	DSHG－03－3C9	160 （42．3）	85 （22．5）	60 （15．9）
			160 （42．3）	95 （25．1）
	DSHG－03－3C10	160 （42．3）	85 （22．5）	$60 \quad(15.9)$
			160 （42．3）	$95 \quad(25.1)$
	DSHG－03－3C11	160 （42．3）	85 （22．5）	60 （15．9）
			160 （42．3）	$95 \quad(25.1)$
"12" 际据	DSHG－03－3C12	160 （42．3）	85 （22．5）	60 （15．9）
			160 （42．3）	95 （25．1）

－Two Positions

Spool Type	No－Spring				Spring Offset			
	Graphic Sy mbol	Maximum Flow L／min（U．S．GPM）			Graphic Sy mbol	Maximum Flow L／min（U．S．GPM）		
	Model Numbers	$\begin{gathered} 7 \mathrm{MPa} \\ (1020 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 14 \mathrm{MPa} \\ (2030 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \end{gathered}$	Model Numbers	$\begin{gathered} 7 \mathrm{MPa} \\ (1020 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 14 \mathrm{MPa} \\ (2030 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \end{gathered}$
	DSHG－03－2N2	160 （42．3）	160 （42．3）	$\begin{array}{\|c\|} \hline 85 \quad(22.5) \\ \hline 160(42.3) \\ \hline \end{array}$	DSHG－03－2B2	160 （42．3）	160 （42．3）	$\frac{85(22.5)}{160(42.3)}$
＂3＂	DSHG－03－2N3	160 （42．3）	160 （42．3）	$\begin{array}{\|cc\|} \hline 85 \quad(22.5) \\ \hline 160(42.3) \\ \hline \end{array}$	DSHG－03－2B3	160 （42．3）	160 （42．3）	$\begin{aligned} & 85(22.5) \\ & \hline 160(42.3) \\ & \hline \end{aligned}$
＂4＂代係	DSHG－03－2N4	160 （42．3）	160 （42．3）	$\begin{array}{\|c\|} \hline 85 \quad(22.5) \\ \hline 160(42.3) \\ \hline \end{array}$	DSHG－03－2B4	160 （42．3）	160 （42．3）	$\begin{gathered} 85(22.5) \\ \hline 160(42.3) \end{gathered}$
＂40＂Whitx	DSHG－03－2N40	160 （42．3）	160 （42．3）	$\begin{array}{\|c\|} \hline 85 \quad(22.5) \\ \hline 160(42.3) \end{array}$	DSHG－03－2B40	160 （42．3）	160 （42．3）	$\begin{aligned} & \hline 85(22.5) \\ & \hline 160(42.3) \end{aligned}$
＂7＂田兓区	DSHG－03－2N7	160 （42．3）	160 （42．3）	$\begin{array}{\|c\|} \hline 85 \quad(22.5) \\ \hline 160(42.3) \\ \hline \end{array}$	DSHG－03－2B7	160 （42．3）	160 （42．3）	$\begin{aligned} & \hline 85(22.5) \\ & \hline 160(42.3) \\ & \hline \end{aligned}$

Notes：1．The relation between max．flow and pilot pressure in the table above is as shown below．
（Example）

2．Max．flow in the table above represents the value in the flow condition of $\mathrm{P} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{T}$（or $\mathrm{P} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{T}$ ）as shown in the circuit diagram right．
In case the valve is used in the condition that either A or B port is blocked，the maxim um flow differs according to a hy draulic circuit，therefore，please consult us for details．

－Three Positions

Spool Type	Spring Centred				
	Graphic Sy mbol	Maximum Flow L／min（U．S．GPM）			
	Model Numbers	$\begin{gathered} 10 \mathrm{MPa} \\ (1450 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 16 \mathrm{MPa} \\ (2320 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \end{gathered}$	$\begin{aligned} & 31.5 \mathrm{MPa} \\ & (4570 \mathrm{PSI}) \end{aligned}$
	DSHG－04－3C2	300 （79．3）	300 （79．3）	200 （52．8）	$\frac{145(38.3)}{110(29.1)}$
	（S－）DSHG－04－3C2	300 （79．3）	250 （66．1）	120 （31．7）	110 （29．1）
＂3＂ 41 \＃\＃	DSHG－04－3C3	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）
"4"	DSHG－04－3C4	300 （79．3）	300 （79．3）	250 （66．1）	165 （43．6）
	（S－）DSHG－04－3C4	300 （79．3）	300 （79．3）	140 （37．0）	110 （29．1）
"40" 酤	DSHG－04－3C40	300 （79．3）	300 （79．3）	200 （52．8）	$145(38.3)$
	（S－）DSHG－04－3C40	300 （79．3）	250 （66．1）	120 （31．7）	110 （29．1）
＂5＂年南又	DSHG－04－3C5	250 （66．1）	250 （66．1）	245 （64．7）	245 （64．7）
	DSHG－04－3C6	300 （79．3）	260 （68．7）	245 （64．7）	235 （62．1）
	$\begin{array}{\|r\|} \hline \text { DSHG-04-3C60 } \\ \hline \text { (S-)DSH-04-3C60 } \\ \hline \end{array}$	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）
	DSHG－04－3C7	300 （79．3）	300 （79．3）	200 （52．8）	145 （38．3）
＂9＂－年	DSHG－04－3C9	300 （79．3）	300 （79．3）	280 （74．0）	250 （66．1）
$\text { " } 10 \text { " }$	DSHG－04－3C10	300 （79．3）	300 （79．3）	200 （52．8）	150 （39．6）
	（S－）DSHG－04－3C10	300 （79．3）	250 （66．1）	120 （31．7）	110 （29．1）
＂11＂仙年込	DSHG－04－3C11	300 （79．3）	260 （68．7）	160 （42．3）	140 （37．0）
	DSHG－04－3C12	300 （79．3）	280 （74．0）	170 （44．9）	135 （35．7）
	（S－）DSHG－04－3C12	300 （79．3）	250 （66．1）	120 （31．7）	110 （29．1）

－Two Positions

Spool Type	No－Spring					Spring Offset					
	Graphic Sy mbol	Maximum Flow L／min（U．S．GPM）				Graphic Sy mbol $\stackrel{N}{W_{P}^{A} \\|_{T}^{B}}\|X\|<\theta^{b}$	Maximum Flow L／min（U．S．GPM）				
	Model Numbers	$\begin{gathered} 10 \mathrm{MPa} \\ (1450 \mathrm{PSI}) \\ \hline \end{gathered}$	$\begin{gathered} 16 \mathrm{MPa} \\ (2320 \mathrm{PSI}) \\ \hline \end{gathered}$	$\begin{gathered} 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \end{gathered}$	$\begin{aligned} & 31.5 \mathrm{MPa} \\ & (4570 \mathrm{PSI}) \end{aligned}$	Model Numbers	$\begin{gathered} 10 \mathrm{MPa} \\ (1450 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 16 \mathrm{MPa} \\ (2320 \mathrm{PSI}) \\ \hline \end{gathered}$	$\begin{gathered} 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \\ \hline \end{gathered}$	$\begin{aligned} & 31.5 \mathrm{MPa} \\ & (4570 \mathrm{PSI}) \end{aligned}$	
＂2＂	（S－）DSHG－04－2N2	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）	（S－）DSHG－04－2B2	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）	
＂3＂	DSHG－04－2N3	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）	DSHG－04－2B3	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）	
＂4＂回直匈	（S－）DSHG－04－2N4	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）	（S－）DSHG－04－2B4	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）	
＂40＂	（S－）DSHG－04－2N40	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）	（S－）DSHG－04－2B40	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）	
＂7＂田同如	DSHG－04－2N7	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）	DSHG－04－2B7	300 （79．3）	300 （79．3）	300 （79．3）	300 （79．3）	

Notes：1．Max flow described above shown value at pilot pressure more than $0.8 \mathrm{MPa}(120 \mathrm{PSI})$ ．
2．Max．flow in the table above represents the value in the flow condition of $\mathrm{P} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{T}$（ or $\mathrm{P} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{T}$ ）as shown in the circuit diagram right．
In case the valve is used in the condition thateither A or B port is blocked，the maximum flow differs according to a hy draulic circuit，therefore，please consult us for details．

Solenoid Controlled Pilot Operated Directional Valves DSHG－06／S－DSHG－06

List of Standard Models and Maximum How

－Three Positions

Spool Type	Spring Centred					Pressure Centred					
	Graphic Sy mbol	Maximum Flow L／min（U．S．GPM）				Graphic Sy mbol	Maximum Flow L／min（U．S．GPM）				
	Model Numbers	$\begin{array}{\|c\|} \hline 10 \mathrm{MPa} \\ (1450 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 16 \mathrm{MPa} \\ (2320 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \mathrm{MPa} \\ \text { (3630 PSI) } \\ \hline \end{array}$	$\begin{aligned} & 31.5 \mathrm{MPa} \\ & \text { (4570 PSI) } \\ & \hline \end{aligned}$	Model Numbers	$\begin{array}{\|c\|} \hline 10 \mathrm{MPa} \\ (1450 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 16 \mathrm{MPa} \\ (2320 \mathrm{PSI}) \end{array}$	$\begin{array}{\|c\|} \hline 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{aligned} & 31.5 \mathrm{MPa} \\ & \text { (4570 PSI) } \\ & \hline \end{aligned}$	
	（S－）DSHG－06－3C2	500 （132）	500 （132）	$\begin{array}{\|l\|} \hline 410(108) \\ \hline 500(132) \\ \hline \end{array}$	310（81．9）	（S－）DSHG－06－3H2	500 （132）	500 （132）	500 （132）	$\begin{array}{\|l\|} \hline 420(111) \\ \hline 500(132) \\ \hline \end{array}$	
＂3＂ $4 \\|$	DSHG－06－3C3	500 （132）	500 （132）	460 （122）	370 （97．8）	DSHG－06－3H3	500 （132）	500 （132）	500 （132）	500 （132）	
＂4＂	（S－）DSHG－06－3C4	500 （132）	500 （132）	410 （108）	310 （81．9）	（S－）DSHG－06－3H4	500 （132）	500 （132）	500 （132）	420 （111）	
	（S－）DSHG－06－3C40	500 （132）	500 （132）	410 （108）	310 （81．9）	（S－）DSHG－06－3H40	500 （132）	500 （132）	500 （132）	420 （111）	
				500 （132）	500 （132）					500 （132）	
＂5＂	DSHG－06－3C5	500 （132）	500 （132）	425 （112）	350 （92．5）	DSHG－06－3H5	500 （132）	500 （132）	500 （132）	470 （124）	
										500 （132）	
	DSHG－06－3C6	475 （125）	390 （103）	300 （79．3）	230 （60．8）	DSHG－06－3H6	500 （132）	500 （132）	500 （132）	420 （111）	
										500 （132）	
＂60＂区H1南回可	（S－）DSHG－06－3C60	475 （125）	420 （111）	340 （89．8）	280 （74．0）	（S－）DSHG－06－3H60	500 （132）	500 （132）	500 （132）	420 （111）	
										500 （132）	
＂饰X	DSHG－06－3C7	500 （132）	500 （132）	450 （119）	360 （95．1）	DSHG－06－3H7	500 （132）	500 （132）	500 （132）	500 （132）	
＂9＂ 4 为可	DSHG－06－3C9	500 （132）	500 （132）	450 （119）	360 （95．1）	DSHG－06－3H9	500 （132）	500 （132）	500 （132）	500 （132）	
				500 （132）	500 （132）						
＂10＂$\square^{+1 / X}$	（S－）DSHG－06－3C10	500 （132）	500 （132）	410 （108）	310 （81．9）	（S－）DSHG－06－3H10	500 （132）	500 （132）	500 （132）	460 （122）	
				500 （132）	500 （132）					500 （132）	
"11"	DSHG－06－3C11	500 （132）	500 （132）	410 （108）	310 （81．9）	DSHG－06－3H11	500 （132）	500 （132）	500 （132）	460 （122）	
				500 （132）	500 （132）					500 （132）	
＂12＂	（S－）DSHG－06－3C12	500 （132）	500 （132）	410 （108）	310 （81．9）	（S－）DSHG－06－3H12	500 （132）	500 （132）	500 （132）	460 （122）	
				500 （132）	500 （132）					500 （132）	

－Two Positions

Spool Type	No－Spring					Spring Offset				
	Graphic Sy mbol品	Maximum Flow L／min（U．S．GPM）					Maximum Flow L／m in（U．S．GPM）			
	Model Numbers	$\begin{gathered} 10 \mathrm{MPa} \\ (1450 \mathrm{PSI}) \end{gathered}$	$\begin{aligned} & 16 \mathrm{MPa} \\ & (2320 \mathrm{PSI}) \end{aligned}$	$\begin{array}{\|c\|} \hline 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{aligned} & 31.5 \mathrm{MPa} \\ & (4570 \mathrm{PSI}) \end{aligned}$	Model Numbers	$\begin{gathered} 10 \mathrm{MPa} \\ (1450 \mathrm{PSI}) \\ \hline \end{gathered}$	$\begin{gathered} 16 \mathrm{MPa} \\ (2320 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \\ \hline \end{gathered}$	$\begin{aligned} & 31.5 \mathrm{MPa} \\ & \text { (4570 PSI) } \\ & \hline \end{aligned}$
	（S－）DSHG－06－2N2	500 （132）	500 （132）	500 （132）	500 （132）	（S－）DSHG－06－2B2	500 （132）	500 （132）	500 （132）	500 （132）
＂3＂	DSHG－06－2N3	500 （132）	500 （132）	500 （132）	500 （132）	DSHG－06－2B3	500 （132）	500 （132）	500 （132）	500 （132）
＂4＂ய1，	（S－）DSHG－06－2N4	500 （132）	500 （132）	500 （132）	500 （132）	（S－）DSHG－06－2B4	500 （132）	500 （132）	500 （132）	500 （132）
＂40＂	（S－）DSHG－06－2N40	500 （132）	500 （132）	500 （132）	500 （132）	（S－）DSHG－06－2B40	500 （132）	500 （132）	500 （132）	500 （132）
＂7＂	DSHG－06－2N7	500 （132）	500 （132）	500 （132）	500 （132）	DSHG－06－2B7	500 （132）	500 （132）	500 （132）	500 （132）

Notes：1．The relation between max．flow and pilot pressure in the table above is as shown below．
（Example）
 Pilot Pressure more than 0.8 MPa （ 120 PSI ）．
In case pressure centred models，pilot pressure is more than

1 MPa （ 150 PSI ）．
2．Max．flow in the table above represents the value in the flow condition of $\mathrm{P} \rightarrow \mathrm{A}$ $\rightarrow \mathrm{B} \rightarrow \mathrm{T}$（or $\mathrm{P} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{T}$ ）as shown in the circuit diagram right In case the valve is used in the condition that either A or B port is blocked，the maximum flow differs according to a hy draulic circuit，therefore，please consult us for details．

Pilot Pressure at $0.8 \mathrm{MPa}(120 \mathrm{PSI})$ ． In case pressure centred models，pilot pressure is more than 1 MPa （ 150 PSI ）
Pilot Pressure at 1．5 MPa（220 PSI）．

List of Standard Models and Maximum How

－Three Positions

Spool Type	Spring Centred					Pressure Centred					
	Graphic Sy mbol	Maximum Flow L／min（U．S．GPM）				Graphic Sy mbol	Maximum Flow L／min（U．S．GPM）				
	Model Numbers	$\begin{array}{\|c\|} \hline 10 \mathrm{MPa} \\ (1450 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 16 \mathrm{MPa} \\ (2320 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \mathrm{MPa} \\ \text { (3630 PSI) } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31.5 \mathrm{MPa} \\ (4570 \mathrm{PSI}) \end{array}$	Model Numbers	$\begin{array}{\|c\|} \hline 10 \mathrm{MPa} \\ (1450 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 16 \mathrm{MPa} \\ (2320 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 25 \mathrm{MPa} \\ \text { (3630 PSI) } \\ \hline \end{array}$	$\begin{aligned} & 31.5 \mathrm{MPa} \\ & (4570 \mathrm{PSI}) \end{aligned}$	
	（S－）DSHG－10－3C2	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 950(251) \\ \hline 1100(291) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 750(198) \\ \hline 1100(291) \\ \hline \end{array}$	（S－）DSHG－10－3H2	1100 （291）	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 970(256) \\ \hline 1100(291) \\ \hline \end{array}$	
＂3＂耑虫X	DSHG－10－3C3	1100 （291）	1100 （291）	1060 （280）	895 （236）	DSHG－10－3H3	1100 （291）	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 1050(277) \\ \hline 1100(291) \\ \hline \end{array}$	
＂4＂	（S－）DSHG－10－3C4	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 950(251) \\ \hline 1100(291) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 750(198) \\ \hline 1100(291) \\ \hline \end{array}$	（S－）DSHG－10－3H4	1100 （291）	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 970(256) \\ \hline 1100(291) \\ \hline \end{array}$	
＂40＂哖年可	（S－）DSHG－10－3C40	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 950(251) \\ \hline 1100(291) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 750(198) \\ \hline 1100(291) \\ \hline \end{array}$	（S－）DSHG－10－3H40	1100 （291）	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 970(256) \\ \hline 1100(291) \\ \hline \end{array}$	
	DSHG－10－3C5	1100 （291）	1100 （291）	980 （259）	850 （225）	DSHG－10－3H5	1100 （291）	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 1000(264) \\ \hline 1100(291) \\ \hline \end{array}$	
	DSHG－10－3C6	1050 （277）	880 （232）	700 （185）	570 （151）	DSHG－10－3H6	1100 （291）	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 970(256) \\ \hline 1100(291) \\ \hline \end{array}$	
	（S－）DSHG－10－3C60	1050 （277）	940 （248）	785 （207）	680 （180）	（S－）DSHG－10－3H60	1100 （291）	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 970(256) \\ \hline 1100(291) \\ \hline \end{array}$	
"7"	DSHG－10－3C7	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 1040(275) \\ \hline 1100(291) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 870(230) \\ \hline 1100(291) \\ \hline \end{array}$	DSHG－10－3H7	1100 （291）	1100 （291）	1100 （291）	1100 （291）	
＂9＂	DSHG－10－3C9	1100 （291）	1100 （291）	1040 （275）	870 （230）	DSHG－10－3H9	1100 （291）	1100 （291）	1100 （291）	1100 （291）	
＂10＂${ }_{\text {H }}^{\text {H }}$	（S－）DSHG－10－3C10	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 950(251) \\ \hline 1100(291) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 750(198) \\ \hline 1100(291) \\ \hline \end{array}$	（S－）DSHG－10－3H10	1100 （291）	1100 （291）	1100 （291）	$\begin{aligned} & 1060(280) \\ & \hline 1100(291) \\ & \hline \end{aligned}$	
"11" 山!\|		DSHG－10－3C11	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 950(251) \\ \hline 1100(291) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 750(198) \\ \hline 1100(291) \\ \hline \end{array}$	DSHG－10－3H11	1100 （291）	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 1060(280) \\ \hline 1100(291) \\ \hline \end{array}$
"12"	（S－）DSHG－10－3C12	1100 （291）	1100 （291）	$\begin{array}{\|l\|} \hline 950(251) \\ \hline 1100(291) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 750(198) \\ \hline 1100(291) \\ \hline \end{array}$	（S－）DSHG－10－3H12	1100 （291）	1100 （291）	1100 （291）	$\frac{1060(280)}{1100(291)}$	

－Two Positions

Spool Type	No－Spring					Spring Offset				
	Graphic Sy mbol	Maximum Flow L／min（U．S．GPM）					Maximum Flow L／min（U．S．GPM）			
	Model Numbers	$\begin{array}{\|c\|} \hline 10 \mathrm{MPa} \\ (1450 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{gathered} 16 \mathrm{MPa} \\ (2320 \mathrm{PSI}) \end{gathered}$	$\begin{array}{\|c\|} \hline 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{aligned} & 31.5 \mathrm{MPa} \\ & (4570 \mathrm{PSI}) \end{aligned}$	Model Numbers	10 MPa $(1450 \mathrm{PSI})$	16 MPa $(2320 \mathrm{PSI})$	$\begin{array}{\|c\|} \hline 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \\ \hline \end{array}$	$\begin{aligned} & 31.5 \mathrm{MPa} \\ & (4570 \mathrm{PSI}) \end{aligned}$
＂2＂	（S－）DSHG－10－2N2	1100 （291）	1100 （291）	1100 （291）	1100 （291）	（S－）DSHG－10－2B2	1100 （291）	1100 （291）	1100 （291）	1100 （291）
＂3＂	DSHG－10－2N3	1100 （291）	1100 （291）	1100 （291）	1100 （291）	DSHG－10－2B3	1100 （291）	1100 （291）	1100 （291）	1100 （291）
＂4＂相阿区	（S－）DSHG－10－2N4	1100 （291）	1100 （291）	1100 （291）	1100 （291）	（S－）DSHG－10－2B4	1100 （291）	1100 （291）	1100 （291）	1100 （291）
＂40＂	（S－）DSHG－10－2N40	1100 （291）	1100 （291）	1100 （291）	1100 （291）	（S－）DSHG－10－2B40	1100 （291）	1100 （291）	1100 （291）	1100 （291）
	DSHG－10－2N7	1100 （291）	1100 （291）	1100 （291）	1100 （291）	DSHG－10－2B7	1100 （291）	1100 （291）	1100 （291）	1100 （291）

Notes ）1．The relation between max．flow and pilot pressure in the table above is as shown below．
（Example）Pilot Pressure at 1 MPa （150 PSI）．

2．Max．flow in the table above represents the value in the flow condition of $\mathrm{P} \rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{T}$（or $\mathrm{P} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{T}$ ）as shown in the circuit diagram right．
In case the valve is used in the condition that either A or B port is blocked，the maxim um flow differs according to a hy draulic circuit， therefore，please consult us for details．

YIREN

Solenoid Controlled Pilot Operated Directional Valves DSHG－01／ 03 ／ 04 ／ 06 ／ 10 S－DSHG－04／ 06 ／ 10

Reverse Mitg．of Sol．／Special 2－Position Valve

Reverse Mounting of Solenoid．

In spring offset type，it is a standard configuration that the solenoid is mounted onto the valve in the SOL b position（side）．However，in this particular spool－spring arrangement，the mounting of the solenoid onto the valve in the reverse position－SOL a side－is also available．The graphic symbol for this reverse mounting is as shown below． As for the valve type $2 \mathrm{~B} * \mathrm{~A}$ and $2 \mathrm{~B} * \mathrm{~B}$ ，please refer to the explanation under the heading of＂Valves Using Neutral Position and Side Position＂given below．

Standard Mtg．of Solenoid

Reverse Mtg．of Solenoid（＂L＂）

－Valves Using Neutral Position and Side Position．（Special Two position Valve）

Besides the use of the standard 2－position valves aforementioned in the＂List of Standard Models and Maximum Flow＂， the 3－position valves also can be used as the 2－position valves using the two of their three positions．In this case，there are two kinds of the valve available．One is the valve using the neutral position and SOL a position（ $2 \mathrm{~B} * \mathrm{~A}$ ）and another is the valve using the neutral position and SOL b position（ $2 \mathrm{~B} * \mathrm{~B}$ ）．

Model Numbers	Graphic Sy mbols		Model Numbers	Graphic Sy mbols	
	Standard Mtg．	Reverse Mtg．Ty pe		Standard Mtg．	Reverse Mtg．Ty pe
$\begin{gathered} 04 \\ \text { DSHG-06-2B } * \underline{A} \\ 10 \end{gathered}$		$\stackrel{R}{2}=\square_{P}^{A \cdot H_{i}^{B}}$	$\begin{gathered} 04 \\ \text { DSHG-06-2B } * \underline{B} \\ 10 \end{gathered}$	A,	
（S－）DSHG－＊－2B2A	WEH	F	（S－）DSHG－＊－2B2B	世㿾又	Wry
DSHG－＊－2B3A	Whd	HX	DSHG－＊－2B3B	HIX	0110
（S－）DSHG－＊－2B4A	｜14	48	（S－）DSHG－＊－2B4B	$\square \mid X$	
（S－）DSHG－＊－2B40A	4 B	屁	（S－）DSHG－＊－2B40B	$\xrightarrow[4]{x}$	W¢
DSHG－＊－2B5A	｜nd	6边	DSHG－＊－2B5B	吅	11fr
DSHG－＊－2B6A	XIM	[10	DSHG－＊－2B6B	［1］	X回
（S－）DSHG－＊－2B60A	XIr	品开	（S－）DSHG－＊－2B60B	茴㕲	X号
DSHG－＊－2B7A	网	國又	DSHG－＊－2B7B	BX	
DSHG－＊－2B9A	｜1／did	\square	DSHG－＊－2B9B	\square	U1］
（S－）DSHG－＊－2B10A	［1F）		（S－）DSHG－＊－2B10B	$\pm \boxed{\square}$	U1FT
DSHG－＊－2B11A	凹1］		DSHG－＊－2B11B	［18	W！dr
（S－）DSHG－＊－2B12A	｜1，${ }^{\text {d }}$	648	（S－）DSHG－＊－2B12B	$\square \pm$	$\square \mathrm{TH}^{-1}$

Model Numbers	Graphic Sy mbols
	Standard Mtg．
$\begin{gathered} 04 \\ \text { DSHG-06-2N } * \underline{A} \\ 10 \end{gathered}$	
（S－）DSHG－＊－2N2A	W1Frr
DSHG－$*-2 \mathrm{~N} 3 \mathrm{~A}$	
（S－）DSHG－＊－2N4A	W！
$\begin{aligned} & \text { (S-) } \begin{array}{l} \text { DSHG- } *- \\ 2 \mathrm{~N} 40 \mathrm{~A} \end{array} \\ & \hline \end{aligned}$	TPP限
DSHG－$*-2 \mathrm{~N} 5 \mathrm{~A}$	W1nt
DSHG－$*$－2N6A	X回
$\begin{aligned} & \hline(\mathrm{S}-) \\ & \begin{array}{l} \text { DSHG- } *- \\ \text { 2N60A } \end{array} \\ & \hline \end{aligned}$	X四
DSHG－＊－2N7A	W｜n
DSHG－＊－2N9A	W1dr
$\left(\mathrm{S}-\mathrm{l}_{\mathrm{DSHG}-*-} \begin{array}{l} \mathrm{N} 10 \mathrm{~A} \end{array}\right.$	W㕩
$\begin{aligned} & \hline \text { DSHG- } *- \\ & \text { 2N11A } \end{aligned}$	DTIJ
$\begin{aligned} & \text { (S-) } \begin{array}{l} \text { DSHG- } *- \\ 2 \mathrm{~N} 12 \mathrm{~A} \end{array} \\ & \hline \end{aligned}$	W1TH

Solenoid Controlled Pilot Operated Directional Valves DSHG-04/06/10

Changeover time varies according to oil viscosity, spool type and hydraulic circuit.

- Test Conditions

Coil Type : D*(Models with DC solenoids)
Voltage : Rated Voltage
Oil Viscosity : $35 \mathrm{~mm}^{2} / \mathrm{s}(164 \mathrm{SSU})$

- DSHG-04

- DSHG-06

- DSHG-10

Plug-in Connector Type: DSHG-01-***-*-N1 ${ }^{\mathrm{N}}-13 / 1380 / 1390$

- Internal Pilot-Internal Drain

- External Pilot-External Drain
- External Pilot-Internal Drain
- Internal Pilot-External Drain

Model Numbers	
DSHG-01- $* * *-*-N *-13$	$\operatorname{Rc~Thd.~} 1 / 4$
DSHG-01- $* * *-*-N *-$	$1 / 4$ BSP.F
1380	$1 / 4$ NPT

Model Numbers	Dimensions mm (Inches)							
	C	D	E	F	H	J	K	L
DSHG-01-***-*-A $*-\mathrm{N} /$	130 (5.12)	53 (2.09)	27.5 (1.08)	39 (1.54)	74.2 (2.92)	191.4 (7.54)	158.2 (6.23)	170 (6.69)
N1	141 (5.55)	64 (2.52)	27.5 (1.08)	39 (1.54)	83.5 (3.29)	210 (8.27)	167.5 (6.59)	181 (7.13)
DSHG-01-***-*-D*-N/	144 (5.67)	57.2 (2.25)	34 (1.34)	53 (2.09)				184 (7.24)

[^9]

Solenoid Controlled Pilot Operated Directional Valves DSHG-06 / S-DSHG-06

DIRECTIONAL CONTROLS
Installation Drawing
Terminal Box Type: (S-)DSHG-06-***-*-52/5290

Mounting surface: ISO 4401-AE-08-4-

Model Numbers	Dimensions mm (Inches)						
	C	D	E	F	H	J	K
(S-)DSHG-06-***-A *-N/N 1	39 (1.54)	53 (2.09)	202 (7.95)	27.5 (1.08)	191.4 (7.54)	47.2 (1.86)	42.7 (1.68)
(S-)DSHG-06-***-D*-N/N 1	39 (1.54)	64 (2.52)	213 (8.39)	27.5 (1.08)	210 (8.27)	56.5 (2.22)	52 (2.05)
(S-)DSHG-06-***-R*-N	53 (2.09)	57.2 (2.25)	216 (8.50)	34 (1.34)			

- For other dimensions, refer to "Terminal Box Ty pe".

Sub-plate for Solenoid Controlled Pilot Operated Directional Valves

DIRECTIONAL CONTROLS

Installation Drawing

Sub-plate Model Numbers	"C" Thd.	Dimensions mm (Inches)							
		D	E	F	H	J	K	L	N
DHGM-06-5080	3/4 BSP.F	151.2 (5.95)	137.7 (5.42)	102 (4.02)	54.4 (2.14)	30.6 (1.20)	125.8 (4.95)	78.2 (3.08)	42.5 (1.67)
DHGM-06X-5080	1 BSP.F	155.2 (6.11)	148 (5.83)	106 (4.17)	50 (1.97)	25 (.98)	130 (5.12)	74 (2.91)	32 (1.26)

For other dimensions, refer to "DHGM-06*-50/5090" above.

* For Uses of Port "X", "Y", "V", "W", refer to DHGM-10* on the following page.

Sub-plate for Solenoid Controlled Pilot Operated Directional Valves

DHGM ${ }_{10}^{10} \mathrm{X}^{-40 / 4080 / 4090}$

Note: Uses of port "X", "Y", "V", and "W"

Valve Types			Pilot Pres. Port "X"	Port "Y"	Drain Port "V'	Drain Port "W'
Solenoid Controlled Pilot Operated Directional Valves	Spring Centred, No-spring, Spring Offset		Used only on external pilot ty pe valves. To be plugged on internal pilot ty pe valves.	Used as drain port only on external drain ty pe valves. To be plugged on ${ }^{*}$ internal drain ty pe valves.	Not used (plug is not required)	
	Pressure Centred				Used	Not used
	W ith Pilot Piston, Both Ends				Used	Used
	With Pilot Piston, Port "A" End				Used	Not used (plug is required)
	With Pilot Piston, Port "B" End				Not used (plug is required)	Used
Pilot Operated Directional Valves	Spring Centred, No-spring		Used	Used as pilot pres. port	Not used (plug is not required)	
	Spring Offset			Used as pilot drain port		
	Pressure Centred			Used as pilot pres. port	Used	Not used
	W ith Pilot Piston, Both Ends				Used	Used
	With Pilot Piston, Port "B" End				Not used (pllug is required)	Used
	With Pilot Piston Port "A" End	Spring Centred No-spring		Used as pilot pres. port	Used	Not used (plug is required)
		Spring Offset		Used as pilot drain port		
Manually Operated Directional Valves			Not used (plug is not required)	Not used (plug is not required)	Used	Not used (plug is not required)

\star As the thread is provided on the body, plug either port on the sub-plate or port on the body.
\triangle CAUTION
When making replacement ofseals or pilot valves, please do it carefully after reading through the relevant instructions in the Operator's Manual.

Note: Piece parts marked \star are not available
for internal pilot-internal drain ty pe

DSHG-03- $* * *-*-13 / 1390$

- List of Seals

Item	Name	DSHG-01		DSHG-03	
		Part Numbers	Qty.	Part Numbers	Qty.
7	O-Ring	JASO-1018-1A	2	SO-NB-P28	2
8	O-Ring	SO-NB-P9	$8(4)^{\star}$	SO-NB-A104	5
9	O-Ring	-	-	SO-NB-P9	2
10	O-Ring	SO-NB-P5	2	SO-NB-P9	6

* Quantities in the () are applicable to internal pilot-internal drain.

Note: When ordering the o-rings, please specify the seal kit number listed in page 31 . In addition to the above o-rings, o-rings for pilot valve is included in the seal kit.
For the detail of the pilot valve o-rings, see the catalogue No. Pub. EC-0402.

- Pilot Valves

See page 31 for the pilot valve model numbers to be used.

Solenoid Controlled Pilot Operated Directional Valves DSHG-04,06,10 / S-DSHG-04,06,10

DIRECTIONAL CONTROLS
(S-)DSHG-04-***-*-51/5190

(S-)DSHG-06-***-*-52/5290
(S-)DSHG-10-***-*-42/4290

When making replacement ofseals or pilot valves,
please do it carefully after reading through the
relevant instructions in the Operator's Manual.

Section $Y-Y$

Pipe Plug
Removed for Internal Pilot Models

Section X-X

Pipe Plug Removed for Intemal Pilot Models

Section $Y-Y$

Pipe Plug
Removed for Internal Drain Models

Removed for External Drain Models

Note: Item (2) orifice marked A is applicable to pressure centred models $(3 \mathrm{H} *)$ with pilot pressure more than $10 \mathrm{MPa}(1450 \mathrm{PSI})$.

- List of Seals

Item	Name	Part Numbers			Qty.
		(S-)DSHG-04	(S-)DSHG-06	(S-)DSHG-10	
8	O-Ring	SO-NB-P9	SO-NB-P14	SO-NB-P20	2
9		SO-NB-P22	SO-NB-P30	SO-NB-P42	4
10		SO-NB-P34	SO-NB-P40	SO-NB-P65	2
18		SO-NB-P9	SO-NB-P10	SO-NB-P14	2

Note: When ordering the o-rings, please specify the sealkit num ber listed in page 31. In addition to the above o-rings, o-rings for pilot valve is included in the seal kit.
For the detail of the pilot valve o-rings, see the catalogue No.Pub.EC-0402.

- Pilot Valves

See page 31 for the pilot valve model numbers to be used.

Valve Model Numbers	Pilot Valve Model Numbers	Seal Kit Numbers
DSHG－01－3C＊－大－A－13 DSHG－01－3C＊－$*-N-1380$ DSHG－01－3C＊－太－A－1390	$\begin{aligned} & \text { DSG-01-3C4-ネ-A-60 } \\ & \text { DSG-01-3C4-ネ-N-60 } \\ & \text { DSG-01-3C4-ネ- }-6090 \end{aligned}$	KS－DSHG－01－4－13 （For Internal Pilot－Internal Drain）
DSHG－01－2B＊－ DSHG－01－2B＊－ －-1380 DSHG－01－2B＊－ $\begin{gathered}-1 \\ -1390\end{gathered}$		KS－DSHG－01－ET－-13 （Except for Internal Pilot－Internal Drain）
$\begin{aligned} & \text { DSHG-03-3C } *-\star-A-13 \\ & \text { DSHG-03-3C } *-\star-1390 \end{aligned}$	$\begin{aligned} & \text { DSG-01-3C4-ネ-A-60 } \\ & \text { DSG-01-3C4- - }-\mathbf{-} \text { - } 6090 \end{aligned}$	
$\begin{aligned} & \text { DSHG-03-2B*- } *-13-13 \\ & \text { DSHG-03-2B } *-\star-1390 \end{aligned}$		KS－DSHG－03－4－13
	$\begin{aligned} & \text { DSG-01-2D2- }-=-60 \\ & \text { DSG-01-2D2- }-6090 \end{aligned}$	
$\begin{aligned} & \text { (S-)DSHG-04-3C } *-*-51 \\ & \text { (S-)DSHG-04-3C } *-*-5190 \end{aligned}$	$\begin{aligned} & \text { DSG-01-3C4-ネ- - - } 60 \\ & \text { DSG-01-3C4-ネ- }-6090 \end{aligned}$	
$\begin{aligned} & \text { (S-)DSHG-04-2B*-t }=-51 \\ & \text { (S-)DSHG-04-2B } *-t-5190 \end{aligned}$	$\begin{aligned} & \text { DSG-01-2B2- }-\mathrm{A}-60 \\ & \text { DSG-01-2B2- }-\mathrm{A}-6090 \end{aligned}$	KS－DSHG－04－－ 51
$\begin{aligned} & (\mathrm{S}-) \mathrm{DSHG}-04-2 \mathrm{~N} * \star \pm-51 \\ & \text { (S-)DSHG-04-2N } * \star \pm-5190 \end{aligned}$	$\begin{aligned} & \text { DSG-01-2D2- } 2-60 \\ & \text { DSG-01-2D2- }-\frac{-k}{\star}-6090 \end{aligned}$	
$\begin{aligned} & \text { (S-)DSHG-06-3C } *-t=-52 \\ & \text { (S-)DSHG-06-3C } *-t=-5290 \end{aligned}$	$\begin{aligned} & \text { DSG-01-3C4-ネ-A-60 } \\ & \text { DSG-01-3C4- }-\mathbf{A}-6090 \end{aligned}$	
$\begin{aligned} & \text { (S-)DSHG-06-2B } *-t=-52 \\ & \text { (S-)DSHG-06-2B } *-t=-5290 \end{aligned}$	$\begin{aligned} & \text { DSG-01-2B2- } \begin{array}{l} \text { D- }-60-L \\ \text { DSG-01-2B2- } \end{array} \text { - }- \text { - } 6090-L \end{aligned}$	KS－DSHG－06－－－52
$\begin{aligned} & \text { (S-)DSHG-06-2N } * * \neq-52 \\ & \text { (S-)DSHG-06-2N } * * \pm-5290 \end{aligned}$	$\begin{aligned} & \text { DSG-01-2D2- } 2-4-60 \\ & \text { DSG-01-2D2- }-=-6090 \end{aligned}$	
$\begin{aligned} & \text { (S-)DSHG-10-3C } *-t=-42 \\ & \text { (S-)DSHG-10-3C } *-t=-4290 \end{aligned}$	$\begin{aligned} & \text { DSG-01-3C4- }-\triangle-60 \\ & \text { DSG-01-3C4- }-\mathbf{A}-6090 \end{aligned}$	
$\begin{aligned} & \text { (S-)DSHG-10-2B*-A }-42 \\ & \text { (S-)DSHG-10-2B*-t }-4290 \end{aligned}$	$\begin{aligned} & \text { DSG-01-2B2-太-A-60-L } \\ & \text { DSG-01-2B2- }- \text { - }-6090-L \end{aligned}$	KS－DSHG－10－4－42
（S－）DSHG－10－2N＊＊-42 （S－）DSHG－10－2N $* *$－-4290	$\begin{aligned} & \text { DSG-01-2D2- }-\frac{-60}{} \\ & \text { DSG-01-2D2- }-6090 \end{aligned}$	

Notes）1：Fill coilty pe（a sy mbol representing current／voltage）in section m arkect ．Like wise，in section m arked $\mathbf{\Delta}$ ，filla sy m bol representing the ty pe of electrical conduit connection（None：Terminal Box Ty pe，N：Plug－in Connector Ty pe）．
2：For the details of the pilot valves，see the catalogue No．Pub．EC－0402．

Solenoid Controlled Pilot Operated Directional Valves DSHG-01 / 03

Interchangeability between Curent and New Design

- DSHG-01, 03

In accordance with the improvement of the pilot valve (DSG-01), DSHG-01 and -03 have been model-changed (from 12-design to 13 -design).

Model No.	Current DSHG-01- $* * *-*-12 *$ DSHG-01- $* * *-*-12 *$	DSHG-01-***-*-13* Descriptions
Specifications	No changes	
Interchangeability in Mtg.	Yes	
Pilot Valve	DSG-01- $* * *-*-50 *$ For details, refer to the Catalogue No. Pub. EC-0402	

Current
New

DSHG-01

Model No.		A	B	C	H
DSHG-01-T	AC	191.4 (7.54)	50.7 (2.00)	$\begin{gathered} 130.3 \\ (5.13) \end{gathered}$	76.7 (3.02)
	DC	$\begin{gathered} 210 \\ (8.27) \end{gathered}$	$\begin{gathered} 60 \\ (2.36) \end{gathered}$		86
	R				(3.39)
$\begin{gathered} \mathrm{E} \\ \text { DSHG-01-ET } \\ \text { None } \end{gathered}$	AC	191.4 (7.54)	50.7 (2.00)	$\begin{gathered} 170.3 \\ (6.70) \end{gathered}$	76.7 (3.02)
	DC	$\begin{gathered} 210 \\ (8.27) \end{gathered}$	$\begin{gathered} 60 \\ (2.36) \end{gathered}$		86
	R				(3.39)

- DSHG-03

Model No.		A	B	H
DSHG-03	AC	$191.4(7.54)$	$50.7(2.00)$	$67.7(2.67)$
	DC	210	60	77
	R	(8.27)	(2.36)	(3.03)

Solenoid Controlled Pilot Operated Directional Valves
(S)-DSHG-04 / 06 / 10
Interchangeability between Current and New

- (S-)DSHG-04
(S-) DSHG-04 has been model changed in accordance with the improvement of the pilot valve (DSG-01).
For details, see the following.

(S-)DSHG-06,10
(S-) DSHG-06 and -10 have been model changed in accordance with the improvement of the pilot valve (DSG-01).
For details, see below.

Model No.	Current (S-)DSHG-06-***- $*$	New Descriptions	N-)DSHG-06-***-*-52 $*$
Specifications	No changes		
Interchangeability in Mtg.	Yes		
Pilot Valve	DSG-01- $* * *-*-50 *$ For details, refer to the Catalogue No. Pub. EC-0402	DSG-01- $* * * *-60 *$	

Model No.	C	\mathbf{H}
(S-)DSHG-06	$202.3(7.96)$	$51.3(2.02)$
(S-)DSHG-10	$265.3(10.44)$	$28.5(1.12)$

Model No.		A	B	C	H
(S-)DSHG-06	AC	191.4 (7.54)	50.7 (2.00)	$\begin{gathered} 202.3 \\ (7.96) \end{gathered}$	42.7 (1.68)
	DC	$\begin{gathered} 210 \\ (8.27) \end{gathered}$	$\begin{gathered} 60 \\ (2.36) \end{gathered}$		
	R				52 (2.05)
(S-)DSHG-10	AC	191.4 (7.54)	50.7 (2.00)	$\begin{gathered} 265.3 \\ (10.44) \end{gathered}$	19.7 (.78)
	DC	$\begin{gathered} 210 \\ (8.27) \end{gathered}$	$\begin{gathered} 60 \\ (2.36) \end{gathered}$		29
	R				(1.14)

Specifications

Model Numbers	Maximum Flow L/min (U.S.GPM)				Max.Operating Pressure MPa (PSI)	Max. Pilot Pressure MPa (PSI)	Min. Required Pilot Pressure MPa (PSI)	Max. T-Line Back Pressure MPa (PSI)	
	10 MPa $(1450 \mathrm{PSI})$	16 MPa $(2320 \mathrm{PSI})$	$\begin{gathered} 25 \mathrm{MPa} \\ (3630 \mathrm{PSI}) \end{gathered}$	$\begin{array}{\|c\|} \hline 31.5 \mathrm{MPa} \\ \text { (4570 PSI) } \\ \hline \end{array}$					
DHG-04-3C*-50	300 (79.3) ${ }^{\text {+1 }}$	300 (79.3) ${ }^{\prime}$	300 (79.3) ${ }^{\text {11 }}$	300 (79.3) ${ }^{\prime}$	31.5 (4570)	25 (3630)	0.8 (120)	21 (3050)	7.4 (16.3)
*	300 (79.3)	300 (79.3)	300 (79.3)	300 (79.3)					7.4 (16.3)
DHG-04-2N *-50	130 (34.3)	70 (18.5)	70 (18.5)	60 (15.9)					7.8 (17.2)
*	500 (132) ${ }^{+2}$	500 (132) ${ }^{72}$	$500(132){ }^{+2}$	500 (132)**	31.5 (4570)	25 (3630)	$0.8(120){ }^{\text {+4 }}$	21 (3050)	11.2 (24.7)
DHG-04-2B*-50	500 (132)	500 (132)	500 (132)	500 (132)					11.2 (24.7)
*	140 (37)	100 (26.4)	90 (23.8)	80 (21.1)					11.7 (25.8)
DHG-06-3C*-50	500 (132)	500 (132)	500 (132)	500 (132) ${ }^{7}$		21 (3050)	1 (150)		12.0 (26.5)
*	$1100(291)^{+}$	1100 (291)	$1100(291)^{+}$	$1100(291)^{2}$	31.5 (4570)	25 (3630)	$1(150)^{* 4}$	21 (3050)	43.8 (96.6)
DHG-06-2N *-50	1100 (291)	1100 (291)	1100 (291)	1100 (291)					43.8 (96.6)
*	460 (122)	300 (79.3)	220 (58.1)	200 (52.8)					45.6 (101)
DHG-06-2B*-50	1100 (291)	1100 (291)	1100 (291) ${ }^{+}$	1100 (291)		21 (3050)	1 (150)		51.6(114)

Note: Max. flow in the table above represents the value in the flow condition of $\mathrm{P} \rightarrow \mathrm{A}$ $\rightarrow \mathrm{B} \rightarrow \mathrm{T}$ (or $\mathrm{P} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{T}$) as shown in the circuit diagram right.
In case the valves is used in the condition that eihter A or B port is blocked, the maximum flow differs according to a hydraulic circuit, therefore, please consult us for details.

Yuken can offer flanged connection valves described below. For details, contact Yuken.

Model Num bers	Rated Flow L/min (U.S.GPM)	Max.Operating Pres. MPa (PSI)
DHF-16-***-30	$500(132)$	$21(3050)$
$*$	$1200(317)$	
DHF-24-***-26	$2400(634)$	

-Pressure Drop

Same as those for Solenoid Controlled Pilot Operated Directional Valves. See pages 15 and 16 for the related information.

* 1. Varies depending on the spool ty pe. For more information, see page 11 for the List of "Standard Model and Maximum Flow" (DSHG-04) for Solenoid Controlled Pilot Operated Directional Valves
$\star 2$. Varies depending on the spool ty pe and pilot pressure. For more information, see page 12 for the List of "Standard Model and Maximum Flow" (DSHG-06) re lated to the Sole noid Controlled PilotOperated Directional Valves.
* 3. Varies depending on the spool ty pe and pilot pressure. For more information, see page 13 for the List of "Standard Model and Maximum Flow" (DSHG-10) related to the Solenoid Controlled PilotOperated Directional Valves.
太 4. Minimum Pilot Pressure for the models with pilot piston is 1.8 MPa (260PSI).

Instruction

- In case of Spring Offset Models, directly connect the pilot pressure port " Y " to the reservoir as a drain port.

Pilot Operated Directional Valves
 DHG－04／06／10

Model Number Designation

Model Number Designation

F－	DH	G	－04	－2	B	2	A	－C2	－RA	－H	－50	＊
Special Seals	Series Number	Type of Connec－ tion	Valve Size	Number of Valve Positions	Spool－ Spring Arrange－ ment	Spool Type	Special Two Position Valve	Model with Pilot Choke Valve （Options）	Spool Control Modification （Options）	Built－in Orifice for Pilot Line	Design Number	Design Standard
F： Special Seals for Phos－ phate ester ty pe fluids （Omit if not equired）	DH： Pilot Oper－ ated Direc－ tional Valve	G： Sub－ plate Mount－ ing	04	32				C2： With C2 Choke	R2：W ith Stroke Adjustment， Both Ends RA：With Stroke Adjustment， Port A End RB：With Stroke Adjustment， Port B End P2：With Pilot Piston，Both Ends PA：With Pilot Piston，Port A End PB：With Pilot Piston，Port B End	－	50	$\underset{\star 5}{\text { Refer to }}$
			06				A ，B （Omit if not required）			H： Refer to ＊ 4	50	
			10								40	

$\star 1$ ．For various combination，see the List of Valve Ty pes below
太2．For the option combinations of the Ty pe（Valve Size）and Options，see the List of Options below
＊ 3 ．Refer to the column＂valves using neutral position and side position＂（Special 2－position valve）on page 36.
，4．In spool－spring arrangement＂ H ＂（pressure centred models），in case the pilot pressure is m ore than 10 MPa （150PSI），please specify that the valve should have the built－in orifice to the pilot line．
＊5．Design Standards：None．．．．．．．．．．．．．．．．．．Japanese Standard＂JIS＂and European Design Standard 90．．

N．American Design Standard

－List of Valve Type

Spool Type	Valve Types			
	Three Positions		Two Positions	
	Spring Centred	Pressure ${ }^{\star}$ Centred	No－ Spring	Spring Offset
	Graphic Sy mbols			
				$\underset{x}{-\left.X_{P}^{A}\right\|_{T} ^{B}}$
2 X $\mathrm{X}_{\text {＋1 }}^{\text {J }}$	3C2	3H2	2N2	2B2
3 X ${ }^{3}$	3C3	3H3	2N3	2B3
4×4	3C4	3H4	2N4	2B4
	3C40	3H40	2N40	2B40
5 Xblll	3C5	3H5		
	3C6	3H6		
	3C60	3H60		
7 X冉閶	3C7	3H7	2N7	2B7
9 X｜\＃］	3C9	3H9		
$10 \quad \mathrm{X}]_{1}^{\prime} \mid 11$	3C10	3H10		
11 X	3C11	3H11		
12 X，${ }^{2}$	3 C 12	3H12		

[^10]
List of Options

Model Numbers	Option Code							
	$3 H *$	C2	R2	RA	RB	P2	PA	PB
DHG－04－3C $*$	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
DHG－04－2N $*$	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times
DHG－04－2B $*$	\times	\bigcirc	\times	\bigcirc	\times	\times	\times	\times
DHG－06－3C $*$	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
DHG－06－2N $*$	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
DHG－06－2B $*$	\times	\bigcirc	\times	\bigcirc	\times	\times	\bigcirc	\times
DHG－06－3H $*$	\bigcirc	\bigcirc	\times	\times	\times	\times	\times	\times
DHG－10－3C $*$	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
DHG－10－2N $*$	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
DHG－10－2B $*$	\times	\bigcirc	\times	\bigcirc	\times	\times	\bigcirc	\times
DHG－10－3H $*$	\bigcirc	\bigcirc	\times	\times	\times	\times	\bigcirc	\times

[^11]Sub-plate

Valve Model Numbers	Japanese Standard "JIS"			European Design Standard			N. American Design Standard		
	Sub-plate Model Numbers	Thread Size	Approx. Mass kg (lbs.)	Sub-plate Model Numbers	Thread Size	Approx. Mass kg (lbs.)	Sub-plate Model Numbers	Thread Size	Approx. Mass kg (lbs.)
DHG-04	DHGM-04-20	Rc 1/2	4.4 (9.7)	DHGM-04-2080	1/2 BSP.F	4.4 (9.7)	DHGM-04-2090	1/2 NPT	4.4 (9.7)
	DHGM-04X-	Rc 3/4	4.1 (9.0)	DHGM-04X-2080	3/4 BSP.F	4.1 (9.0)	DHGM-04X-2090	3/4 NPT	4.1 (9.0)
DHG-06	DHGM-06-50	Rc 3/4	7.4 (16.3)	DHGM-06-5080	3/4 BSP.F	8.5 (18.7)	DHGM-06-5090	3/4 NPT	7.4 (16.3)
	DHGM-06X-	Rc 1	7.4 (16.3)	DHGM-06X-5080	1 BSP.F	8.5 (18.7)	DHGM-06X-5090	1 NPT	7.4 (16.3)
DHG-10	DHGM-10-40	Rc 1-1/4	21.5 (47.4)	DHGM-10-4080	1-1/4 BSP.F	21.5 (47.4)	DHGM-10-4090	1-1/4 NPT	21.5 (47.4)
	DHGM-10Y-	Rc 1-1/2	21.5 (47.4)	DHGM-10Y-4080	1-1/2 BSP.F	21.5 (47.4)	DHGM-10X-4090	1-1/2 NPT	21.5 (47.4)

- Sub-plates are available. Specify the sub-plate model number from the table above.

When sub-plates are not used, the mounting surface should have a good machined finish.

- Sub-plates are shared with those for Solenoid Controlled Pilot Operated Directional Valves. Refer to pages 26 to 28 for dimensions.

Mounting Bolts

Model Numbers	Japanese Standard "JIS" European Design Standard	N. American Desgin Standard	Qty .	Tightening Torque Nm (in. lbs)
	M6 $\times 45 \mathrm{Lg}$. M10 $\times 50 \mathrm{Lg}$.	$1 / 4-20 \mathrm{UNC} \times 1-3 / 4 \mathrm{Lg}$. $3 / 8-16 \mathrm{UNC} \times 2 \mathrm{Lg}$.	2	$12-15(106-133)$ $58-72(513-637)$
DHG-06	M12 $\times 60 \mathrm{Lg}$.	$1 / 2-13 \mathrm{UNC} \times 2-1 / 2 \mathrm{Lg}$.	6	$100-123(885-1089)$
DHG-10	M20 $\times 75 \mathrm{Lg}$.	$3 / 8-16 \mathrm{UNC} \times 2 \mathrm{Lg}$.	6	$473-585(4186-5177)$

Options

- Models with Pilot Choke Adjustment (C2)

When the adjustment screw is turned clockwise, changeover speed of the spool becomes slow. In case of the spring centred valves in particular, making slow of the returning speed of the spool to the neutral position is possible with a C 2 choke valve.
These choke valves can be used in com bination with valves of spring centred, no spring, spring offset, pressure centred and the valves with stroke adjustment.

Graphic Symbols

Spring Centred Models

- Models with Pilot Piston (P*)

The valves with a pilot piston can be used when the high speed changeover of the spool is required. However, please note that in case of spring centred valves, there is no change in the returning speed of the spool to the neutral position even with the pilot piston.

Graphic Symbols

Spring Centred Models with Pilot Piston on Both Ends (P2)

Spring Centred Models
with Pilot Piston on Port "A" End (PA)

- Pressure Centered Models ($\mathbf{3 H}$ *)

The pressure centred type can be used when the returning of the spool to the neutral position is required to be done firmly.

Graphic Symbol

- Models with Stroke Adjustment (R*)

When the adjustmentscrew is screwed in, the spool stroke becomes short and flow rate reduces

Graphic Symbol

Spring Centred Models with Stroke Adjustment on Both Ends (R2)

- Additional Mass of Options

Add the mass described below to the mass of standard models on page 34 if options are required.

Model Numbers	With Pilot Choke Valve	With Pilot Piston		With Stroke Adjustment	
		P2	PA PB	R2	RA RB
DHG-04	$0.65(1.4)$	-	-	$1.0(2.2)$	$0.5(1.1)$
DHG-06	$0.65(1.4)$	$1.0(2.2)$	$0.5(1.1)$	$1.2(2.6)$	$0.6(1.3)$
DHG-10	$0.65(1.4)$	$3.6(7.9)$	$1.8(4.0)$	$3.7(8.2)$	$1.85(4.1)$

YTKEN

In addition to the standard two positions valves $(2 \mathrm{~B} *)$, the following two types of two positions valves are available: valves with neutral position and pilot Y pressure position ($2 \mathrm{~B} \boldsymbol{*} \mathrm{~A}$), valves with neutral position and pilot X pressure position ($2 \underline{\mathrm{~B}} \underline{*} \mathrm{~B}$).

Model Numbers	Graphic Sy m bols
$\begin{gathered} 04 \\ \text { DHG-06-2B } * \underline{A} \\ 10 \end{gathered}$	
DHG- *-2B2A	
DHG- $*-2 \mathrm{~B} 3 \mathrm{~A}$	PUT
DHG- $*-2 \mathrm{~B} 4 \mathrm{~A}$	$\square \square^{\square 171}$
DHG- $*-2 \mathrm{~B} 40 \mathrm{~A}$	
DHG-*-2B5A	414
DHG- $*-2 \mathrm{~B} 6 \mathrm{~A}$	\square_{1}^{11}
DHG- $*-2 \mathrm{B60A}$	[1
DHG-*-2B7A	
DHG- $*-2 \mathrm{~B} 9 \mathrm{~A}$	
DHG-*-2B10A	[197]
DHG-*-2B11A	W1t
DHG-*-2B12A	G ${ }^{1}$

Model Numbers	Graphic Sy m bols	
$\begin{gathered} 04 \\ \text { DHG-06-2B } * \underline{B} \\ 10 \end{gathered}$		
DHG- $*$-2B2B	X^{1-1}	
DHG-*-2B3B	X Pr	
DHG- *-2B4B	X 4	
DHG- $*-2 \mathrm{~B} 40 \mathrm{~B}$	$X \frac{\text { 近 }}{}$	
DHG-*-2B5B		
DHG- $*$-2B6B	4 H	
DHG- $*-2 \mathrm{~B} 60 \mathrm{~B}$	$4 \\|^{1+1}$	
DHG-*-2B7B	X阿	
DHG-*-2B9B	x x]	
DHG-*-2B10B	XI^{L}	
DHG- $*-2 \mathrm{~B} 11 \mathrm{~B}$	X ${ }^{\text {P }}$	
DHG-*-2B12B	$X J^{1}$	

DHG-04-***-50/5090

Note: For the valve mounting surface dimensions, see the dimensional drawing of the sharable sub-plate on page 26 .

Options

- Models with Pilot Choke Valve DHG-04-***-C2

- Models with Stroke Adj. (R*)

Outside dimensions are the same as those of the main valve of Solenoid Controlled PilotOperated Directional Valves (DSHG-04). See page 25.
\star For Spring Offset Models $\left(2 \mathrm{~B} *, 2 \mathrm{~B} *{ }_{\mathrm{B}}^{\mathrm{A}}\right.$),
it functions as drain port. When that model is used, directly connect it to the reservoir.

DHG-04-***-50/5090
DHG-06-***-50/5090
DHG-10-***-40/4090

Item	Name of Parts	Part Num bers			Qty
		DHG-04	DHG-06	DHG-10	
9	O-Ring	SO-NB-P9	SO-NB-P14	SO-NB-P20	2
10	O-Ring	SO-NB-P22	SO-NB-P30	SO-NB-P42	4
11	O-Ring	SO-NB-P34	SO-NB-P40	SO-NB-G65	2
12	O-Ring	SO-NB-P9	SO-NB-P10	SO-NB-P14	2
13	O-Ring	SO-NB-P9	SO-NB-P9	SO-NB-P9	4

Note: When ordering the o-rings, please specify the seal kit number from the table below.

Valve Model Num bers	Seal Kit Num bers
DHG-04- $* * *-50 / 5090$	KS-DHG-04-50
DHG-06- $* * *-50 / 5090$	KS-DHG-06-50
DHG-10- $* * *-40 / 4090$	KS-DHG-10-40

Model Numbers		Maximum Flow L/min (U.S.GPM)				Max.Operating Pressure MPa (PSI)	Max. T-Line Back Pressure MPa (PSI)	Approx. Mass kg (lbs.)
		$\begin{gathered} 7 \mathrm{MPa} \\ (1020 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 14 \mathrm{MPa} \\ (2030 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 21 \mathrm{MPa} \\ (3050 \mathrm{PSI}) \end{gathered}$	$\begin{gathered} 31.5 \mathrm{MPa} \\ \text { (4570 PSI) } \end{gathered}$			
	DMT-03-3C*-50*	$100(26.4)^{\lambda_{1}}$	$100(26.4)^{\text {m1 }}$	$100(26.4)^{\mathrm{K}_{1}}$	-	25 (3630)	16 (2320)	5.0 (11.0)
	DMT-03-3D*-50*	100 (26.4)	100 (26.4)	100 (26.4)	-			
	DMT-03-2D*-50*	100 (26.4)	100 (26.4)	100 (26.4)	-			
	DMT-03-2B*-50*	$100(26.4)^{* 1}$	$100(26.4)^{\pi_{1}}$	$100(26.4)^{* 1}$	-			
	$\begin{aligned} & \text { DMT-06 } *-3 \mathrm{C} *-30 \\ & * \end{aligned}$	$\begin{gathered} 300\{200\}_{\star 2} \\ (79.3\{52.8\}) \end{gathered}$	$\begin{gathered} 300\{120\}_{\pi_{2}} \\ (79.3\{31.7\}) \end{gathered}$	$\begin{gathered} 300\{100\} \\ (79.3\{26.4\}) \end{gathered}$	-	21 (3050)	At time spool shift is required: 7 (1020) At time spool shift is not required: 21 (3050)	12.9 (28.5)
	DMT-06*-3D*-30	300 (79.3)	300 (79.3)	300 (79.3)	-			
	*	300 (79.3)	300 (79.3)	300 (79.3)	-			
	DMT-06*-2D*-30	200 (52.8)	120 (31.7)	100 (26.4)	-			
	DMT-10 $*-3 \mathrm{C} *-30$ *	$\begin{gathered} 500\{315\}_{\mathrm{A}^{2}} \\ (132\{83.2\}) \\ \hline \end{gathered}$	$\begin{gathered} 500\{315\}_{n_{2}} \\ (132\{83.2\}) \end{gathered}$	$\begin{gathered} 500\{315\}_{\star 2} \\ (132\{83.2\}) \\ \hline \end{gathered}$	-	21 (3050)	At time spool shift is required: 7 (1020) At time spool shift is not required: 21 (3050)	22 (48.5)
	DMT-10*-3D*-30	500 (132)	500 (132)	500 (132)				
	*	500 (132)	500 (132)	500 (132)				
	DMT-10*-2D*-30	315 (83.2)	315 (83.2)	315 (83.2)				
告	DMG-01-3C $*-10 *$	35 (9.2)	35 (9.2)	35 (9.2)	-	25 (3630)	14 (2030) ${ }^{* 5}$	1.8 (4.0)
	DMG-01-3D $*-10 *$							
	DMG-01-2D $*-10 *$							
	DMG-01-2B $*-10 *$							
	DMG-03-3C $*-50 *$	$100(26.4)^{* 1}$	$100(26.4)^{\text {¹ }}$	$100(26.4)^{\star 1}$	-	25 (3630)	16 (2320)	4.0 (8.8)
	DMG-03-3D $*-50 *$	100 (26.4)	100 (26.4)	100 (26.4)	-			
	DMG-03-2D $*-50 *$	100 (26.4)	100 (26.4)	100 (26.4)	-			
	DMG-03-2B $*-50 *$	$100(26.4)^{\text {A1 }}$	$100(26.4)^{\text {m1 }}$	$100(26.4)^{\text {k. }}$	-			
	DMG-04-3C $*-21 *$	$200(52.8)^{\star 3}$	$200(52.8)^{\text {® }}$	$105(27.7)^{\star 3}$	-	21 (3050)	$21(3050)^{46}$	7.4 (16.3)
	DMG-04-3D $*-21 *$	200 (52.8)	200 (52.8)	200 (52.8)	-			
	DMG-04-2D $*-21 *$	200 (52.8)	200 (52.8)	200 (52.8)	-			
	DMG-04-2B*-21*	90 (23.8)	60 (15.9)	50 (13.2)	-			7.9 (17.4)
	DMG-06-3C $*-50 *$	500 (132)	500 (132)	500 (132)	500 (132)	31.5 (4570)	$21(3050)^{\star 6}$	11.5 (25.4)
	DMG-06-3D $*-50 *$	500 (132)	500 (132)	500 (132)	500 (132)			
	DMG-06-2D $*-50 *$	500 (132)	500 (132)	500 (132)	500 (132)			
	DMG-06-2B $*-50 *$	420 (111)	300 (79.3)	250 (66.1)	200 (52.8)			12 (26.5)
	DMG-10-3C $*-40 *$	$1100(291)^{\text {k } 4}$	$1100(291)^{\star 4}$	1100 (291)*4	1100 (291) ${ }^{\star 4}$	31.5 (4570)	$21(3050){ }^{\star 6}$	48.2 (106)
	DMG-10-3D $*-40 *$	1100 (291)	1100 (291)	1100 (291)	1100 (291)			
	DMG-10-2D $*-40 *$	1100 (291)	1100 (291)	1100 (291)	1100 (291)			
	DMG-10-2B*-40*	670 (177)	350 (92.5)	260 (68.7)	200 (52.8)			50 (110)

Note: The maximum flow means the limited flow without inducing any abnorm ality to the operation (changeover) of the valve. For details, please refer to the "List of Standard Models and Maximum Flow" on pages 9 to 13 .

* 1. Varies depending on the spool ty pe. For details, see the "List of Standard Model and Maximum Flows" for DSG-03 Series Solenoid Operated Directional Valves (catalogue No. PubEC-0403, at 50 Hz rated voltage).
\star 2. The figures in parentheses indicate Max. flow for 3C3,3C5, 3C6 and 3C60.
* 3. Varies depending on the spool ty pe. For the details, see the table in the following page.
* 4. Varies depending on the spoolty pe. Same as DSHG-10 (atpilot pressure of $1.5 \mathrm{MPa}(220 \mathrm{PSI})$. See page 13.
* 5. Lever operating torque varies depends on the T-line back pressure. See the right-hand figure.

DMG-01 Lever Operating Torque

\star 6. If the T-Line back pressure exceeds 7 MPa (1020 PSI), directly connect the drain port to the reservoir.

Manually Operated Directional Valves DMT－03／06／10 DMG－01／03／04／06／10

Model Number Designation／O thers
Model Number Designation

F－	DM	T	－03	－2	B	2	A	－50	＊
Special Seals	Series Number	Type of Connec－ tion	Valve Size	No．of Valve Position	Spool－Spring Arragement	Spool Type	Special Two Position Valve	Design Number	Design Standard
F： Special Seals for Phos－ phate ester ty pe fluids （Omit if not required）	DM： Manually Operated Direc－ tional Valves	T： Threaded Connec－ tion	03 $\mathbf{0 6}$（Piping size 3／4） $\mathbf{0 6 X}$（Piping size 1） $\mathbf{1 0}$（Piping size 1－1／4） $\mathbf{1 0 X}$（Piping size $1-1 / 2$ ）	3	C： Spring Centred	$\begin{aligned} & 2 \cdot 3 \\ & 4 \cdot 40 \\ & 5 \cdot 6 \end{aligned}$	$\mathrm{A}^{\star}, \mathrm{B}^{\star}$ （Omit if not required）	50 30 30	None：Japanese Std．＂JIS＂ 80：European Design Std． 90：N．American Design Std．
			01	2	D： No－Spring Detented B： Spring Offset			10	None：Japanese Std．＂JIS＂ and Euro－ pean Design Std．
			03			10		50	
		G：	04			12		21	
		Sub－plate	06					50	
		Mounting	10 See the table	$\underbrace{}_{\mathrm{w} \text { for } \mathrm{c}}$		ـــ		40	90：N．American Design Std．

＊Refer to column＂valves using neutral position and side position＂（special 2－position valve）on page 42.

Yuken can offer flanged connection valves described below．For details，contact us．

Model Num bers	Rated Flow L／min $($ U．S．GPM $)$	Max．Operating Pressure MPa（PSI）
DMF－10－＊＊＊－30＊	$315(83.2)$	$21(3050)$
DMF－16－＊＊＊－31＊＊	$400(106)$	

Maximum Flow of DMG－04－3C＊

Model Numbers	Max．Flow L / m in（U．S．GPM）		
	$7 \mathrm{MPa}(1020 \mathrm{PSI})$	$14 \mathrm{MPa}(2030 \mathrm{PSI})$	$21 \mathrm{MPa}(3050 \mathrm{PSI})$
DMG－04－3C2	$200(52.8)$	$130(34.3)$	$85(22.5)$
DMG－04－3C3	$180(47.6)$	$90(23.8)$	$70(18.5)$
DMG－04－3C4	$200(52.8)$	$200(52.8)$	$90(23.8)$
DMG－04－3C4	$200(52.8)$	$200(52.8)$	$105(27.7)$
DMG－04－3C5	$80(21.1)$	$50(13.2)$	$40(10.6)$
DMG－04－3C6	$90(23.8)$	$60(15.9)$	$55(14.5)$
DMG－04－3C60	$140(37.0)$	$70(18.5)$	$55(14.5)$
DMG－04－3C7	$200(52.8)$	$75(19.8)$	$55(14.5)$
DMG－04－3C 9	$200(52.8)$	$125(33.0)$	$100(26.4)$
DMG－04－3C1	$200(52.8)$	$130(34.3)$	$85(22.5)$
DMG－04－3C1	$200(52.8)$	$150(39.6)$	$85(22.5)$
DMG－04－3C12	$200(52.8)$	$200(52.8)$	$95(25.1)$

Graphic Symbols

－Spring Centred Models（3C＊）

－No－Spring Detented Models

－Spring Offset Models（ $2 \mathrm{~B} *$ ）

[^12]

	PART NO. SIZE	$\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { MM } \end{aligned}$	$\begin{gathered} \text { L. } \\ \text { LGTH } \end{gathered}$	$\begin{aligned} & \text { M } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$	$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	$\begin{gathered} \text { Y } \\ \text { FLATS } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
								S	FG	SS	B
	7205-04-10-NWO	7/16-20	10×1.0	27.50	22.50	14.50	11				
	7205-04-12-NWO	7/16-20	12×1.5	31.50	27.00	17.50	14		-		
	7205-04-14-NWO	7/16-20	14×1.5	32.00	27.00	19.50	14		-		
	7205-06-14-NWO	9/16-18	14×1.5	32.50	27.00	19.50	14		-		
	7205-08-16-NWO	3/4-16	16×1.5	36.50	31.50	22.50	19		-		
	7205-08-18-NWO	3/4-16	18×1.5	39.50	31.50	24.50	19		-		
	7205-10-18-NWO	7/8-14	18×1.5	41.50	36.50	24.50	22		-		
	7205-10-20-NWO	7/8-14	20×1.5	43.00	36.50	27.50	23		-		
	7205-10-22-NWO	7/8-14	22×1.5	43.00	36.50	27.50	22		-		
NEW	7205-12-22-NWO								-		
	7205-12-27-NWO	11/16-12	27×2.0	51.50	42.00	32.50	27		-		
	7205-12-33-NWO	11/16-12	33×2.0	52.00	43.00	52.00	33		-		
	7205-16-33-NWO	15/16-12	33×2.0	55.00	46.00	41.50	33				

FJ S-MBSPT 90° Elbow 7220 Series

PART NO. SIZE	$\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$	$\stackrel{\mathrm{L}}{\text { LGTH }}$М.М.		$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	$\begin{gathered} \text { Y } \\ \text { FLATS } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
							S	FG	SS	B
7220-06-08	9/16-18	1/2-14	31.75	37	18	22.23	-			

International Fittings

FJ S-MBSPP 90° Elbow 7222 Series

$\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$	$\begin{gathered} \mathrm{B2} \\ \text { BSPP } \end{gathered}$	$\begin{aligned} & \text { LGTH } \\ & \text { LGTH. } \end{aligned}$	$\begin{gathered} \text { M } \\ \text { LGTH } \\ \text { M.M. } \end{gathered}$	$\begin{gathered} \underset{\text { HEX }}{C} \\ \text { M.M. } \end{gathered}$	$\stackrel{Y}{\text { FLATS }}$ M.M.	Standard Material From Stock			
							S	FG	SS	B
7222-04-04	7/16-20	1/4-19	25	25	14	16	-			
7222-06-06	9/16-18	3/8-19	28.00	29.40	17.46	19.00	-			
7222-08-08	3/4-16	1/2-14	35.30	35.00	22.22	22.22	-			
7222-12-12	11/16-12	3/4-14	44.00	37.30	32.00	28.60	-			

PART NO. SIZE	$\begin{aligned} & \text { B1 } \\ & \text { JIS } \end{aligned}$		$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
				S	FG	SS	B
7688-C-02	1/8-28	17.88	15.87	-			
7688-C-04	1/4-19	22	19.05	-			
7688-C-06	3/8-19	22.4	22.22	-			
7688-C-08	1/2-14	27.4	26.99	-			
7688-C-12	3/4-14	31.5	31.75	-			
7688-C-16	1-11	28.55	38.20	-			

Metric MM-MM Nipple 8055 Series

	$\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { MM } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { MM } \end{gathered}$	$\begin{aligned} & \text { L } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$		$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
							S	FG	SS	B
	8055-16-16	16×1.5	16×1.5	27	7	17	-			
NEW NEW	$\begin{aligned} & 8055-18-18 \\ & 8055-20-20 \end{aligned}$						-			

MJ IS-MBSPT Union 8080 Series

	PART NO. SIZE	$\begin{aligned} & \text { B1 } \\ & \text { JIS } \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { JIS } \end{aligned}$		$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
						S	FG	SS	B
NEW	8080-04-04								
NEW	8080-04-06								
NEW	8080-06-04								
NEW	8080-06-06								
NEW	8080-08-06								
NEW	8080-08-08								
NEW	8080-12-12								
NEW	8080-16-16								

International Fittings

MJ IS-MJ IS Union 8088 Series

PART NO. SIZE	$\begin{aligned} & \text { B1 } \\ & \text { JIS } \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { JIS } \end{aligned}$	LLGTHM. M.	$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
					S	FG	SS	B
8088-04-04	1/4-19	1/4-19	38.00	20	-			
8088-06-06	3/8-19	3/8-19	39.70	24	-			
8088-08-08	1/2-14	1/2-14	47.00	26	-			
8088-12-12	3/4-14	3/4-14	55.90	32	-			

MJ IS-MBSPT Union 8180 Series

	$\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$	$\begin{aligned} & \text { ST1 } \\ & \text { JIS } \end{aligned}$	$\begin{aligned} & \text { PT2 } \\ & \text { JIS } \end{aligned}$	$\begin{aligned} & \text { L. } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \text { FLATS } \\ & \text { M.M. } \end{aligned}$	Standard Material From Stock			
							S	FG	SS	B
NEW	8180-04-04									
NEW	8180-06-06									
NEW	8180-08-08									
NEW	8180-12-12									
NEW	8180-16-16									

MJ IS-MBSPT Union 8280 Series

Metric MM Hollow Hex Plug 8555-H Series

	PART NO. SIZE	B1 MM		W WIDTH M.M.	$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock				$\longleftarrow L \longrightarrow$
						S	FG	SS	B	
NEW	8555-H10-O					-				
NEW	8555-H12-O					-				
NEW	8555-H14-O					-				
NEW	8555-H16-O					-				
	8555-H18-O	18×1.5	17.00	5	8	-				
	8555-H22-O	22×1.5	19.10	5	10	-				
NEW	8555-H24-O					-				
NEW	8555-H26-O					-				

Metric MM Plug 1.5 Pitch 8555-P Series

	PART NO. SIZE	B1 MM			$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
						S	FG	SS	B
	8555-P-10	10×1.0	12.00	4	11	-			
	8555-P-12	12×1.5	16.70	7	18	-			
	8555-P-14	14×1.5	17.40	8	19	-			
	8555-P-16	14×1.5	16.40	8	22	-			
	8555-P-18	18×1.5	17.10	8	23	-			
	8555-P-20	20×1.5	16.80	8	26	-			
	8555-P-24	24×1.5	17.60	8	33	-			
	8555-P-26	26×1.5	17.60	8	33	-			
NEW	8555-P-36					-			

For metric threads.

International Fittings

MBSPT-MBSPT Nipple 9000 Series

PART NO. SIZE	$\begin{gathered} \text { B1 } \\ \text { BSPT } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPT } \end{gathered}$			$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
						S	FG	SS	B
9000-02-02	1/8-27	1/8-28	27.30	5	11.11	-			
9000-04-02	1/4-19	1/8-28	33.10	8	15.00	-			
9000-04-04	1/4-19	1/4-19	40.50	8	14.28	-			
9000-06-02	3/8-19	1/8-28	36.40	8	17.46	-			
9000-06-04	3/8-19	1/4-19	40.60	8	17.46	-			
9000-06-06	3/8-19	3/8-19	42.40	8	17.40	-			
9000-08-04	1/2-14	1/4-19	46.30	8	22.00	-			
9000-08-06	1/2-14	3/8-19	46.70	8	22.22	-			
9000-08-08	1/2-14	1/2-14	52.20	8	22.22	-			
9000-10-10	5/8-14	5/8-14	53.70	9	26.00	-			
9000-12-08	3/4-14	1/2-14	54.80	11	28.00	-			
9000-12-12	3/4-14	3/4-14	55.10	11	28.00	-			
9000-16-12	1-11	3/4-14	62.10	12.35	35.00	-			
9000-16-16	1-11	1-11	66.90	12	34.92	-			
9000-20-20	$11 / 4-11$	11/4-11	69.10	13	47.00	-			
9000-24-24	11/2-11	11/2-11	73.40	14	52.00	-			
9000-32-32	2-11	2-11	73.80	14	70.00	-			

MBSPT-FBSPT Bushing 9001 Series

	PART NO. SIZE	$\begin{gathered} \text { B1 } \\ \text { BSPT } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPT } \end{gathered}$			$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
							S	FG	SS	B
	9001-04-02	1/4-19	1/8-28	23.80	8	14.28	-			
	9001-06-04	3/8-19	1/4-19	25.85	8.57	17.46	-			
	9001-08-06	1/2-14	3/8-19	25.30	6	22.02	-			
	9001-12-08	3/4-14	1/2-14	31.90	10	28.00	-			
NEW	9001-16-12						-			
	9001-20-16	11/4-11	1-11	40.60	12.70	47.22	-			

MBSPT-FBSPT 90º Elbow 9002 Series

PART NO. SIZE	$\begin{gathered} \text { B1 } \\ \text { BSPT } \end{gathered}$	$\begin{gathered} \text { A2 } \\ \text { BSPT } \end{gathered}$	$\begin{aligned} & \text { L } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$			Standard Material From Stock			
						S	FG	SS	B
9002-02-02	1/8-28	1/8-28	8	19	17.46	-			

MBSPP-MBSPT Straight 9020 Series

	$\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPT } \end{gathered}$			$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
							S	FG	SS	B
NEW	9020-04-04						-			
NEW	9020-04-06						-			
	9020-06-04	3/8-19	1/4-19	37.10	8	24	-			
NEW	9020-06-06						-			
	9020-16-16	1-11	1-11	59.30	11.30	42.35	-			
NEW	9020-20-20						-			

MBSPP-MBSPP Nipple 9022 Series

	$\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$	L LGTH M.M.	W WIDTH M.M.	$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
							S	FG	SS	B
	9022-02-02	1/8-28	1/2-28	27.20	5	15	-			
	9022-04-02	1/4-19	1/8-28	29.40	6.25	18.00	-			
	9022-04-04	1/4-19	1/4-19	30.70	7	18	-			
	9022-06-04	3/8-19	1/4-19	32.10	7	24	-			
	9022-06-06	3/8-19	3/8-19	32.30	6	24	-			
	9022-08-04	1/2-14	1/4-19	32.80	7	26	-			
	9022-08-06	1/2-14	3/8-19	34.80	7	26	-			
	9022-08-08	1/2-14	1/2-14	36.80	7	26	-			
	9022-10-06	5/8-14	3/8-19	37.80	7.30	28.00	-			
	9022-10-08	5/8-14	1/2-14	39.80	7	28	-			
	9022-10-10	5/8-14	5/8-14	42.20	7	28	-			
	9022-12-06	3/4-14	3/8-19	40.00	8	33	-			
	9022-12-08	3/4-14	1/2-14	41.80	8.00	33.00	-			
	9022-12-10	3/4-14	5/8-14	45.50	9	33	-			
	9022-12-12	3/4-14	3/4-14	45.90	8	33	-			
	9022-16-08	1-11	1/2-14	45.30	9.50	42.40	-			
	9022-16-12	1-11	3/4-14	49.15	10.05	42.50	-			
	9022-16-16	1-11	1-11	49.70	9.50	42.40	-			
	9022-20-16	11/4-11	1-11	50.80	10.30	52.00	-			
	9022-20-20	11/4-11	11/4-11	51.30	11	52	-			
NEW	9022-24-20						-			
	9022-24-24	11/2-11	11/2-11	54.60	12	57	-			
	9022-32-24	2-11	11/2-11	60.00	13	70	-			
	9022-32-32	2 1/2-11	$21 / 2-11$	63.60	12.80	70.20	-			

International Fittings

MBSPP-FBSPP 9023 Series

	PART NO. SIZE	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$			$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
							S	FG	SS	B
	9023-04-06	1/4-19	3/8-19	35.20	23.70	23.34	-			
	9023-06-04	3/8-19	1/4-19	36.60	23.40	24	-			
	9023-06-06	3/8-19	3/8-19	36.95	23.60	23.35	-			
	9023-06-08	3/8-19	1/2-14	40.20	27.25	25.70	-			
	9023-08-04	1/2-14	1/4-19	24.65	9.70	25.70	-			
	9023-08-06	1/2-14	3/8-19	42.60	27.75	25.70	-			
NEW	9023-12-06									
	9023-12-08	3/4-14	1/2-14	52.40	33.50	33	-			
	9023-12-12	3/4-12	3/4-012	52.40	33.55	33.00	-			
	9023-16-08	1-11	1/2-14	32.30	12.20	42.50	-			
	9023-32-16	2-11	1-11	43.10	18.00	70	-			

MBSPP-FBSPPS 9024 Series

	PART NO. SIZE	$\begin{gathered} \mathrm{B} 1 \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$	$\begin{aligned} & \text { L } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$		$\begin{gathered} \text { C1 } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	$\begin{gathered} \text { C2 } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
								S	FG	SS	B
	9024-02-02	1/8-28	1/8-28	34.50	8	16	16	-			
	9024-04-04	1/4-19	1/4-19	35.20	8	18	18	-			
	9024-06-06	3/8-19	3/8-19	41.60	8	24	22	-			
	9024-08-08	1/2-14	1/2-14	47.10	10	26	26	-			
NEW	9024-08-12							-			
NEW	9024-10-10							-			
	9024-12-08	3/4-14	1/2-14	51.10	11	33	26	-			
	9024-12-12	3/4-14	3/4-14	53.30	11	33	33	-			
	9024-16-16	1-11	1-11	58.70	13	43	38	-			
NEW	9024-20-20										

Metric MBSPP-MM Nipple 9025 Series

	$\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$	B2 MM	$\begin{aligned} & \text { L } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$		$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M. M. } \end{gathered}$	Standard Material From Stock			
							S	FG	SS	B
	9025-04-14	1/4-19	14×1.5	28.80	6	19	-			
	9025-06-12	3/8-19	12×1.5	32.20	7	24	-			
	9025-06-16	3/8-19	16×1.5	33.00	7.05	23.35	-			
	9025-06-18	3/8-19	18×1.5	33.60	7.05	23.35	-			
NEW	9025-06-20						-			
NEW	9025-08-18						-			
NEW	9025-12-18						-			
	9025-12-20	3/4-14	20×1.5	40.70	9	33	-			
NEW	9025-12-22						-			

FBSPP-FBSPP Coupling 9033 Series

PART NO. SIZE	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$		$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
					S	FG	SS	B
9033-02-02	1/8-28	1/8-28	25.40	15	-			
9033-04-02	1/4-19	1/8-28	25.60	18.00	-			
9033-04-04	1/4-19	1/4-19	25.40	18	-			
9033-06-04	3/8-19	1/4-19	28.60	24	-			
9033-06-06	3/8-19	3/8-19	28.70	24	-			
9033-08-06	1/2-14	3/8-19	32.30	26	-			
9033-08-08	1/2-14	1/2-14	32.50	26	-			
9033-10-10	5/8-14	5/8-14	38.20	28	-			
9033-12-12	3/4-14	3/4-14	42.80	33	-			
9033-16-16	1-11	1-11	50.80	42.42	-			
9033-20-20	11/4-11	11/4-11	55.80	52	-			
9033-32-32	$21 / 2-11$	$21 / 2-11$	69.85	70.10	-			

MBSPP-FBSPPS
 Swept $45^{\circ} 9124$ Series

	PART	B1	B2	$\stackrel{\text { L }}{\text { LGTH }}$	$\begin{aligned} & \text { L1 } \\ & \text { LGTH } \end{aligned}$	$\begin{gathered} \text { w } \\ \text { WIDTH } \end{gathered}$	$\begin{gathered} \mathrm{C1} \\ \mathrm{HEX} \end{gathered}$	$\begin{gathered} \mathrm{C} 2 \\ \mathrm{HEX} \end{gathered}$	Standard Material From Stock			
	NO. SIZE	BSPP	BSPP	M.M.	M.M.	M.M.	M.M.	M.M.	S	FG	SS	B
NEW	$\begin{aligned} & \text { 9124-06-06 } \\ & 9124-08-08 \end{aligned}$	1/2-14	1/2-14	38	40	9	26	26	$\stackrel{\square}{-}$			

MBSPP-MBSPP 90° 9222 Series

PART	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$				Standard Material From Stock			
NO. SIZE						S	FG	SS	B
9222-04-04	1/4-19	1/4-19	25.20	26.10	15.87	-			
9222-06-06	3/8-19	3/8-19	28.25	30.60	19.00	-			
9222-08-08	1/2-14	1/2-14	34.00	33.40	22.20				

International Fittings

MBSPP-FBSPPS 90° 9224 Series

	PART NO. SIZE	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$	$\begin{aligned} & \text { L } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$		$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	$\begin{gathered} \text { Y } \\ \text { FLATS } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
								S	FG	SS	B
NEW	9224-02-02							-			
	9224-04-04	1/4-19	1/4-19	24	24	18	16	-			
	9224-06-06	3/8-19	3/8-19	30	28	22	19	-			
	9224-08-08	1/2-14	1/2-14	32	33	26	22	-			
	9224-12-12	3/4-14	3/4-14	40.00	36.50	33.00	28.60	-			
	9224-16-16	1-11	1-11	44.50	44.80	37.60	35.00	-			
	9224-24-24	11/2-11	11/2-11	59.30	61.60	56.46	50.71	-			

MBSPP-FBSPPS 90° Long 9224-L Series

	PART NO. SIZE	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$		$\begin{gathered} \text { M } \\ \text { LGTH } \\ \text { M.M. } \end{gathered}$	$\begin{aligned} & \text { C1 } \\ & \text { HEX } \\ & \text { M.M. } \end{aligned}$	$\begin{gathered} \text { C2 } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
								S	FG	SS	B
NEW	9224-L-08-08	1/2-14	1/2-14	50	53.50	26	26	-			
	9224-L-12-12							-			
	9224-L-16-16	1-11	1-11	75	72.00	43	38	-			
	9224-L-24-24	11/2-11	11/2-11	104	100.00	57	57	-			

MBSPP-MBSPP-MBSPP

 Tee 9322 Series

PART NO. SIZE	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B3 } \\ \text { BSPP } \end{gathered}$			Standard Material From Stock			
						S	FG	SS	B
9322-04-04-04	1/4-19	1/4-19	1/4-19	23.00	18.00	-			
9322-06-06-06	3/8-19	3/8-19	3/8-19	24.00	19.00	-			
9322-08-08-08	1/2-14	1/2-14	1/2-14	30.00	25.63	-			
9322-12-12-12	3/4-14	3/4-14	3/4-14	40.00	33.05				

FBSPP-FBSPP-FBSPP Tee 9344 Series

PART	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$	$\begin{gathered} \text { B3 } \\ \text { BSPP } \end{gathered}$		$\begin{aligned} & \text { M } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$	$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$		Standard Material From Stock			
NO. SIZE								S	FG	SS	B
9344-04-04-04	1/4-19	1/4-19	1/4-19	24	24	18	16	-			
9344-06-06-06	3/8-19	3/8-19	3/8-19	30	32	22	19	-			

MBSPT Plug 9500-P Series

PART	$\begin{gathered} \text { B1 } \\ \text { BSPT } \end{gathered}$			$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
NO. SIZE					S	FG	SS	B
9500-P-02	1/8-28	17.12	5.70	11	-			
9500-P-04	1/4-19	20.00	8	16	-			
9500-P-06	3/8-19	25.40	8	18	-			
9500-P-08	1/2-14	30.00	8	22	-			
9500-P-10	5/8-14	31.10	9	26	-			
9500-P-12	3/4-14	32.60	10	28	-			
9500-P-16	1-11	39.50	12	35	-			
9500-P-20	$11 / 4-11$	40.70	13	48	-			
9500-P-24	11/2-11	43.60	14	57	-			
9500-P-32	$21 / 2-11$	46.40	16.40	70	-			

MBSPP Hollow Hex Plug 9522-H Series

PART	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$				Standard Material From Stock			
NO. SIZE					S	FG	SS	B
9522-H-02-O	1/2-28	12.10	4.20	5	-			
9522-H-04-O	1/4-19	16.60	5	6	-			
9522-H-06-O	3/8-19	17.00	5.00	8	-			
9522-H-08-O	1/2-14	19.00	5.20	10	-			
9522-H-12-O	3/4-14	21.20	6	12	-			

International Fittings

MBSPP Hex Plug 9522-P Series

	PART	B1	$\stackrel{\text { L }}{\text { LGTH }}$	W WIDTH	$\begin{gathered} \mathrm{C} \\ \mathrm{HEX} \end{gathered}$		dar	$\begin{aligned} & \text { Mate } \\ & \text { Stock } \end{aligned}$	
	NO. SIZE	BSPP	M.M.	M.M.	M.M.	S	FG	SS	B
	9522-P-02	1/8-28	15.50	5.00	15.00	-			
	9522-P-04	1/4-19	17.00	7.00	18.00	-			
	9522-P-06	3/8-19	18.50	7.00	24.00	-			
	9522-P-08	1/2-14	20.00	8.00	26.00	-			
	9522-P-10	5/8-14	26.70	9.00	28.00	-			
	9522-P-12	3/4-14	22.80	9.00	33.00	-			
	9522-P-16	1-11	26.00	10.00	43.00	-			
NEW	9522-P-20					-			
	9522-P-24	11/2-11	34.00	12.60	56.40	-			
	9522-P-32	2-11	44.80	17.80	70.00	-			
	9522-P-48	3-11	41.90	16.50	94.80	-			

FBSPP Cap 9644-C Series

PART	$\begin{gathered} \text { B1 } \\ \text { BSPP } \end{gathered}$		L1 LGTH M.M.	$\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock			
NO. SIZE					S	FG	SS	B
9644-C-02	1/8-19	17	11	15	-			
9644-C-04	1/4-19	18	13	13	-			
9644-C-06	3/8-19	22	15	15	-			
9644-C-08	1/2-14	25	16	17	-			
9644-C-10	5/8-14	25	15	17	-			
9644-C-12	3/4-14	27	16	33	-			
9644-C-16	1-11	28.35	14.50	37.52	-			
9644-C-20	$11 / 4-11$	29.50	14.80	47.28	-			
9644-C-24	11/2-11	23	23	44	-			
9644-C-32	$21 / 2-11$	41.80	21.40	70.12	-			

MBSPP-MBSPP Bulkhead 9722-LN Series

	$\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$	$\begin{gathered} \mathrm{B} 1 \\ \mathrm{BSPP} \end{gathered}$	$\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$	$\begin{aligned} & \text { L } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$	$\begin{aligned} & \text { L1 } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \text { WIDTH } \\ & \text { M.M. } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { WIDTH } \\ & \text { M.M. } \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { HEX } \\ & \text { M.M. } \end{aligned}$	$\begin{gathered} \text { C2 } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$	Standard Material From Stock	
										S	B
	9722-04-04-LN	1/4-19	1/4-19	45.00	26.00	5.68	7.40	18.00	18.00		
	9722-06-06-LN	3/8-19	3/8-19	50.00	28.00	5.50	9.00	23.40	23.40	-	
	9722-08-08-LN	1/2-14	1/2-14	59.00	32.30	6.50	11.14	25.62	25.70	-	
	9722-10-10-LN	5/8-14	5/8-14	61.50	33.50	6.50	10.30	28.00	28.00	\cdot	
	9722-12-12-LN	3/4-14	3/4-14	61.50	33.50	6.60	9.00	33.00	33.00	-	
NEW	9722-16-16-LN										

BSPP Locknut 9925 Series

For British threads.

	$\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$	I.D.	O.D.	Standard Material From Stock			
				S	FG	SS	B
NEW	9925-20			-			
NEW	9925-24			-			
NEW	9925-32			-			

Attachment G-11i

Manufacturers' Submittals and Individual O\&M Manuals

VALVES \& PIPING

Low Pressure Ball Valves

Specifications

Ball Valves - Low Pressure, 5VM1 \& 5VM2, 1-1/2" NPT, No. 2BVL2124B

- Brass Hot Stamping with Chrome Plated Brass Ball $1 / 4$ " to $4^{\prime \prime}$
- Pressure Rating to 600 PSI (WOG) (40 bar)
- Blow Out Proof Stem
- Teflon Seats, Seals \& Thrust Washer
- Temperature to $320^{0} \mathrm{~F}\left(160^{\circ} \mathrm{C}\right)$
- Metal Handle
- All Valves are Full Port.

Options

- Limit Switches
- Locking Handles
- Actuator Packages Available
- Three-Way Style Available

Dimensional Information

\mathbf{N} Pos	Part Name	Materials	\mathbf{N} Pcs.
1	BODY	BRASS UNI 5707-65	1
2	END CONNECTION	BRASS UNI 5705-65	1
3	BALL	BRASS UNI 5705-65	1
4	SEAT MATERIAL	P.T.F.E.	2
5	STEM SEALS	P.T.F.E.	2
6	O-RING	NBR 75 Sh A	1
7	PACKING GLAND	BRASS UNI 5705-65	1
8	NUT	PLATED STEEL	2
9	STEM	BRASS UNI 5705-65	1
10	LEVER HANDLE	PLATED* STEEL	1

$\begin{aligned} & \text { Part } \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { NPT } \\ & \hline \end{aligned}$	ØA	C	B	ØH	CH	E	D	$\begin{gathered} \mathrm{CV} \\ \text { Factor } \end{gathered}$	Max Working Pressure	$\begin{aligned} & \hline \text { Lbs } \\ & \mathrm{Kg} \\ & \hline \end{aligned}$
2BVL-20 04 F	$1_{4}{ }^{\prime \prime} \mathrm{mm}$	$\begin{gathered} 0.39 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 0.39 \\ 10 \\ \hline \end{gathered}$	$\begin{array}{r} 2.02 \\ 51.5 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 0.90 \\ 23 \\ \hline \end{array}$	$\begin{gathered} 0.78 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 3.85 \\ 98 \\ \hline \end{gathered}$	$\begin{array}{r} 1.75 \\ 44.5 \\ \hline \end{array}$	$\begin{gathered} 6.29 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 928 \mathrm{PSI} \\ & 64 \mathrm{Bar} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.13 \\ & \hline \end{aligned}$
2BVL-20 06 F	$\begin{array}{ll} 3 / 8^{\prime \prime} & \text { in } \\ \mathrm{mm} \end{array}$	$\begin{gathered} 0.39 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 0.40 \\ 10 \\ \hline \end{gathered}$	$\begin{array}{r} 2.02 \\ 51.5 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 0.90 \\ 23 \\ \hline \end{array}$	$\begin{gathered} 0.78 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 3.85 \\ 98 \\ \hline \end{gathered}$	$\begin{array}{r} 1.75 \\ 44.5 \\ \hline \end{array}$	$\begin{gathered} 6.99 \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 928 \mathrm{PSI} \\ 64 \mathrm{Bar} \\ \hline \end{gathered}$	$\begin{aligned} & 0.28 \\ & 0.13 \\ & \hline \end{aligned}$
2BVL-20 08 F	$\begin{aligned} & 1 / 2^{\prime \prime} \text { in } \\ & \mathrm{mm} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.59 \\ 15 \\ \hline \end{gathered}$	$\begin{aligned} & 0.53 \\ & 13.6 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 2.44 \\ 62 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 1.25 \\ 32 \\ \hline \end{array}$	$\begin{gathered} 0.98 \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} 3.85 \\ 98 \\ \hline \end{gathered}$	$\begin{gathered} 1.88 \\ 48 \\ \hline \end{gathered}$	$\begin{aligned} & 19 \\ & 40 \\ & \hline \end{aligned}$	$\begin{gathered} 435 \mathrm{PSI} \\ 30 \mathrm{Bar} \end{gathered}$	$\begin{aligned} & 0.41 \\ & 0.19 \\ & \hline \end{aligned}$
2BVL-20 12 F	$3 / 4^{\prime \prime} \quad \text { in }$	$\begin{gathered} \hline 0.78 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 0.55 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} 2.71 \\ 69 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 1.53 \\ 39 \\ \hline \end{array}$	$\begin{gathered} 1.22 \\ 31 \\ \hline \end{gathered}$	$\begin{aligned} & 4.80 \\ & 122 \\ & \hline \end{aligned}$	$\begin{gathered} 2.28 \\ 58 \\ \hline \end{gathered}$	$\begin{gathered} 34.42 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 435 \mathrm{PSI} \\ & 30 \mathrm{Bar} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.67 \\ & 0.30 \\ & \hline \end{aligned}$
2BVL-20 16 F	${ }^{14} \begin{array}{r} \text { in } \\ \mathrm{mm} \end{array}$	$\begin{gathered} 0.98 \\ 25 \\ \hline \end{gathered}$	$\begin{aligned} & 0.66 \\ & 16.8 \\ & \hline \end{aligned}$	$\begin{gathered} 3.27 \\ 83 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 1.92 \\ 49 \\ \hline \end{array}$	$\begin{gathered} 1.49 \\ 38 \\ \hline \end{gathered}$	$\begin{aligned} & 4.80 \\ & 122 \\ & \hline \end{aligned}$	$\begin{gathered} 2.44 \\ 62 \\ \hline \end{gathered}$	$\begin{gathered} 50.18 \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 435 \mathrm{PSI} \\ 30 \mathrm{Bar} \end{gathered}$	$\begin{aligned} & 1.09 \\ & 0.50 \\ & \hline \end{aligned}$
2BVL-20 20 F	$\begin{aligned} & 1 \frac{1}{4} \text { in } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.25 \\ 32 \\ \hline \end{gathered}$	$\begin{aligned} & 0.68 \\ & 17.3 \\ & \hline \end{aligned}$	$\begin{gathered} 3.78 \\ 96 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 2.32 \\ 59 \\ \hline \end{array}$	$\begin{gathered} 1.88 \\ 48 \\ \hline \end{gathered}$	$\begin{aligned} & 6.02 \\ & 153 \\ & \hline \end{aligned}$	$\begin{gathered} 3.07 \\ 78 \\ \hline \end{gathered}$	$\begin{gathered} 103.7 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 362 \mathrm{PSI} \\ & 25 \mathrm{Bar} \\ & \hline \end{aligned}$	$\begin{aligned} & 2.01 \\ & 0.90 \\ & \hline \end{aligned}$
2BVL-20 24 F	$\begin{aligned} & 1 \frac{1}{2} \text { " in } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.57 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 0.68 \\ & 17.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.25 \\ & 108 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 2.87 \\ 73 \\ \hline \end{array}$	$\begin{gathered} 2.12 \\ 54 \\ \hline \end{gathered}$	$\begin{array}{\|l} 6.02 \\ 153 \\ \hline \end{array}$	$\begin{gathered} 3.34 \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} 268.41 \\ 40 \\ \hline \end{gathered}$	362 PSI 25 Bar	$\begin{aligned} & 3.08 \\ & 1.40 \\ & \hline \end{aligned}$
2BVL-20 32 F	$2^{\prime \prime} \begin{array}{r} \text { in } \\ \mathrm{mm} \\ \hline \end{array}$	$\begin{gathered} \hline 1.96 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.69 \\ & 17.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.96 \\ & 126 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 3.38 \\ 86 \\ \hline \end{array}$	$\begin{gathered} \hline 2.63 \\ 67 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 6.37 \\ & 162 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.79 \\ & 96.5 \\ & \hline \end{aligned}$	$\begin{gathered} 309.2 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 362 \mathrm{PSI} \\ & 25 \mathrm{Bar} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.18 \\ & 1.90 \\ & \hline \end{aligned}$
2BVL-20 40 F	$2^{1 / 2 " \text { in }} \mathbf{~ m m}$	$\begin{gathered} \hline 2.56 \\ 65 \\ \hline \end{gathered}$	$\begin{array}{r} 1.19 \\ 30.2 \\ \hline \end{array}$	$\begin{array}{r} 5.98 \\ 152 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4.37 \\ 111 \\ \hline \end{array}$	$\begin{gathered} 3.54 \\ 90 \\ \hline \end{gathered}$	$\begin{array}{r} 8.07 \\ 205 \\ \hline \end{array}$	$\begin{gathered} 5.02 \\ 127.5 \\ \hline \end{gathered}$	$\begin{gathered} 629 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 362 \mathrm{PSI} \\ & 25 \mathrm{Bar} \\ & \hline \end{aligned}$	$\begin{aligned} & 8.00 \\ & 3.60 \\ & \hline \end{aligned}$
2BVL-20 48 F	$\begin{array}{\|c\|} \hline 3^{\prime \prime} \text { in } \\ \mathrm{mm} \\ \hline \end{array}$	$\begin{gathered} \hline 3.15 \\ 80 \\ \hline \end{gathered}$	$\begin{array}{r} 1.31 \\ 33.3 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.97 \\ & 177 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.35 \\ \hline 136 \\ \hline \end{array}$	$\begin{aligned} & \hline 4.13 \\ & 105 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 8.07 \\ 205 \\ \hline \end{array}$	$\begin{array}{r} 5.45 \\ 138.5 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1018.17 \\ 40 \\ \hline \end{array}$	$\begin{gathered} 362 \mathrm{PSI} \\ 25 \mathrm{Bar} \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.90 \\ 5.90 \\ \hline \end{gathered}$
2BVL-20 64 B	$4^{4 \prime} \begin{array}{r} \text { in } \\ \mathrm{mm} \end{array}$	$\begin{aligned} & \hline 3.94 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.55 \\ & 39.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.43 \\ & 214 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 6.35 \\ 166 \\ \hline \end{array}$	$\begin{aligned} & 5.12 \\ & 130 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 10.23 \\ 260 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.34 \\ & 161 \\ & \hline \end{aligned}$	1622	$\begin{gathered} 362 \mathrm{PSI} \\ 25 \mathrm{Bar} \\ \hline \end{gathered}$	$\begin{gathered} 22.04 \\ 10.0 \\ \hline \end{gathered}$

Low Pressure Valves 2BVL Series

Technical Information

(200

Ordering Information

Attachment G-11j

Manufacturers' Submittals and Individual O\&M Manuals

VALVES \& PIPING

Low Pressure SAE Adaptors

Low Pressure SAE Port Adaptors

Specifications

－Leak Free O－Ring Sealing to 4＂with a Variety of Connection Options：
－Socket Weld
－Hose Barb（Straight 45° \＆ 90° ）
－Split Flange
－Carbon Steel Construction
－Lock Nut Design Simplifies the Positioning of Valves and Eliminates Weld Damage to Valve．
－Buna N Seals

Options

－Viton Seals
－Step Sizes Available －Consult Factory

Dimensional Information： $2^{1 ⁄ 2}$＂-4 ＂

	PART NO．	$\begin{aligned} & \text { BSP } \\ & \text { SIZE } \end{aligned}$		B	E	D	$\begin{aligned} & \text { PSI } \\ & \text { BAR } \end{aligned}$	WEIGHT
	2BVL－2R 40 F	2½＂	in	5.59	8.07	5.02	600	8.00 lb
			mm	142	205	127.5	40	3.66 kg
	2BVL－2R 48 F	$3{ }^{\prime \prime}$	in	6.45	8.07	5.45	600	12.90 lb
			mm	164	205	138.5	40	5.90 kg
	2BVL－2R 64 B	4＂	in	7.60	10.23	6.34	600	22.04 lb
			mm	193	260	161	40	10.0 kg

＊Note：All＂O＂－rings should be lubricated before assembly．

SWA－SWIVEL SOCKET WELD ADAPTOR								
Part no．	Port	Thread	A	B	C	D		
SWA－16LR	$1{ }^{1}$	15／16＂－12UN－2B	0．88＂	0．25＂	1．33＂	1．63＂		
SWA－20LR	11／4＂	15／8＂－12UN－2B	0．88＂	0．25＂	1．67＂	2．00＂		
SWA－24LR	11／2＂	17／8＂－12UN－2B	0．88＂	0．25＂	1．91＂	2．25＂		
SWA－32LR	$2 "$	21／2＂－12UN－2B	1．00＂	0．25＂	2．39＂	2．75＂		
SWA－40LR	21／2＂	21／2＂－11BSP	1．50＂	0．50＂	2．89＂	3．25＂		
SWA－48LR	$3{ }^{\prime \prime}$	3＂－11BSP	1．50＂	0．50＂	3．51＂	$3.75{ }^{\prime \prime}$		
SWA－64LR	$4 "$	4＂－11BSP	1．50＂	0．50＂	4．51＂	4．75＂		

＊Note：Remove＂O＂ring before welding，valve should not be installed before welding adaptor．

HA－SAE TO HOSE BARB ADAPTOR						c	
Part no．	Port	Thread	A	B	C		
HA－16	1＂	15／16＂－12UN－2B	0．375＂	1．37＂	0．84＂		
HA－20	11／4＂	15／8＂－12UN－2B	0．40＂	1．90＂	1．06＂		
HA－24	11／2＂	17／8＂－12UN－2B	0．40＂	1．94＂	1．25＂		
HA－32	$2{ }^{\prime \prime}$	21／2＂－12UN－2B	0．41＂	2.43 ＂	1．70＂		－\square T T
HA－40	21／2＂	21／2＂－11BSP	0．45＂	3.09 ＂	$2.15{ }^{\prime \prime}$		
HA－48	$3^{\prime \prime}$	3＂－11BSP	0．45＂	3.62 ＂	2．65＂		－ニーニーニーー－
HA－64	$4 "$	4＂－11BSP	0．45＂	4．90＂	$3.65{ }^{\prime \prime}$		

SAS－SAE TO SPLIT FLANGE（CODE 61）ADAPTOR							
Part no．	Port	Thread	A	B	C		
SAS－16	$1{ }^{11}$	15／16＂－12UN－2B	2．40＂	1．00＂	1．75＂		
SAS－20	11／4＂	15／8＂－12UN－2B	2．72＂	1．25＂	2．00＂	${ }_{1}^{c}$	
SAS－24	11／2＂	17／8＂－12UN－2B	2．72＂	1．50＂	$2.375{ }^{\prime \prime}$		
SAS－32	2＂	21／2＂－12UN－2B	2．97＂	2．00＂	2.812 ＂		
SAS－40	21／2＂	21／2＂－11BSP	3．18＂	2．50＂	$3.312{ }^{\prime \prime}$		
SAS－48	$3{ }^{\prime \prime}$	3＂－11BSP	$3.18{ }^{\prime \prime}$	3.00 ＂	4．00＂		－＿－－fontl
SAS－64	4＂	4＂－11BSP	3．44＂	4．00＂	5．00＂		

SNN - SAE SWIVEL TO NPT FEMALE ADAPTOR						
Part no.	Port	Thread	A	B	C	
SNN-16	$1{ }^{1 \prime}$	15/6"-12UN-2B	1.63"	0.88"	1.50"	
SNN-20	11/4"	15/8"-12UN-2B	1.88 "	0.88"	1.56"	
SNN-24	11/2"	17/8"-12UN-2B	2.25"	0.88"	1.56"	
SNN-32	$2^{\prime \prime}$	21/2-12UN-2B	$2.75{ }^{\prime \prime}$	0.88"	1.75"	
SNN-40	21/2"	21/2"-118SP	3.13"	1.00"	$1.75{ }^{\prime \prime}$	
SNN-48	$3^{\prime \prime}$	3"-11BSP	3.88"	1.00"	$1.75{ }^{\prime \prime}$	
SNN-64	$4 "$	4"-11BSP	4.88 "	1.00"	1.75"	

HAS 90° - SPLIT FLANGE TO HOSE BARB ELBOW 90 ADAPTOR							
Part no.	Port	A	B	C	D		c
HAS 90-16	$1{ }^{11}$	$2.75{ }^{\prime \prime}$	1.00"	1.75"	3.63"		1
HAS 90-20	11/4"	$3.25{ }^{\prime \prime}$	1.25"	2.00 "	4.63 "		
HAS 90-24	11/2"	3.50 "	1.50"	$2.38{ }^{\prime \prime}$	5.00 "		D
HAS 90-32	2"	4.25"	2.00 "	2.81 "	6.25 "		-
HAS 90-40	21/2"	5.50"	0.5"	3.31 "	7.88"		
HAS 90-48	$3{ }^{\prime \prime}$	$6.38{ }^{\prime \prime}$	3.00"	4.00"	$9.00{ }^{\prime \prime}$		
HAS 90-64	$4{ }^{\prime \prime}$	8.00"	4.00"	5.00 "	11.38"	$\underset{1}{B} \rightarrow 1$	

HA 45° - SAE SWIVEL TO HOSE BARB ELBOW 45 ${ }^{\circ}$ ADAPTOR						
Part no.	Port	Thread	A	B	C	
HA 45-16	$1{ }^{11}$	15/16"-12UN-2B	3.50"	2.00"	1.00"	
HA 45-20	11/4"	15/8"-12UN-2B	4.25"	2.50 "	1.25"	
HA 45-24	11/2"	17/8"-12UN-2B	$4.38{ }^{\prime \prime}$	2.50"	1.50"	
HA 45-32	2 "	2½"-12UN-2B	$5.38{ }^{\prime \prime}$	$3.13{ }^{\prime \prime}$	2.00"	
HA 45-40	21/2"	21⁄2"-11BSP	7.00"	4.00"	2.50 "	
HA 45-48	$3{ }^{\prime \prime}$	3"-11BSP	8.00 "	4.64"	3.00"	
HA 45-64	$4 "$	4"-11BSP	$9.50{ }^{\prime \prime}$	5.50"	4.00"	

HA 90 - SAE SWIVEL TO HOSE BARB ELBOW 900 ADAPTOR						
Part no.	Port	Thread	A	B	C	
HA 90-16	$1{ }^{11}$	15/16"-12UN-2B	2.38"	3.63 "	1.00"	
HA 90-20	11/4"	15/8"-12UN-2B	2.75"	4.50"	1.25"	
HA 90-24	11/2"	17/8"-12UN-2B	3.13"	5.00"	1.50"	
HA 90-32	2"	21/2"-12UN-2B	4.00"	6.25"	2.00"	\square ——
HA 90-40	21/2"	21⁄2"-11BSP	5.25"	8.06"	2.50"	
HA 90-48	$3{ }^{\prime \prime}$	3"-11BSP	6.00"	$9.06{ }^{\prime \prime}$	3.00"	
HA 90-64	4"	4"-11BSP	7.75"	11.38"	4.00"	

Attachment G-11k

Manufacturers' Submittals and Individual O\&M Manuals

VALVES \& PIPING

Modulating Water Valves

Accessories

Thermal Transfer Products provides an array of highly engineered accessories that function with our integrated cooling modules, as well as copper, aluminum and steel heat exchangers.

Modulating Water Valves and Bulb Wells
Water Strainers
Three-Way Thermostatic Valves
Thermal Bypass Assembly
Electronic Temperature Control \& Bulb Well Assembly (AC)
Thermostatic Temperature Controller (DC)
Temperature Sensors
Electronic Temperature Sensors
PB2P Fan Controller
Brushless DC Pulse Width Modulation (PWM) Sensor
Brushless DC Wiring Harness
Compressed Air Separators
Automatic Float Drain
Flexible Metal Hose

Modulating Water Valves and Bulb Wells

APPLICATION: These modulating valves regulate the flow of water to the heat exchanger to maintain a desired exiting oil temperature. They open automatically when temperature increases at the sensing bulb. No externa power source is required to actuate the valve. Not to be used for salt water service.

WATER valves					BULB WELLS
PART NUMBER	PIPE SIZE (NPT)	RANGE (OPENING POINT)	SENSING BULB SIZE DIAMETER x LENGTH	MAXIMUM WATER FLOW	RECOMMENDED SIZE
65293	$1 / 2^{\prime \prime}$	$115^{\circ} \mathrm{F}$ to $180^{\circ} \mathrm{F}$	$11 / 16^{\prime \prime} \times 3-1 / 4^{\prime \prime}$	25 GPM	L-65140
65127	$3 / 4{ }^{\prime \prime}$			40 GPM	
65128	1"		11/16" $\times 6^{\prime \prime}$	55 GPM	L-65141
65146	1-1/4"			75 GPM	
65511	1/2"	$75^{\circ} \mathrm{F}$ to $135^{\circ} \mathrm{F}$	$11 / 16^{\prime \prime} \times 10^{\prime \prime}$	25 GPM	L-65280
65253	$3 / 4{ }^{\prime \prime}$			40 GPM	
65254	$1 "$		$11 / 16^{\prime \prime} \times 16-1 / 4^{\prime \prime}$	55 GPM	L-67438
65255	1-1/4"			75 GPM	
66100	1-1/2" ASME			90 GPM	
67173	2" ASME	$75^{\circ} \mathrm{F}$ to $115^{\circ} \mathrm{F}$	11/16" $\times 43^{\prime \prime}$	150 GPM	L-67808

Working pressure to 150 PSI Maximum. *For additional protection of the bulb well stem, use the next longer bulb well.

ADJUSTMENT: $1 / 2^{\prime \prime}$ to $1-1 / 4^{\prime \prime}$ valves can be adjusted with a screwdriver, $1-1 / 2^{\prime \prime}$ and $2^{\prime \prime}$ have a $1 / 2^{\prime \prime}$ square shaft. Turn the adjusting screw clockwise to decrease opening temperature; and counterclockwise to increase opening temperature. Valves are not calibrated, so final desired temperature setting must be established experimentally. Valve is fully open $36^{\circ} \mathrm{F}$ above opening point.

Water Valves

Standard temperature elements are furnished with 6' capillary. Longer capillary lengths not available. Valve Disc: Buna N in brass disc retainer.

Modulating Water Valves and Bulb Wells

Bulb Wells

65187 Half Coupling - Mount to Reservoir. For use with all bulb wells shown above.

All stock valves are supplied with a drilled and tapped internal by-pass in the regulator body. A solid plug is installed in this hole for 100% shut-off. A drilled orifice plug is packed in an envelope with each valve for field installation, if continuous minimum flow is required.

BULB WELL PART NUMBER	DIMENSIONS IN INCHES		APPROXIMATE SHIPPING WEICHT	MAIERIALS
	A	B		
65140	4-15/32"	3-15/32"	1 lb .	Tube - Copper Fitting- Brass
65141	7-7/32"	6-7/32"		
65280	11-7/32"	10-7/32"		
67438	17-15/32"	16-15/32"		
67808	44-3/8"	43-3/8"		

Custom Bulb Well lengths available. Consult factory for additional information.

WATER VALVE PART NUMBER	BY-PASS ORIFICE DIAMETER	MAXIMUM BULB TEMPERATURE ${ }^{\circ}$ F	OPENING TEMPERATURE (FACTORY SETTING) ${ }^{\circ} \mathrm{F}$
65293	.062"	200	135
65127			
65128	.093"		
65146			
65511	.062"	155	103

WATER vaIVE PART NUMBER	BY-PASS ORIIFICE DIAMETER	MAXIMUM BULB TEMPERATURE ${ }^{\circ}$ F	OPENNG TEMPERATURE (FACTORY SETTING) ${ }^{\circ} \mathrm{F}$
65253	062"	200	135
65254			
65255	.093"		
66100			
67173	.125"	155	103

Forged Brass Y-Strainer

Features

- Suitable for 600 W0G Service, 150PSI WSP, With Easy Clean Plug
- MSS SP-110 Approved
- Temperature Range: $-10^{\circ} \mathrm{F}$ to $250^{\circ} \mathrm{F}$
- Heavy Duty Forged Brass Construction
- Screwed Caps are Straight Threaded with PTFE Gaskets
- 304 Stainless Steel 50 Mesh Screen 1/4" - 1"
- 304 Stainless Steel 20 Mesh Screen 1-1/4" - 2"
- Threaded Ends Comply with ANSI.B2. 1
- Female x Female Connection

Part Number	DN (NPT)	L	H1	H2	Weight Lhs.
56944	$1 / 4$	1.97	1.50	1.90	0.22
65294	$3 / 8$	1.97	1.50	1.90	0.21
65295	$1 / 2$	2.36	1.97	2.44	0.38
65296	$3 / 4$	2.76	2.09	2.68	0.57
65297	1	2.95	2.24	2.95	0.9
65301	$1-1 / 4$	3.54	2.76	3.74	1.3
65302	$1-1 / 2$	4.09	2.99	4.17	1.81
65303	2	4.72	3.35	3.31	

All dimensions in inches, unless noted otherwise.

Three-Way Thermostatic Valves

1/2", 3/4", 1", 1-1/2" \& 2" NPT Ports*

Features

\author{

- Self-Contained
 - Wide Range of Temperatures
 - Rugged Construction
 - Non-Adjustable
 - Heavy Duty
 - Operate in Any Position
 - Tamper-Proof
 - Replaceable Element
 - Compact
}

Materials

Housing Grey Iron (steel or bronze optional) 125 PSI maximum operating pressure
O-Ring Seals Viton (Buna N optional) *3", 4" and 6" Flange Models also available.

Diverting Application

Operation

TTP thermostatic valves use the principle of expanding wax. A self-contained power element activates a stainless steel sliding valve that provides a positive three-way valve action. All temperature settings are factory set. Elements are field replaceable to obtain the same, or a new bypass temperature setting.

On starting, total flow is in the bypass mode. As the fluid temperature rises, some fluid is diverted to the cooling system. As fluid temperature continues to rise, more flow is diverted until the valve is fully stroked. At this point, all the flow is diverted to the cooler. With respect to temperature ranges, the "nominal" temperature represents the "operating temperature." The first figure in the temperature range represents the valve opening point, and the second figure represents the full open point.

Valves are acceptable for oil or water service.

Applications

Three Way Thermostatic Valves may be installed for either mixing or diverting modes of operation at the preference of the user. They may be mounted in any plane.

When installed as a mixing valve, it is on the cold side of the application, and mixes hot liquid with cooled liquid to discharge the proper temperature fluid to the process.

When installed as a diverting valve, it is on the hot side of the application, and bypasses the cold liquid allowing the system to warm up, then directs the hot liquid to the cooler.

Temperature settings are nominal. $110^{\circ} \mathrm{F}$ and $140^{\circ} \mathrm{F}$ are standard. Other settings are available upon request. The valves begin to "shift" (open) about $10^{\circ} \mathrm{F}$ below the nominal temperature setting and are fully shifted about $10^{\circ} \mathrm{F}$ above.

Typical Installation

Hydraulic Power Units Diverting mode $110^{\circ} \mathrm{F}$
Air Compressors Mixing mode $140^{\circ} \mathrm{F}$
Mobile Oil Coolers Diverting mode $110^{\circ} \mathrm{F}$
Radiators Diverting mode $190^{\circ} \mathrm{F}$

Three-Way Thermostatic Valves

Pressure Drop Curves

1-1/2"

2"

Dimensions and Part Numbers

PORT SIZE	PART NUMBER
$1 / 2^{\prime \prime}$ NPT	$66037-110^{\circ} \mathrm{F}$
$1 / 2^{\prime \prime}$ NPT	$66037-140^{\circ} \mathrm{F}$
$3 / 4^{\prime \prime}$ NPT	$66038-110^{\circ} \mathrm{F}$
$3 / 4^{\prime \prime}$ NPT	$66038-140^{\circ} \mathrm{F}$
$1^{\prime \prime}$ NPT	$66039-110^{\circ} \mathrm{F}$
$1^{\prime \prime}$ NPT	$66039-140^{\circ} \mathrm{F}$
\#16 SAE	$67365-110^{\circ} \mathrm{F}$
\#16 SAE	$67365-140^{\circ} \mathrm{F}$

PORT SIZE	PART NUMBER
$2^{\prime \prime}$ NPT	$66041-105^{\circ} \mathrm{F}$
$2^{\prime \prime}$ NPT	$66041-140^{\circ} \mathrm{F}$

NOTE: All three ports on any one valve have the same thread size.

Three-Way Thermostatic Valves

Special Temperature Ranges

$1 / 2^{\prime \prime}-3 / 4^{\prime \prime}-11^{\prime \prime} \text { NPT }$ PART NUMBERS	11/2" NPT PART NUMBERS	2" NPT PART NUMBERS
65974	65977	65978
65975	66040	66041
65976	67760	
66037	(\#24 SAE)	
66038		
66039		
67365		
(\#16 SAE)		

1/2"-3/4"-1" NPT		11/2" NPT		2" NPT	
NOMINAL	TEMPERATURE RANGE (${ }^{\circ} \mathrm{F}$)	NOMINAL	TEMPERATURE RANGE (${ }^{\circ} \mathrm{F}$)	NOMINAL	TEMPERATURE RANGE (${ }^{\circ} \mathrm{F}$)
80	77-88	80	70-88	75	70-85
90	80-100	90	80-100	90	85-105
110	100-120	110	100-120	105	100-116
120	110-130	120	110-130	120	110-130
130	120-140	130	120-140	130	124-140
140	130-150	140	130-150	140	135-150
150	140-160	150	140-160	150	145-160
160	150-170	160	150-170	155	150-165
170	163-180	170	163-180	160	155-172
185	175-190	175	170-185	165	160-175
195	185-200	180	175-190	170	165-180
200	190-210	190	185-200	180	175-190
		200	190-210	195	188-208
				210	200-215

EXAMPLE: 1" NPT, Part Number 66039-90 indicates the 1" NPT valve with a nominal shift temperature of $90^{\circ} \mathrm{F}$. The actual operating temperature range in this example is $80-100^{\circ} \mathrm{F}$. The valve begins to open at $80^{\circ} \mathrm{F}$, and is fully open at $100^{\circ} \mathrm{F}$.

How to Order Consult factory for pricing and lead time

Thermal Bypass Assembly

This thermal bypass valve is ideally suited for hydrostatic drive circuits which require fast warm-up, controlled fluid temperature, and low return line back pressure. When installed in the return line of a hydraulic circuit that employs an oil cooler, this device will modulate fluid temperature by either shifting
return line flow through the cooler, or bypassing directly to the reservoir. In addition, a built-in pressure relief function automatically relieves excess pressure to the reservoir should the cooler become restricted and resultant pressure drop become too high for the cooler circuit.

Features

Standard Shift Temperatures

$100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right) 120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right) 140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right) 160^{\circ} \mathrm{F}\left(71^{\circ} \mathrm{C}\right)$
Full Shift (Cooler Port Open) Temperatures
Shift temperature plus $25^{\circ} \mathrm{F}\left(14^{\circ} \mathrm{C}\right)$
Relief Valve Setting 65 psi (4.5 bar) Consult factory for other pressure settings.
Maximum Operating Pressure 250 psi (17 bar)

Proof Pressure 300 psi (21 bar)
Minimum Burst Pressure
Up to the full shift temperature: 325 psi (22 bar).
Above the full shift temperature: 600 psi (41 bar).
Minimum Operating Temperature $-30^{\circ} \mathrm{F}\left(-34^{\circ} \mathrm{C}\right)$
Maximum Operating Temperature Shift temperature plus $75^{\circ} \mathrm{F}\left(24^{\circ} \mathrm{C}\right)$
Maximum Flow Rating 60 gpm ($227 \mathrm{l} / \mathrm{m}$)
Leakage @ 250 psi ($\mathbf{1 7}$ bar) and $60 \mathrm{gpm}(227 \mathrm{l} / \mathrm{m}$) Inlet Flow
Cooler Port:

- $0.5 \mathrm{gpm}(2 \mathrm{l} / \mathrm{m})$ maximum up to $5^{\circ} \mathrm{F}\left(3^{\circ} \mathrm{C}\right)$ before shift temp.
- $1.0 \mathrm{gpm}(4 \mathrm{l} / \mathrm{m})$ maximum from $5^{\circ} \mathrm{F}\left(3^{\circ} \mathrm{C}\right)$ before shift to shift.

Tank Port: $0.10 \mathrm{gpm}(0.4 \mathrm{I} / \mathrm{m})$ maximum
Operating Fluid Mineral base hydraulic fluids
Construction Aluminum die-cast housing

Operating Characteristics

- Mode 1: At temperatures below the shift temperature oil flows from inlet to tank port.
- Mode 2: At temperatures between the start of shift and full shift the flow from the inlet port is divided between the cooler and tank ports.
- Mode 3: At temperatures above the full shift temperature inlet flow is through the cooler port.
- Mode 4: At temperatures above the full shift temperature the excess pressure is relieved through the tank port.

NOTE: If the temperature drops below $145^{\circ} \mathrm{F}$ the valve will shift back to modes 2 or 1 .

Thermal Bypass Assembly

Pressure Drop (Mobile DTE 26 OIL)

Inlet Port Thru Tank Port @ $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)(\mathbf{3 0 0} \mathrm{SUS})$

Inlet Port Thru Cooler Port @ $145^{\circ} \mathrm{F}\left(63^{\circ} \mathrm{C}\right)$ (110 SUS)

Inlet Port Over Integral Relief Valve @ $170^{\circ} \mathrm{F}\left(77^{\circ} \mathrm{C}\right)$ (78 SUS)

NOTE: Pressure drop shown is added to relief valve crack pressure for total pressure drop.

PART NUMBER	SHIFT TEMPERATURE
65654	$100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$
65655	$120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right)$
65656	$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$
65657	$160^{\circ} \mathrm{F}\left(71^{\circ} \mathrm{C}\right)$

\square
Part Number

Pressure Setting

65 = Standard, 65 PSI
Optional pressure settings
available in 5 PSI increments,
up to 85 PSI .

Electronic Temperature Control \& Bulb Well Assembly (AC)

Part Number 86816

This is a line voltage single-stage electronic temperature control with single-pole, double-throw relay output and LED indication. It is designed with heating or cooling modes of operation, adjustable differential, and an interchangeable temperature sensor. The control couples electronic accuracy with remote sensing capability in a NEMA 1 high-impact plastic enclosure suitable for surface or DIN-rail mounting.

Pilot Duty Relay needed for 460V not offered by Thermal Transfer Products.

67428 Temperature Control with NEMA 1 Enclosure
Dimensions - Inches (mm)

67429 Bulb Well Dimensions - Inches

Specifications

Product	Electronic Temperature Control			
Setpoint Range	$-30^{\circ} \mathrm{F}$ to $212^{\circ} \mathrm{F}\left(-34^{\circ} \mathrm{C}\right.$ to $\left.100^{\circ} \mathrm{C}\right)$			
Differential Range	$1^{\circ} \mathrm{F}$ to $30^{\circ} \mathrm{F}\left(0.5^{\circ} \mathrm{C}\right.$ to $\left.17^{\circ} \mathrm{C}\right)$			
Input Voltage	120 or 208/240 VAC, $50 / 60 \mathrm{~Hz}$			
Current Draw	1.8 VA			
Relay Electrical Ratings	SPDT	$\begin{gathered} 120 \mathrm{~V} \\ \mathrm{NO} \text { (NC) } \end{gathered}$	$\begin{gathered} \hline 280 \mathrm{~V} \\ \mathrm{NO}(\mathrm{NC}) \end{gathered}$	$\begin{gathered} 240 \mathrm{~V} \\ \text { NO (NC) } \end{gathered}$
	Horsepower:	1 (0.25) hp	1 (0.33) hp	1 (0.5) hp
	Full Load Amps:	16 (5.8) A	9.2 (4.0) A	8.0 (4.9) A
	Locked Rotor Amps:	96 (3) A	55 (24) A	48 (29) A
	Non-Inductive Amps:	15 (10) A	10 (10) A	10 (10) A
	Pilot Duty: 125 VA (NO) @ 24-240 VAC, 125 VA (NC) @ 120-240 VAC, 50 VA (NC) @ 24 VAC			
Sensor Type	Replaceable Thermistor with Reference Resistance of 2.25 K ohms at $77{ }^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$			
Control Ambient	Operating: $-30^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(-34^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$			
Temperature	Shipping: $-40^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$			
Ambient Humidity	0 to 95\% RH Non-Condensing, Maximum Dew Point: $85^{\circ} \mathrm{F}\left(29^{\circ} \mathrm{C}\right.$)			
Control Material	Case and Cover: NEMA 1 High Impact Lexan 950® Plastic.			
Agency Listings	UL Listed: File E27734, Guide XAPX (Temperature Indicating and Regulating Equipment) CSA Approved File LR948 Class 4813-02			

[^13]
Thermostatic Temperature Controller (DC)

Features

- 12 or 24 volt operation
- Temperature sensor provided
- Mounting hardware included
- For use with 1 or 2 fan models
(Relay needed for 2 fan models - not offered by Thermal Transfer Products)
- Wiring provided for remote manual override
- Adjustable temperature settings range from $100^{\circ} \mathrm{F}$ thru $210^{\circ} \mathrm{F}$ in $20^{\circ} \mathrm{F}$ increments

Connection Assembly

Wiring Diagrams

NOTE: This switch should be fused to prevent damage if ground is lost.
A 30 Amp Fuse is required in the power supply.
If manual override switch is not used, insulate P3 Black and P7 Green individually.

Electrical Schematic

Sensor Dimensions

How to Order

Temperature Sensors

Normally Open (Closed on temperature rise)

Contact Rating 6 AMPS AT 120 VAC

Voltage
4 AMPS AT 240 VAC
0.1 to 240 volts AC or 12 VDC 8 AMPS, 24 VDC 4 AMPS

Pressure
1,000 PSI operating
Material 303 Stainless Steel Housing

PART NUMBER	SET TEMPERATURE(${ }^{\circ} \mathrm{F}$)
65769	140
65769	120

*Switching temperature ranges from one (1) to six (6) ${ }^{\circ}$ F. Other temperature settings are available. Consult factory for options. For DC applications, do NOT wire directly to motor. (Relay needed.)

How to Order

All shipments FOB Racine, WI USA

Electronic Temperature Sensors

Electronic temperature sensor

- Process connection: 1/4" NPT
- 2 switching outputs complementary hysteresis adjustable
- Measuring range of $-13-284^{\circ} \mathrm{F}\left(-25-140^{\circ} \mathrm{C}\right)$

Function

The unit generates 2 output signals: $1 \times \mathrm{NO}+1 \times \mathrm{NC}$ with separately adjustable switch points (SET 1) and (SET 2).

OUT1

- With rising temperature OUT1 closes when the set value (SET1) is reached.
- With falling temperature OUT1 opens when the value (SET1) minus hysteresis is reached.

OUT2

- With rising temperature OUT2 opens when the set value (SET2) is reached.
- With falling temperature OUT2 closes when the value (SET2) minus hysteresis is reached.
The hysteresis is fixed at 5 K .

(2) setting rings (manually adjustable after unlocking)
(3) LED yellow: lights if OUT1 $=0 \mathrm{~N}$, temperature $>$ [SET1]
(4) setting marks
(5) LED yellow: lights if OUT2 $=0 \mathrm{~N}$, temperature $<$ [SET2]
(6) process connection $1 / 4$ " NPT

Pin $4=$ OUT1 $/$ Pin2 $=$ OUT2
To obtain the setting accuracy, set both rings to minimum values, and then set desired values. All dimensions in inches (millimeters), unless noted otherwise.

Sensor Port Adapters

Part Number	Description
51627	\#8SAE TO 1/2" BSPP
51653	\#8 SAE TO 1/4" NPT
51654	\#8 SAE T0 1/2" NPT

Technical Data

Application	Liquid and Gases
Electrical Design	DC PNP
Output	Normally open/closed complementary
Operating voltage (V)	$9.6-32^{1}$
Current rating (mA)	500
Short-circuit protection	Yes (non-latching)
Reverse polarity protection	Yes
Overload protection	Yes
Voltage drop	<2
Current consumption	<30
Setting Range	
Set point, SP	$3-284 / 37-543^{\circ} \mathrm{F}\left(-16-140 / 3-284^{\circ} \mathrm{C}\right)$
Reset point, rP	$-4-277 / 25-531{ }^{\circ} \mathrm{F}\left(-20-136 /-4-277^{\circ} \mathrm{C}\right)$
Adjustment of the switch point	Shims

Accuracy	
Setting accuracy	$\pm 3 \mathrm{~K}$
Repeatability	$\pm 0.1 \mathrm{~K}$
Temperature drift	0.1 / 10 K
Power-on delay time	0.5 s
Measuring element	$1 \times$ Pt 1000, to DIN EN 60751, class B
Dynamic response T05 / T09	$1 / 3$ s*
Minimum installation depth	. 59 inches (15 mm)
Medium temperature	$-13-257{ }^{\circ} \mathrm{F}\left(-25-125^{\circ} \mathrm{C}\right) 293{ }^{\circ} \mathrm{F}\left(145^{\circ} \mathrm{C}\right)$ max. 1 h
Ambient temperature	-13-158 ${ }^{\circ} \mathrm{F}\left(-25-70^{\circ} \mathrm{C}\right)$
Storage temperature	-40-257 ${ }^{\circ} \mathrm{F}\left(-40-212^{\circ} \mathrm{C}\right)$
Protection	IP 67, III
Shock resistance	DIN IEC 68-2-27:50 g (11 ms)
Vibration resistance	DIN EN 60068-2-6:20 g (10-2000 Hz)
EMC	EN 61000-4-2 ESD: 4 kV CD / 8 kV AD EN 61000-4-3 HF radiated: $10 \mathrm{~V} / \mathrm{m}$ EN 61000-4-4 Burst: 2 Kv EN 61000-4-6 HF conducted: 10V
Housing materials	Stainless steel 316L / 1.4404; PC (Makrolon); PBT (Pocan); FPM (Viton)
Materials (wetted parts)	Stainless steel 316L / 1.4404
Display	Power: LED green; Switching status: LED yellow
Connection	M12 connector; gold-plated contacts
Weight	$0.229 \mathrm{lbs}(0.104 \mathrm{~kg}$)

1 Operating voltage "supply class 2" to cULus.

* According to DIN EN 60751

The values for accuracy apply to flowing water.

Thermal Transfer Part Number	Description
55857	Temperature Sensor, dual PNP outputs, 1/4" NPT
55858	Cover, Protective, PK
55859	4-wire Micro DC cordset, straight connector
$51661^{* *}$	Bulb Well
${ }^{* *}$ Optional	

Optional Bulb Well

Electronic Temperature Sensors

Low Cost, Simple Setup

Immersion thermostat, measuring temperature with a liquid filled sensing element. SPDT contacts, complete with waterproof protection pocket. Used to measure temperature on the primary heating pipe circuit, it is particularly suitable for automatic adjustment pumps.

- Contacts rating: 10(2,5)A/250V~
- Contacts: switching or closing contact for temperature increase
- Maximum head temperature: $176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$
- Maximum bulb temperature: $257^{\circ} \mathrm{F}\left(125^{\circ} \mathrm{C}\right)$
- Temperature rate of change: $1^{\circ} \mathrm{K} / \mathrm{min}$
- Protection degree: IP40

All dimensions in inches (millimeters), unless noted otherwise.

Part Number	Temperature Range	Differential	Maximum Bulb Temperature	Capillary Length	Protection Pocket 1/2" NPT	Copper Bulb
55925	$0^{\circ} / 194^{\circ} \mathrm{F}\left(0^{\circ} / 90^{\circ} \mathrm{C}\right)$	$\Delta t=4 \pm 1 \mathrm{~K}$	$266{ }^{\circ} \mathrm{F}\left(130^{\circ} \mathrm{C}\right)$	NA	. $27 \times .31 \times 4$ " (7x8x100 mm)	NA
55926	$0^{\circ} / 194^{\circ} \mathrm{F}\left(0^{\circ} / 90^{\circ} \mathrm{C}\right)$	$\Delta t=4 \pm 1 \mathrm{~K}$	$266{ }^{\circ} \mathrm{F}\left(130^{\circ} \mathrm{C}\right)$	NA	. $27 \times .31 \times 8$ " (7x8x200 mm)	NA
55927	$0^{\circ} / 194^{\circ} \mathrm{F}\left(0^{\circ} / 90^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{t}=4 \pm 1 \mathrm{~K}$	$266{ }^{\circ} \mathrm{F}\left(130^{\circ} \mathrm{C}\right)$	$39 "(1000 \mathrm{~mm})$	NA	$\emptyset .26 \times 3.7{ }^{\prime \prime}$ (6.5x95mm)

PB2P Fan Controller

Compact Programmable Temperature Sensor

Part Number 55959

This combined sensor and controller is designed to mount directly to the Heat Exchanger. It provides accurate temperature control by cycling the electric cooling fan to maintain desired oil temperature. The single housing reduces wiring and mechanical installation. A push-button and set of LEDS is provided to indicate and select the oil temperature setting.

Features

- 12 or 24 volt DC operation up to 25 amps .
- Temperature sensor and controller in single aluminum housing.
- Select from 6 temperature settings from 100 to $200^{\circ} \mathrm{F}$ (38 to $93^{\circ} \mathrm{C}$)
- Mounts directly to the cooler.

- Connector to fan is included and pre-wired.
- Solid-state design, no moving parts, fully sealed.
- Manual override feature built-in (all LEDs lit).
- Shuts off $5^{\circ} \mathrm{F}$ below set point.

Specifications

Operating Voltage	12 or 24 VDC Systems
Min/Max Voltage	9 VDC / 32 VDC
Current Rating	25 AMPS
Switch Type	Normally open, Low side
Ambient Operating Temperature	-40° to $+185^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Measurement Temperature Range	-40° to $+239^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.+115^{\circ} \mathrm{C}\right)$
Current Draw	20 mA
Setpoint Selections	$100^{\circ}, 120^{\circ}, 140^{\circ}, 160^{\circ}, 180^{\circ}, 200^{\circ} \mathrm{F}$
Selection method	Pushbutton and LEDS
Enclosure Rating	$\mathrm{IP69K}$
Sealed Housing	High-grade Automotive Potting Compound
Housing Material	Anodized Aluminum
Weight	Approx 8 oz. (.23 kg) incl. wire
Mounting	\#8 SAE Thread
Fan Connector	2 Conductor Receptacle

Installation

1. Insert controller sensor into \#8 SAE sensor port on cooler.
2. Connect controller to $D C$ fan (see wire diagram above).
3. Connect DC power to controller (see wire diagram above).
4. Push button to set controller to desired temperature.

Brushless DC
 Pulse Width Modulation (PWM) Sensor

For use with Brushless DC Fan Option

Variable Output Temperature Control

Function 1 - Output (Fan): Switch to control brushless fan speed over temperature span shown
Function 2 - Input (Override): (+) input switch - maximum fan speed bypass
Can control 1-10 brushless fans in parallel.

Specifications

Electrical Ratings	Functions 1 \& 2
Maximum steady state current	1 amps inductive or resistive
Maximum steady state supply voltage	32 volts DC
Minimum required supply voltage	9 volts DC
Recommended fusing	5 amps
Operating temperature range	$-40^{\circ} \mathrm{F}$ to $257^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
Exposure temperature range	$-40^{\circ} \mathrm{F}$ to $257^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$
Installation torque	14 newton-meters $(10 \mathrm{ft} \mathrm{lbs})$
Lead wires	18 awg. SXL

Wiring Diagram

 operation of the fan and increase the fan rpm to its maximum output. Override switch not provided with the harness, sensor, or brushless fans.

- Only use the brass hex portion of the sensor for tightening. Do not use the sensor base for tightening.
- The sensor will operate a 12 v brushless motor fan with a fan temperature turn on (at lowest rpm). The fan rpm will increase as the temperature increases and will reach its full on (maximum rpm).

- When coupled with a wiring harness, this sensor will control 12 v brushless motor fans based on the temperature at the sensor element (fluid).
- The blue wire override function is intended to bypass the current requested

Brushless DC Fan Wiring Harness

Part Number 56977

Brushless DC PWM Sensor Wiring Harness

Part Number 56978

Brushless DC Wiring Diagram

Compressed Air Separators

S-50 and S-100 Models

Two Models:

One with a built-in automatic float style drain, the second with a 1/8" NPT connection with manual shut off valve. Rugged cast zinc housing. Equipped with quick disconnect bowls for easy service.

S-200 thru S-1700 Models

Four models to fit most applications. Unique high efficiency design provides wide SCFM capacity range without loss in performance. Sturdy, lightweight aluminum construction for long dependable service. NPT threaded drain connection for installation of an electronic, manual or automatic float style drain. Low differential pressure at maximum flow ratings. Externally and internally epoxy painted for maximum corrosion protection.

MAINTENANCE

1. Depressurize unit before removing bowl.
2. A. If unit is equipped with a manual petcock, drain bowl at least once per workshift. More frequent draining may be required
B. If unit is equipped with an automatic float drain attached to the bowl, clean by turning bowl upside down, tapping on table top, and blow clean with airblow gun.
3. If bowl seal is cracked, damaged, or deteriorated, replace with approved seal.

Compressed Air Separators

Dimensions

MODEL NUMBER	A	B	C	D	$\underset{(\mathrm{NPT})}{\mathrm{E}}$	$\begin{gathered} \text { F } \\ \text { (NPT) } \end{gathered}$	$\begin{aligned} & \text { WEICHT } \\ & \text { LBS. } \end{aligned}$
S-50 M	3.25	0.98	3.25	7.20	1/2"	1/8"	2.9
S-50 AD	3.25	0.98	3.25	7.35	1/2"	1/8"	3.1
S-100 M	4.62	1.00	4.75	10.00	1 "	1/8"*	6.0
S-100 AD	4.62	1.00	4.75	10.00	1 "	1/8"	6.0
S-200 M	5.10	1.60	4.38	10.80	1 "	1/2"	4.8
S-300 M	6.70	2.00	4.38	17.00	1-1/2"	1/2"	11.2
S-600 M	6.70	2.00	6.00	17.00	2 "	1/2"	11.2
S-1700 M	8.10	2.40	7.75	19.90	3"	1/2"	22.00
S-2600 M	13.75	7.25	8.62	30.50	$4 "$	$3 / 4 "$	85
S-2600 4F	16.75	7.25	8.62	30.50	4" Flg	3/4"	100

*Supplied with manual shut off valve.

Specifications

MODEL NUMBER	$\begin{gathered} \text { SCFM } \\ 100 \\ \text { MIN. } \end{gathered}$	ANGE SIG MAX	$\triangle \mathrm{PAT}$ MAX SCFM	$\begin{aligned} & \text { PSI } \\ & \text { MAX } \end{aligned}$	$\underset{\text { MAX }}{\text { TEMP }{ }^{\circ} \mathrm{F}}$	BOWL TYPE	DRAIN TYPE
S-50 M	5	50	0.5	200	175	Cast Zinc	Manual
S-50 AD	5	50	0.5			Cast Zinc	Automatic with Internal Float
S-100 M	11	120	0.5			Cast Zinc	Manual
S-100 AD	11	120	0.5			Cast Zinc	Automatic with Internal Float
S-200 M	11	233	0.7	232	176	Aluminum	Manual
S-300 M	60	472	1.0			Aluminum	Manual
S-600 M	100	742	1.3			Aluminum	Manual
S-1700 M	260	1700	1.0			Aluminum	Manual
S-2600 M	1500	3500	1.5	150	350	Carbon Steel	Manual
S-2600 4F						Carbon Steel	Manual

MINIMUM OPERATING TEMPERATURE - $35^{\circ} \mathrm{F}$
Specifications and dimensions subject to change without notice.

Recommended Typical Installation

Automatic Float Drain

FD-25 and FD-50 Models

Two Models to fit most applications. Rugged zinc cast housing. Equipped with quick disconnect bowls for easy servicing. Economical cost.

Dimensions

MODEL NUMBER	A	B
FD-25	4.75	3.06
FD-50	8.50	4.75

Specifications

MODEL NUMBER	PART NUMBER	PSI MAX	TEMP ${ }^{\circ}$ F MAX	WEIGHT LBS (APPROX)
FD-25	66278	200	175	2.0
	60279			5.0

Flexible Metal Hose

Features

Designed to isolate damaging vibration, dampen noise and absorb thermal expansion from pumps and compressors to other related equipment. Hose is of corrosion resistant type 304 stainless steel. Connectors are carbon steel schedule 40 external NPT with hex nut attachments on both ends for easy installation. Couplings are welded to assure dependable leak free operation.

Specifications \& Dimensions

PART NUMBER	$\begin{aligned} & \text { CONNECTIONS } \\ & \text { NPT } \\ & \hline \end{aligned}$	HOSE INSIDE DIAMETER	OVERALL LENGTH	WORKING PRESSURE PSI			FITING LENGTH (EACH END)	$\begin{aligned} & \text { SHIPPING } \\ & \text { WT (APPROX) } \end{aligned}$
				AT 70°	AT $300{ }^{\circ}$	AT $400{ }^{\circ}$		
67492	. 5	. 5	10	1000	900	863	2.00	2.0
66271	1.0	1.0	12	525	460	435	1.75	2.0
66272	1.5	1.5	16	450	395	370	2.00	3.0
66273	2.0	2.0	18	400	350	330	2.00	4.5
66274	2.5	2.5	20	285	250	235	2.50	8.5
67442	3.0	3.0	22	265	230	220	3.00	12.5
66275	4.0	4.0	24	260	225	215	4.00	14.5

All dimensions are inches. Maximum operating temperature 1500° F. Other sizes and lengths available—consult factory.

Dimensions

PART NUMBER	DESCRIPTION
67492	$.5 \times 10$ Flex Hose
66271	1×12 Flex Hose
66272	1.5×16 Flex Hose
66273	2×18 Flex Hose
66274	2.5×20 Flex Hose
67442	3×22 Flex Hose
66275	4×24 Flex Hose

All shipments FOB Racine, WI USA

Installation

The satisfactory performance of flexible hoses is dependent upon certain precautions which must be taken at the time of installation.

1. Install the flexible hose directly on the pump, compressor or other equipment. If this is not practical, install as close as possible to the source of vibration.
2. Do not compress, twist or stretch during installation. Premature failure will result.
3. Flexible hoses must be installed so that its length is perpendicular to the direction of the vibration.
4. Support piping as needed to eliminate stress to the flexible hose. It must support only its own weight.

Counter Flanges

To increase the flexibility for units with standard threaded connections, TTP offers a range of compact flanges. The threaded part is easily assembled to the connections and the counter flange welded to your pipe.

Flange Kits

To increase the flexibility for units with standard threaded connections, TTP offers a range of compact flange kits. The threaded part is easily assembled to the connections and the counter flange welded to your pipe.

Dimensions

Part No.	Size	A	B	C	D	E	F
56811	DN20C	.39	.79	1.06	2.09	2.80	.43
56812	DN25C	.39	.79	1.33	2.48	3.31	.51
56813	DN50C	.47	.94	2.37	3.58	4.41	.51
56814	DN65C	.47	.94	3.00	4.17	4.91	.51
56815	DN80C	.59	1.18	3.50	4.65	5.55	.51
56816	DN100C	.59	1.18	4.50	5.67	6.50	.51
56817	DN150C	.87	1.73	6.63	8.54	9.84	.51

Ratings (according properties of gasket)
Maximum Working Pressure 580 psi
Minimum Working Temperature $\quad 5^{\circ} \mathrm{F}$
Maximum Working Temperature $392^{\circ} \mathrm{F}$

Materials

Stainless Steel
Carbon Steel flanges available. Consult factory for additional information.

Standard Connections

TTP counter flanges are used to connect your pipe to our compact flanges on the BPHE unit.

Foot Mounting Bracket

Optional Foot Mounting Bracket for BPSW and BPW Series (except 8x3 plates). Constructed of Carbon Steel.

Mounting bracket for location purposes only. Bracket is not designed to support entire weight of the cooler. Customer to add extra support if necessary.

Part No.	Plate Size	A	B	C	D	E	G	H
56839	$\begin{gathered} 12 \times 5 \\ (305 \times 127) \end{gathered}$	$\begin{gathered} 7.99 \\ (203) \end{gathered}$	$\begin{gathered} 9.35 \\ (237) \end{gathered}$	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{gathered} 7.17 \\ (182) \end{gathered}$	$\begin{aligned} & 1.77 \\ & (45) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (18) \end{aligned}$	$\begin{aligned} & .40 \times .59 \\ & (10 \times 15) \end{aligned}$
56840	$\begin{gathered} 20 \times 5 \\ (508 \times 127) \end{gathered}$	$\begin{gathered} 7.99 \\ (203) \end{gathered}$	$\begin{aligned} & 15.65 \\ & (398) \end{aligned}$	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{gathered} 7.17 \\ (182) \end{gathered}$	$\begin{aligned} & 1.77 \\ & (45) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (18) \end{aligned}$	$\begin{aligned} & .40 \times .59 \\ & (10 \times 15) \\ & \hline \end{aligned}$
56841	$\begin{gathered} 15 \times 5 \\ (381 \times 127) \\ \hline \end{gathered}$	$\begin{gathered} 7.99 \\ (203) \end{gathered}$	$\begin{aligned} & 12.74 \\ & (324) \end{aligned}$	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{gathered} 7.17 \\ (182) \end{gathered}$	$\begin{aligned} & 1.77 \\ & (45) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (18) \end{aligned}$	$\begin{aligned} & .40 \times .59 \\ & (10 \times 15) \end{aligned}$
56842	$\begin{gathered} 15 \times 10 \\ (381 \times 254) \end{gathered}$	$\begin{aligned} & 13.20 \\ & (335) \end{aligned}$	$\begin{aligned} & 12.40 \\ & (315) \end{aligned}$	$\begin{gathered} 3.94 \\ (100) \end{gathered}$	$\begin{aligned} & 12.40 \\ & (315) \end{aligned}$	$\begin{aligned} & 2.64 \\ & (67) \end{aligned}$	$\begin{aligned} & 0.65 \\ & (17) \end{aligned}$	$\begin{aligned} & .40 \times .75 \\ & (10 \times 15) \end{aligned}$
56843	$\begin{gathered} 20 \times 10 \\ (508 \times 254) \end{gathered}$	$\begin{aligned} & 13.51 \\ & (343) \end{aligned}$	$\begin{aligned} & 14.37 \\ & (365) \end{aligned}$	$\begin{aligned} & 3.94 \\ & (100) \end{aligned}$	$\begin{aligned} & 12.72 \\ & (323) \end{aligned}$	$\begin{aligned} & 2.64 \\ & (67) \end{aligned}$	$\begin{aligned} & 0.65 \\ & (17) \end{aligned}$	$\begin{aligned} & .40 \times .75 \\ & (10 \times 15) \end{aligned}$
56844	$\begin{gathered} 28 \times 10 \\ (711 \times 254) \end{gathered}$	$\begin{aligned} & 13.20 \\ & (335) \end{aligned}$	$\begin{aligned} & 21.30 \\ & (541) \end{aligned}$	$\begin{gathered} 3.94 \\ (100) \end{gathered}$	$\begin{aligned} & 12.40 \\ & (315) \end{aligned}$	$\begin{aligned} & 2.64 \\ & (67) \end{aligned}$	$\begin{aligned} & 0.65 \\ & (17) \end{aligned}$	$\begin{aligned} & .40 \times .75 \\ & (10 \times 15) \end{aligned}$

All dimensions are in inches (millimeters), unless noted otherwise.

Insulation

BPSW and BPW Series insulation boxes for heating applications.

Dimensions

Part No.	A	B	C* (Approx.)	D	Thickness
56820	9.33	4.72	$1.26+.09 \times$ NoP	1.18	.79
56821	13.11	6.38	$2.00+.09 \times$ NoP	1.97	.79
56822	16.61	6.46	$2.13+.09 \times$ NoP	1.97	.79
56823	16.61	6.46	$2.17+.09 \times$ NoP	1.97	.79
56825	17.28	11.34	$2.17+.10 \times$ NoP	3.54	.79
56826	22.52	11.34	$2.68+.09 \times$ NoP	3.54	.79
56827	22.52	11.34	$2.17+.10 \times$ NoP	3.54	.79

*Only available in selected 20th NoP (20, 40, 60, etc). NoP = Number of Plates.

Rating

Maximum Working Temperature
Thermal Conductivity
Fire Properties
Color
$302^{\circ} \mathrm{F}$
0.013 BTU/HrFtF ${ }^{\circ}$

B2 in accordance with DIN 4102
Silver

Dimensions

Part No.	A	B	C* * (Approx.)	D	Thickness
56828	26.78	18.11	$9.13+.09 \times$ NoP	3.15	1.97
56829	37.80	17.32	$9.84+.10 \times \mathrm{NoP}$	3.35	1.97
56830	27.95	18.90	$10.24+.09 \times \mathrm{NoP}$	3.74	1.97

*Only available in selected 20th NoP (20, 40, 60, etc). NoP = Number of Plates.

Rating

Maximum Working Temperature
Thermal Conductivity
Fire Properties
Color

Materials

Insulation
Insulation Cover
$302^{\circ} \mathrm{F}$
0.014 BTU/HrFtF ${ }^{\circ}$

B2 in accordance with DIN 4102
Silver

Rigid expanded polyurethane Aluminum

COSD Connection for Soldering

For standard thread-connections of TTP BPHE, the welding sleeve with union nut can be used to connect pipes with the connection of the heat exchanger. According to the quality of the used medium, the welding sleeve can be chosen in carbon or stainless steel. The soldering connection consists of a union nut, a gasket and a soldering sleeve. COSD connections are suitable for refrigerant applications.

Dimensions

Part No.	Nominal diameter	A	B	C	D	E	F	G	H	Opening of the spanner
56831	$3 / 41$. 86	. 71	. 94	. 67	. 12	. 57	. 59	. 63	1.18
56832	$1{ }^{\prime \prime}$	1.02	. 87	1.18	. 75	. 12	. 59	. 75	. 67	1.42
56833	$11 / 4 "$	1.38	1.10	1.52	. 98	. 12	. 79	. 98	. 71	1.81
56834	2 "	1.90	1.65	2.20	1.26	. 16	1.02	1.54	. 94	2.56
56835	$21 / 2^{\prime \prime}$	2.36	1.13	2.83	1.46	. 19	1.22	2.00	1.02	3.35

The used gasket has a thickness of .079" (2mm)

Materials

Union nut	MS58
Soldering sleeve	Rg5
Gasket	Hecker-Centellen WS 3820

Attachment G-111

Manufacturers' Submittals and Individual O\&M Manuals

VALVES \& PIPING Relief Valve

MODEL
RPKC-LAV

Pilot operated, balanced piston relief valve
CAPACITY: 200 gpm | CAVITY: T-18A

CONFIGURATION

L	Control	Standard Screw Adjustment
A	Adjustment Range	$100-3000 \mathrm{psi}(7-$ $210 \mathrm{bar}), 1000 \mathrm{psi}$ (70 bar) Standard
V	Setting	
(none)	Material/Coating Material	Viton
		Standard Material/Coating

Pilot-operated, balanced-piston relief cartridges are normally closed pressure regulating valves. When the pressure at the inlet (port 1) reaches the valve setting, the valve starts to open to tank (port 2), throttling flow to regulate the pressure. These valves are accurate, have low pressure rise vs. flow, they are smooth and quiet, and are moderately fast.

TECHNICAL DATA

Cavity	T-18A
Series	4
Capacity	200 gpm
Factory Pressure Settings Established at	4 gpm
Maximum Operating Pressure	5000 psi
Response Time - Typical	10 ms
Maximum Valve Leakage at 110 SUS (24 cSt)	$5 \mathrm{in} 3 / \mathrm{min} . @ 1000 \mathrm{psi}$
Adjustment - Number of Clockwise Turns to Increase Setting	5
Valve Hex Size	$15 / 8 \mathrm{in}$.
Valve Installation Torque	$350-375 \mathrm{lbf} \mathrm{ft}$
Adjustment Screw Internal Hex Size	$5 / 32 \mathrm{in}$.
Locknut Hex Size	$9 / 16 \mathrm{in}$.
Locknut Torque	$80-90 \mathrm{lbf}$ in.
Seal kit - Cartridge	Buna: 990-018-007
Seal kit - Cartridge	Polyurethane: 990-018-002
Seal kit - Cartridge	Viton: 990-018-006
Model Weight	2.60 lb.

TECHNICAL FEATURES

- Will accept maximum pressure at port 2; suitable for use in cross port relief circuits. If used in cross port relief circuits, consider spool leakage.
- Main stage orifice is protected by a 150 micron stainless steel screen.
- Not suitable for use in load holding applications due to spool leakage.
- Back pressure on the tank port (port 2) is directly additive to the valve setting at a 1:1 ratio.
- All 2-port relief cartridges (except pilot reliefs) are physically and functionally interchangeable (same flow path, same cavity for a given frame size).
- W and Y controls (where applicable) can be specified with or without a special setting. When no special setting is specified, the valve is adjustable throughout its full range using the W or Y control. When a special setting is specified, this setting represents the maximum setting of the valve.
- Corrosion resistant cartridge valves are intended for use in corrosive environments and are identified by the model code suffix /AP (see Option Selection below). External parts are made from stainless steel with titanium or brass components, where applicable. Internal parts are made from carbon steel leaded alloy, the same as standard valves. For further details, please see the Materials of Construction page.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.
Minimum Setting

Typical Pressure Rise

RELATED MODELS
RPKC8
Pilot operated, balanced piston relief main stage with integral T-8A control cavity

Attachment G-11m

Manufacturers' Submittals and Individual O\&M Manuals

VALVES \& PIPING

SAE Mating Flange

Specifications

- Combination SAE 4 Bolt and SAE Split Flange
- 1/2", 3/4" and 1" Block Body Style
- SAE Code 61 and 62
- Delrin and MOS2 Ball Seats
- Viton O-Rings
- Carbon Steel Construction Standard; (other material available to order)
- Temperature Range - $14^{\circ} \mathrm{F}$ to $212^{\circ} \mathrm{F}$ $\left(-10^{\circ} \mathrm{C}\right.$ to $\left.100^{\circ} \mathrm{C}\right)$
- Zinc Plated Body

Options

- All Standard Options Available. Contact Factory for Details
- Stainless Steel construction

Specifications

- Combination SAE 4 Bolt and SAE Split Flange
- 1 1/4", 1 1/2" and 2" Forged Body
- SAE Code 61 and 62
- Delrin and MOS2 Ball Seats
- Viton O-Rings
- Carbon Steel Construction Standard
- Temperature Range - $-20^{\circ} \mathrm{F}$ to $212^{\circ} \mathrm{F}$ $\left(-28^{\circ} \mathrm{C}\right.$ to $\left.100^{\circ} \mathrm{C}\right)$
- Zinc Plated Body
- Pressure Rating According to SAE Code 61 and 62 Standards

Options

- All Standard Options Available. Contact Factory for Details
- Stainless Steel construction

	Size	Part Number	A		C		F		G		H		J		$\begin{aligned} & \text { K tap } \\ & \hline \text { UN-2B } \\ & \hline \end{aligned}$
			mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	
Code 61	11/4"	FBV2H200001M	181	7.13	30	1.18	320	12.60	171	6.73	30.2	1.19	58.7	2.31	7/16-14
	$11 / 2^{\prime \prime}$	FBV2H240001M	204	8.03	38	1.50	320	12.60	186	7.32	35.7	1.41	69.8	2.75	1/2-13
	2"	FBV2H320001M	214	8.43	48	1.89	320	12.60	195	7.68	42.9	1.69	77.8	3.06	1/2-13
Code 62	11/4"	FBV2T200001M	198	7.80	30	1.18	320	12.60	178	7.01	31.8	1.25	66.7	2.63	1/2-13
	11/2"	FBV2T240001M	229	9.02	38	1.50	320	12.60	190	7.48	36.5	1.44	79.4	3.13	5/8-11
	2"	FBV2T320001M	256	10.08	48	1.89	320	12.60	211	8.31	44.5	1.75	96.8	3.81	3/4-10

Specifications

- Combination SAE 4 Bolt and SAE Split Flange
- 1/2", 3/4" and 1" Block Body Style
- SAE Code 61 and 62
- Delrin and MOS2 Ball Seats
- Viton O-Rings
- Carbon Steel Construction Standard; (other material available to order)
- Temperature Range -
- Zinc Plated Body

Options

- All Standard Options Available. Contact Factory for Details
- Stainless Steel construction

SAE J 518 c 3000 psi/21 MPa

Part Number	SIZE	DN	LW	L	I	B	H	h	m	V	SW	K	B_{1}	b_{1}	t	a	b	M	H_{2}
BBV2E080001M	mm	13	13	120	48	35	54	40	19	11	9	115	46	58	16	17,5	38,1	5/16"UNC	89
	in	0.51	0.51	4.72	1.89	1.38	2.13	1.57	0.75	0.43	0.35	4.53	1.81	2.28	0.63	0.69	1.5	5/16"UNC	3.5
BBV2E120001M	mm	20	20	136	62	49	75	57	24,5	14	14	170	49	66	18	22,2	47,6	3/8"UNC	127
	in	0.79	0.79	5.35	2.44	1.93	2.95	2.24	0.96	0.55	0.55	6.69	1.93	2.6	0.71	0.87	1.87	3/8"UNC	5
BBV2E160001M	mm	25	25	148	66	58	83	65	29,5	14	14	170	53	71	19	26,2	52,4	3/8"UNC	135
	in	0.98	0.98	5.83	2.6	2.28	3.27	2.56	1.16	0.55	0.55	6.69	2.09	2.79	0.75	1.03	2.06	3/8"UNC	5.31

SAE J 518 c 6000 psi/42 MPa

Part Number	SIZE	DN	LW	L	I	B	H	h	m	V	SW	K	B_{1}	b_{1}	t	a	b	M	H_{2}
BBV2S080001M	mm	13	13	120	48	35	54	40	19	11	9	115	46	58	16	18,2	40,5	5/16"UNC	89
	in	0.51	0.51	4.72	1.89	1.38	2.13	1.57	0.75	0.43	0.35	4.53	1.81	2.28	0.63	0.72	1.59	5/16"UNC	3.5
BBV2S120001M	mm	20	20	136	62	49	75	57	24,5	14	14	170	53	71	19	23,8	50,8	3/8"UNC	127
	in	0.79	0.79	5.35	2.44	1.93	2.95	2.24	0.96	0.55	0.55	6.69	2.09	2.79	0.75	0.94	2	3/8"UNC	5
BBV2S160001M	mm	25	25	148	66	58	83	65	29,5	14	14	170	66	80	24	27,8	57,2	7/16"UNC	135
	in	0.98	0.98	5.83	2.6	2.28	3.27	2.56	1.16	0.55	0.55	6.69	2.6	3.15	0.95	1.09	2.25	7/16"UNC	5.31

Specifications

- Combination SAE 4 Bolt and SAE Split Flange
- 1 1/4", 1 1/2" and 2" Forged Body
- SAE Code 61 and 62
- Delrin and MOS2 Ball Seats
- Viton O-Rings
- Carbon Steel Construction Standard
- Temperature Range - $-20^{\circ} \mathrm{F}$ to $212^{\circ} \mathrm{F}$ $\left(-28^{\circ} \mathrm{C}\right.$ to $\left.100^{\circ} \mathrm{C}\right)$
- Zinc Plated Body
- Pressure Rating According to SAE Code 61 and 62 Standards

Options

- All Standard Options Available. Contact Factory for Details
- Stainless Steel construction

SAE J 518 c 3000 psi/21 MPa

Part Number	SIZE	DN	LW	L	I	B	H	h	m	V	SW	K	B_{1}	b1	t	a	b	M	H_{2}
FBV2E020001M	mm	32	32	172	80	81	107	86	40,5	16,5	17	306	69	80	21	30,2	58,7	7/16"UNC	171
	in	1.26	1.26	1.77	3.15	3.19	4.21	3.39	1.59	0.65	0.67	12.04	2.72	3.15	0.83	1.19	2.31	7/16"UNC	6.73
FBV2E240001M	mm	40	38	177	85	100	124	103	50	16,5	17	306	77	95	24	35,7	69,8	1/2"UNC	188
	in	1.57	1.50	6.97	3.35	3.94	4.88	4.06	1.97	0.65	0.67	12.04	3.03	3.74	0.95	1,41	2.75	1/2"UNC	7.40
FBV2E320001M	mm	50	48	196	101	120	131	109,5	51,5	16,5	17	306	89	103	24	42,9	77,8	1/2"UNC	195
	in	1.97	1.89	7.72	3.98	4.72	5.16	4.31	2.03	0.65	0.67	12.04	3.5	4.06	0.95	1.69	3.06	1/2"UNC	7.68

SAE J 518 c 6000 psi/42 MPa

Part Number	SIZE	DN	LW	L	I	B	H	h	m	V	SW	K	B_{1}	b_{1}	t	a	b	M	H_{2}
FBV2S200001M	mm	32	32	172	80	81	107	86	40,5	16,5	17	306	77	94	27	31,8	66,7	1/2"UNC	171
	in	1.26	1.26	1.77	3.15	3.19	4.21	3.39	1.59	0.65	0.67	12.04	3.03	3.7	1.06	1.25	2.63	1/2"UNC	6.73
FBV2S240001M	mm	40	38	177	85	100	124	103	50	16,5	17	306	89	103	30	36,5	79,4	5/8"UNC	188
	in	1.57	1.50	6.97	3.35	3.94	4.88	4.06	1.97	0.65	0.67	12.04	3.5	4.06	1.18	1.44	3.13	5/8"UNC	7.40
FBV2S320001M	mm	50	48	196	100	118	138	117	59	16,5	17	306	123	135	35	44,5	96,8	3/4"UNC	202
	in	1.97	1.89	7.72	3.94	4.65	5.43	4.61	2.32	0.65	0.67	12.04	4.84	5.31	1.38	1.75	3.81	3/4"UNC	7.95

Attachment G-11n

Manufacturers' Submittals and Individual O\&M Manuals

VALVES \& PIPING SKK Coupling

Test 20 Type SKK Connection Thread M 16×2

Fast Coupling for:

- Monitoring and control of pressure
- Venting
- Sampling Fluids

Advantages:

- Coupling at system pressure level
- Connection is leakproof before piston valve is open
- Simple connection to measurement, control and switching devices
- Self locking metal protective cap
- Minimizes introduction of contamination to hydraulic systems

Working Pressure:

- Max. working pressure 9000 PSI (630 bar) For SKK type G, K and S the recommended working pressure of fitting manufacturer should be noted
- Connection under pressure up to 5800 PSI (400 bar) max.

Materials:

- Metal parts: Steel, Stainless Steel on request
- Seals:

Standard
$\mathrm{V}=\mathrm{FPM}-\mathrm{VITON}$ Temperature range $-4^{\circ} \mathrm{F}$ to $+392^{\circ} \mathrm{F}$
$\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+200^{\circ} \mathrm{C}\right)$
Optional
$\mathrm{P}=$ NBR-BUNA Temperature range $-4^{\circ} \mathrm{F}$ to $+195^{\circ} \mathrm{F}$
$\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+90^{\circ} \mathrm{C}\right)$
$\mathrm{E}=\mathrm{EPDM}$ Ethylene Propylene (for Brake Fluid)
Temperature range $-40^{\circ} \mathrm{F}$ to $+302^{\circ} \mathrm{F}$ $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+150^{\circ} \mathrm{C}\right)$

- Hose: Polyamide Temperature range $-31^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$ $\left(-35^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$

Media:

- Suitable for hydraulic oils and other low viscosity mineral based fluids (Check compatibility of seal material)
- For use with other liquid or gaseous media please consult STAUFF for details

The complete STAUFF-TEST-20-Type-SKK range is also available with hexagonal protection cap made of steel or plastic protection cap

STAUFF

Test Coupling with Protective Cap SKK

	Thread G	h	Hex	Order No. (Add C6F for Standard Finish)		Seal Type (see below)
		$\mathrm{mm}_{\mathrm{in}}$	$\mathrm{mm} / \mathrm{in}$	NBR (BUNA)	FPM (VITON) (Standard)	
	M8 x 1	$37 / 1.45$	$\begin{array}{\|r\|} \hline 17 \\ \hline \end{array}$	SKK $20-\mathrm{M} 8 \times 1$ - PA	SKK 20 - M8 x 1 - VA	O-Ring Type A
	M10 x 1	$37 / 1.45$	$\begin{array}{\|ll\|} \hline 17 & .67 \\ \hline \end{array}$	SKK $20-\mathrm{M} 10 \times 1$ - PA	SKK 20 - M10 x 1 - VA	O-Ring Type A
	M12 x 1,5	1.45	$\begin{array}{\|ll\|} \hline 17 & .67 \\ \hline \end{array}$	SKK $20-\mathrm{M} 12 \times 1,5-\mathrm{PC}$	SKK 20 - M12 x 1,5-VC	O-Ring Type C
	M14 x 1,5		19.75	SKK $20-\mathrm{M} 14 \times 1,5-\mathrm{PB}$	SKK 20 - M14 x 1,5-VB	Metal joint Type B
	M16 x 1,5	$37 / 1.45$	22/87	SKK 20 - M $16 \times 1,5-$ PB	SKK 20 - M16 x 1,5-VB	Metal joint Type B
	G $1 / 8$	39 1.53	$17 \quad .67$	SKK $20-\mathrm{G} 1 / 8$ - PC	SKK $20-\mathrm{G} 1 / 8$ - VC	O-Ring Type C
	G $1 / 4$	1.45	19.75	SKK $20-\mathrm{G} 1 / 4$ - PB	SKK $20-\mathrm{G} 1{ }^{1} \mathbf{4}$ - VB	Metal joint Type B
	G $1 / 4$	$37 / 1.45$	19.75	SKK $20-\mathrm{G} 1 / 4$ - PC	SKK $20-\mathrm{G} 11_{4}$ - VC	O-Ring Type C
	G $3 / 8$	$37 / 1.45$	$22 / .87$	SKK $20-\mathrm{G} 3 / 8$ - PB	SKK $20-\mathrm{G} 3 / 8$ - VB	Metal joint Type B
	R 1/8 ${ }^{\text {taper }}$		$\begin{array}{rrr} 17 & .67 \\ \hline \end{array}$	SKK $20-\mathrm{R} 1 / 8 \mathrm{~K}-\mathrm{PD}$	SKK $20-\mathrm{R} 1 /{ }_{8} \mathrm{~K}$-VD	Taper Type D
	R $1 / 4$ taper	$\begin{array}{\|r\|} \hline 36 \\ \hline \end{array}$	17.67	SKK $20-\mathrm{R} 11 / 4 \mathrm{~K}-\mathrm{PD}$	SKK $20-\mathrm{R} \mathbf{1} /{ }_{4} \mathrm{~K}-\mathrm{VD}$	Taper Type D
	$1 / 8$ NPT	1.41	$17 \quad .67$	SKK $20-1 / 8$ NPT-PD	SKK $20-1 / 8$ NPT-VD	Taper Type D
	$1 / 4$ NPT	$35 / 1.38$	17.67	SKK $20-1 / 4$ NPT-PD	SKK $20-1 / 4$ NPT-VD	Taper Type D
	5/16-24 UNF	1881.50	17.67	SKK $20-5 /{ }_{16}$ UNF-PE	SKK 20-5/16 UNF-VE	O-Ring Type E
	$7 / 16-20$ UNF	18.1 .50	$17 \quad .67$	SKK $20-7 / 16$ UNF-PE	SKK 20-7/16 UNF-VE	O-Ring Type E
	$1 / 2-20$ UNF	1.50	17.67	SKK 20-1/2 UNF-PE	SKK 20-1/2 UNF-VE	O-Ring Type E
	9/16-18 UNF	$37 / 1.45$	$19 \text {. } 75$	SKK 20-9/16 UNF-PE	SKK $20-9 / 16$ UNF-VE	O-Ring Type E

To order hexagonal protection cap, add "SK" to part number. To order Plastic Protection cap, add "KK" to part number. Other port connections and seals on request.

Port Connections and Seals

Type

STAUFF
${ }^{\circledR}$
Test 20 Type SKK Connection Thread M 16×2

Test Coupling SKK (compression ring fittings acc. to DIN 2353) - Metric Tubing

Type G Test coupling complete with straight fitting

Type K Test coupling for 24° cone fittings

Type S Test coupling for compression ring assembly

Series	$\begin{gathered} \text { PN } \\ \text { PSI } \\ \text { (Bar) } \end{gathered}$	Pipe Ød	$\frac{\mathrm{I}_{2}}{\mathrm{~mm}}$ in	I_{3}	$\frac{h}{\mathrm{~mm}}$ in	$\mathrm{mm}_{\text {in }}^{\mathrm{m}}$	$\mathrm{mm}_{\text {in }}^{\mathrm{m}}$	Order No.* (Add C6F for Standard Finish)		
								Type G	Type K	Type S
L	$\begin{aligned} & 4500 \\ & (315) \end{aligned}$	6	${ }_{0.61}^{15,5}$	$\begin{array}{\|rr\|} \hline 20 & \\ \hline & 0.79 \end{array}$		$\begin{array}{ll} 24 & \\ \hline & 0.94 \\ & \end{array}$	${ }^{14} \quad 0.55$	SKK 20 - 6L-VG	SKK 20 - 6L-VK	SKK 20 - 6-VS
		8	$\begin{gathered} 15,5 \\ 0.61 \end{gathered}$	$\begin{array}{\|rr\|} \hline 20 & \\ \hline & 0.79 \end{array}$	$\begin{array}{ll} 49 & \\ & 1.93 \end{array}$	$\begin{array}{\|rr\|} \hline 24 & \\ & 0.94 \end{array}$	$\begin{array}{ll} 17 & \\ & 0.67 \end{array}$	SKK 20 - 8L-VG	SKK 20 - 8L-VK	SKK 20 - 8-VS
		10	16,5 0.65	$\begin{array}{\|cc\|} \hline 22 & \\ & 0.87 \end{array}$	$\begin{array}{\|lc\|} \hline 49 & \\ & 1.93 \end{array}$	$\begin{array}{lr} 24 & \\ \hline & 0.94 \\ \hline \end{array}$		SKK 20 - 10L-VG	SKK 20 - 10L-VK	SKK 20 - 10-VS
		12	${ }_{0.69}^{17,5}$	$\begin{array}{\|lr\|} \hline 22 & \\ & 0.87 \end{array}$		$\begin{array}{\|rr\|} \hline 27 & \\ & 1.06 \end{array}$		SKK 20-12 L-VG	SKK 20-12 L-VK	SKK 20 - 12-VS
		15	$\begin{array}{r} 21 \\ 0.83 \end{array}$	$\begin{array}{ll\|} \hline 25 & \\ & 0.98 \end{array}$	$\begin{array}{ll} \hline 52 & \\ & 2.05 \end{array}$	$\begin{array}{\|rr\|} \hline 30 & \\ & 1.18 \end{array}$	$\begin{array}{\|cc\|} \hline 27 & \\ & 1.06 \end{array}$	SKK 20-15L-VG	SKK 20-15L-VK	SKK 20 - 15-VS
		18	19,5 0.77	$\begin{array}{\|rr\|} \hline 28 & \\ \hline & 1.10 \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 53 & \\ & 2.09 \\ \hline \end{array}$	$\begin{array}{\|rr\|} \hline 32 & 1.26 \\ \hline \end{array}$	$\begin{array}{rr} 32 & \\ \hline & 1.26 \\ \hline \end{array}$	SKK 20-18L-VG	SKK 20-18L-VK	SKK 20 - 18-VS
	$\begin{aligned} & 2300 \\ & (160) \end{aligned}$	22	20,5 0.81	$\begin{array}{\|rr\|} \hline 30 & 1.18 \\ \hline \end{array}$	$\begin{array}{\|rr\|} \hline 55 & \\ & 2.17 \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline 36 & \\ \hline & 1.42 \\ \hline \end{array}$	$\begin{array}{\|rr\|} \hline 36 & 1.42 \\ \hline \end{array}$	SKK 20 - 22 L-VG	SKK 20 - 22 L-VK	SKK 20 - 22-VS
		28		$\begin{array}{\|rr\|} \hline 32 & \\ \hline & 1.26 \\ \hline \end{array}$	$\begin{array}{r} 57,5 \\ 2.26 \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline 41 & \\ & 1.61 \\ \hline \end{array}$		SKK 20 - 28L-VG	SKK 20-28L-VK	SKK 20 - 28-VS
		35	$\begin{array}{\|rr\|} \hline 30 & 1.18 \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline 42 & \\ \hline & 1.65 \\ \hline \end{array}$	$\begin{array}{rr} 60 & \\ \hline & 2.36 \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline 46 & \\ \hline & 1.81 \\ \hline \end{array}$	$\begin{array}{\|rr\|} \hline 50 & \\ \hline & 1.97 \\ \hline \end{array}$	SKK 20 - 35L-VG	SKK 20 - 35L-VK	SKK 20 - 35-VS
		42	$\begin{array}{ll} 31 & \\ & 1.22 \end{array}$	$\begin{array}{\|lc\|} \hline 45 & \\ \hline & 1.77 \end{array}$	$\begin{array}{r} 64,5 \\ 2.54 \end{array}$	$\begin{array}{ll} \hline 55 & \\ & 2.17 \end{array}$	$\begin{array}{r} 60 \quad 2.36 \\ \\ \end{array}$	SKK 20-42 L-VG	SKK 20-42 L-VK	SKK 20 - 42-VS
S	9100 (630)	6	${ }^{14,5}$	$\begin{array}{rr} 20 & \\ \hline & 0.79 \\ \hline \end{array}$		$\begin{array}{r} 24 \\ \hline \end{array}$	$\begin{array}{rr} 17 & \\ & 0.67 \end{array}$	SKK 20 - 6S-VG	SKK 20 - 6S-VK	SKK 20 - 6-VS
		8	${ }^{16,5}$	$\begin{array}{\|rr} 20 & \\ \hline & 0.79 \end{array}$	$\begin{array}{\|ll\|} \hline 49 & \\ & 1.93 \end{array}$	$\begin{array}{ll} 24 & \\ & 0.94 \end{array}$	$\begin{array}{rr} 19 & \\ & 0.75 \end{array}$	SKK 20 - 8S-VG	SKK 20 - 8S-VK	SKK 20 - 8-VS
		10	${ }_{0.65}^{16,5}$	$\begin{array}{rrr} 22 & \\ & 0.87 \\ \hline \end{array}$		$\begin{array}{\|cc\|} \hline 24 & \\ & 0.94 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 22 \\ \\ \\ \\ \hline \end{array}$	SKK 20-10S-VG	SKK 20-10S-VK	SKK 20 - 10-VS
		12	$\begin{gathered} 17,5 \\ 0.69 \end{gathered}$	$\begin{array}{\|lr\|} \hline 22 & \\ \hline & 0.87 \end{array}$		$\begin{array}{\|ll\|} \hline 24 & \\ \hline & 0.94 \\ \hline \end{array}$	$\begin{array}{ll} 24 \\ & 0.94 \\ \hline \end{array}$	SKK 20-12S-VG	SKK 20 - 12S-VK	SKK 20 - 12-VS
		14	19,5 0.77	$\begin{array}{\|lr\|} \hline 22 & \\ & 0.87 \\ \hline \end{array}$	$\begin{array}{rr} 50,5 \\ 1.99 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 27 \\ \hline \end{array}$	$\begin{array}{\|rr} 27 & 1.06 \\ \hline \end{array}$	SKK 20-14S-VG	SKK 20-14S-VK	SKK 20 - 14-VS
	5800 (400)	16	${ }^{18} \quad \begin{aligned} & \text { 0.71 } \end{aligned}$	$\begin{array}{\|lr\|} \hline 28 & \\ & 1.10 \end{array}$	$\begin{array}{ll} 52 & \\ \hline & 2.05 \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline 30 & \\ \hline & 1.18 \\ \hline \end{array}$	$\begin{array}{ll} 30 & \\ & 1.18 \end{array}$	SKK 20-16S-VG	SKK 20 - 16S-VK	SKK 20 - 16-VS
		20	$\begin{array}{r} 24 \\ 0.94 \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline 30 & \\ \hline & 1.18 \\ \hline \end{array}$	2	$\begin{array}{\|rr\|} \hline 36 & \\ \hline & 1.42 \\ \hline \end{array}$	$\begin{array}{\|rr\|} \hline 36 & 1.42 \\ \hline \end{array}$	SKK 20 - 20S-VG	SKK 20 - 20 S-VK	SKK 20 - 20-VS
		25	$\begin{array}{rr} 26 & \\ \hline & 1.02 \\ \hline \end{array}$	$\begin{array}{\|rr\|} \hline 36 & \\ \hline & 1.42 \\ \hline \end{array}$	$\begin{array}{r} 57,5 \\ 2.26 \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 41 & \\ & 1.61 \\ \hline \end{array}$	$\begin{array}{ll} 46 & 1.81 \end{array}$	SKK $20-25$ S-VG	SKK 20 - 25S-VK	SKK 20 - 25-VS
		30	$\begin{array}{\|ll\|} \hline 30 & \\ \hline & 1.18 \end{array}$	$\begin{array}{\|ll\|} \hline 41 & \\ & 1.61 \end{array}$		$\begin{array}{\|ll\|} \hline 46 & \\ \hline & 1.81 \end{array}$	$\begin{array}{ll} 50 & \\ & 1.97 \end{array}$	SKK $20-30$ S-VG	SKK $20-30$ S-VK	SKK 20 - 30-VS
	$\begin{array}{r} 4500 \\ (315) \\ \hline \end{array}$	38	$\begin{array}{\|lr\|} \hline 34 & \\ & 1.34 \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline 48 & \\ \hline & 1.89 \\ \hline \end{array}$	$\begin{array}{r} 64,5 \\ 2.54 \\ \hline \end{array}$	$\begin{array}{\|lr\|} \hline 55 & \\ \hline & 2.17 \\ \hline \end{array}$	$\begin{array}{\|lll} \hline 60 & \\ & 2.36 \\ \hline \end{array}$	SKK 20 - 38S-VG	SKK 20 - 38S-VK	SKK 20 - 38-VS

[^14]
Attachment G-110

Manufacturers' Submittals and Individual O\&M Manuals

VALVES \& PIPING
Two-Way Valves

Two-Way Valves BBV 25 Series Manifold Valves

Specifications

- 1/4" - 2" Manifold Block Style
- Improved manifold design eliminates external piping and connectors.

3VM1,3VM2,3VM3\&3VM4-1-1/2" Ball Valve Manifold
Style, Part No. BBV25240101M (With Electronic Actuator - El-o-Matic Seperate cutsheet)

- Delrin +MoS2 Ball Seat
- Viton O-Rings
- Pressure Range: Up to 7250 PSI (500 bar)
- Carbon Steel Construction
- Temperature Range: $-20^{\circ} \mathrm{F}$ to $212^{\circ} \mathrm{F}$ $\left(-29^{\circ} \mathrm{C}\right.$ to $\left.100^{\circ} \mathrm{C}\right)$
- Six Mounting Holes, for added safety ($1 / 4$ " and $3 / 8^{"}$ versions have 4 mounting holes)
- Mounting Bolts not supplied
- Zinc Plated Body

Options

- Locking Device
- Actuator Packages Available
- Limit Switches
- Stainless Steel
- Three-way valves

Technical Information

Size	Part Number	MaximumWorking Pressure	
		PSI	Bar
1/4"	BBV25040001M	7250 PSI	500
$3 / 81$	BBV25060001M	7250 PSI	500
$1 / 2{ }^{\text {" }}$	BBV25080001M	5800 PSI	400
3/4"	BBV25120001M	4500 PSI	315
$1{ }^{\prime \prime}$	BBV25160001M	4500 PSI	315
11/4"	BBV25200001M	4500 PSI	315
11/2"	BBV25240001M	6090 PSI	420
2 "	BBV25320001M	6090 PSI	420

Dimensional Information

Size	L	L1	L_{2}	L_{3}	L_{4}	L_{5}	L_{6}	I	d_{1}	d_{2}	d_{3}	d_{4}
	in mm	in mm	in mm	in mm	in mm	in mm	in mm	in mm	in mm	in mm	in mm	in mm
$1 / 4{ }^{11}$	$\begin{array}{rr} 2.24 \quad 57 \\ \hline \end{array}$		$1.38 \quad 35$		$0.33 \quad 8$							0.4110
3/8"		0.308	2.17	0.39 10	$0.39 \quad 10$	1.734				$0.59 \quad 15$		
$1 /{ }^{\prime \prime}$	$3.86 \quad 98$		$\begin{array}{rr} 3.27 \quad 83 \\ 8 & 83 \end{array}$	$0.39 \quad 10$	$0.63 \quad 16$	$2.28 \quad 58$	1.63	$\begin{array}{ll} 1.67 & \\ 42 \end{array}$	$0.33 \quad 8$	$0.98 \quad 25$		$0.53 \quad 13$
$3 / 4{ }^{11}$				0.3910	20	2.72		$2.01 \quad 5$		1.22	20	
1"	5.31 135	0.39 10	$4.53 \quad 115$	0.39 10	0.94 24	$3.19 \quad 81$	2.26 57			1.37 35	0.98 25	0.65 17 17
11/4"	6.50 165	0.47 12	$5.35 \quad 136$	0.3910	1.14 29	3.7896	2.68 68	$2.95 \quad 75$	$0.51 \quad 13$	1.5740	32	0.75 19
$11 / 2^{\prime \prime}$	$\text { 7.11 } 181$	$1.12 \quad 28$	$4.41 \quad 112$	0.65 17	$1.12 \quad 28$	$4.41 \quad 112$		$3.33 \quad 85$		1.8848		$\begin{array}{rr} 2.98 \quad 25 \\ \hline \end{array}$
2"	$8.90 \quad 226$	1.5038	$\begin{array}{ll} 5.35 & 136 \\ \hline \end{array}$		1.5038	5.35136		$\begin{array}{lll} 4.17 & 111 \\ \hline \end{array}$	2.83	$2.35 \quad 60$		$1.22 \quad 31$

Size	H	h	h_{1}	m	V	SW	K_{1}	K_{2}	B	b	t	Weight
	in mm		in mm	in mm	in mm	in mm	in mm	in mm	in mm	in mm		
$1 / 4$.		$1.38 \quad 35$	$0.07 \quad 2$	$\begin{array}{lll} & 0.77 & 20 \\ \hline \end{array}$		0.287		3.1576	1.5740			
3/8"	$\begin{array}{rr} 2.32 & 57 \\ \hline \end{array}$	1.7745	0.072	0.96	$\begin{array}{lll} 0.43 & 11 \\ \hline \end{array}$	0.359	5.91150	4.53115			${ }^{0.33} 8$	$2.861 .3$
$1 / 2{ }^{1 /}$	2.7269	$\begin{array}{ll} 2.17 & 55 \\ \hline \end{array}$	$0.07 \quad 2$	1.34	0.4311	0.359	$5.91 \quad 150$	$4.53 \quad 115$	$\begin{array}{ll} 2.36 & 60 \\ \hline \end{array}$	1.77	0.287	$4.84 \quad 2.2$
$3 / 4{ }^{1 /}$	$8^{3.46} 88$	2.76		1.4838	$0.55 \quad 14$	0.5514	${ }^{7.87} 200$	$6.30 \quad 171$		$2.01 \quad 51$	$\begin{array}{\|r\|r\|} \hline 0.41 \\ \hline \end{array}$	$8.58 \quad 3.9$
$1{ }^{\prime \prime}$		$3.15 \quad 80$		$1.75 \quad 44$		${ }^{0.55} 14$	7.87200	$6.30 \quad 171$			$\begin{array}{rr} 0.41 \quad 10 \\ & \\ \end{array}$	${ }^{12.43 \quad 5.65}$
$11 / 4{ }^{11}$	$4.76 \quad 122$	3.94100	0.082	2.15	$\begin{array}{ll} 0.65 & 17 \\ \hline \end{array}$	$\begin{array}{ll} 0.67 & 17 \\ \hline \end{array}$		${ }^{12.60} 325$	${ }^{3.94} 100$		$\begin{array}{lll} & 0.47 & 12 \\ \hline \end{array}$	$24.4211 .1$
$11 / 2^{\prime \prime}$	$4.76 \quad 122$	3.94100		1.85		0.67		$\underbrace{12.60}_{325}$	5.12130		$\begin{array}{lll} & 0.67 & 17 \\ \hline \end{array}$	$\underbrace{33.66}_{15.3}$
$2{ }^{\prime \prime}$	$5.90 \quad 150$	5.129				$\begin{array}{rr} 0.67 & 17 \\ \hline \end{array}$		${ }^{12.60} 325$	5.91150	$4.41 \quad 112$	22	28.18

Ordering Information

BBV	2	5	08	0	0	0	1	M
Product Type								Manufacturing Code
Block Body Valve			Size					
			04-1/4"					O Ring Material
No. of Ports			06-3/8"					1 - Viton (standard)
			08-1/2"					
			12-3/4"					
Connection Type			16-1"					Ball Seat Material
5 - Manifold Mount			20-11/4"					0 - Delrin (standard)
			$24-11 / 2^{\prime \prime}$					
			32-2"					
Body Material								Ball \& Stem Material
0 - Carbon Steel Zinc Plated								0 - Carbon Steel
1-316 Stainless Steel								1 - Stainless Steel

[^0]: 1) pipe flange dimensions, SAE J518 code 61 / ISO 6162-1
 high pressure type up to 420 bar (see section 10.2)
 low pressure type for up to 16 bar (see section 10.3)
 2) for other shaft ends, contact Bucher Hydraulics GmbH
 3) threaded port to DIN 3852, Part 2
 4) pressure port to SAE J518 code 61 / ISO 6162-1 can be supplied for pressure ranges $2+3$
[^1]: * this pump is used as the ordering example in section 6.2

[^2]: [穻
 The main characteristics are valid for hydraulic oils as well as fire-resistant and environmentally-friendly fluids with a viscosity of $20-50 \mathrm{~mm}^{2} / \mathrm{s}$

[^3]: 1) at speed $n=1450 \mathrm{rpm}$ (theoretical)
 2) maximum intermittent pressure for max 20 sec but not more than 10% of the duly cycle
 3) theoretical value at the max permitted continuous pressure for mineral oil
 4) theoretical value at the max permitted continuous pressure for mineral oil at $n=1450 \mathrm{rpm}$
[^4]: F罂 IMPORTANT: For detailed informations on Bolt-on valves see www.bucherhydraulics.com

[^5]: All hubs supplied standard with one setscrew
 Non－standard bores available．Consull KTR Engineering

[^6]: Terminals $1,3,5,7,9,11,13$, and 15 are internally connected in the module to 24 V dc common.

[^7]: Allen-Bradley, Rockwell Automation, Rockwell Software, CompactLogix, ControlFLASH, Logix5000, RSLinx, RSLogix, PanelView, PhaseManager, ControlLogix, PanelView, Ultra, PowerFlex, FlexLogix, PLC-5, DriveLogix, SLC, MicroLogix, and TechConnect are trademarks of Rockwell Automation, Inc.

 Trademarks not belonging to Rockwell Automation are property of their respective companies.

[^8]: Thermo switches can be ordered both as a single component and in combination with STAUFF level gauges SNA and SNK. See pages A26 and A27.

[^9]: - For other dimensions, refer to "Terminal Box Type".

[^10]: \star ：Pressure Centered Models are not available for the Valve Size of＂04＂．

[^11]: Note．〇 Mark：Available X Mark：Not Available

[^12]:
 －List of Spool Type

 | Spool Ty pe | DMG－01 | | | $\begin{aligned} & \text { DMT-03 } \\ & \text { DMG-03 } \end{aligned}$ | | | $\begin{array}{\|l\|} \hline \text { DMT-06 } \\ * \\ \text { DMT-10 } \end{array}$ | | DMG－04 DMG－06 DMG－10 | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | $\begin{array}{\|l\|} \hline 3 \mathrm{C} \\ 3 \mathrm{D} \\ \hline \end{array}$ | 2D | 2B | $\begin{array}{\|l\|} \hline 3 \mathrm{C} \\ \text { 3D } \\ \hline \end{array}$ | 2D | 2B | $\begin{aligned} & \hline 3 \mathrm{C} \\ & 3 \mathrm{D} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 2 \mathrm{D} \\ 2 \mathrm{~B} \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 3 \mathrm{C} \\ \text { 3D } \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 2 \mathrm{D} \\ 2 \mathrm{~B} \\ \hline \end{array}$ |
 | 2 Wirsm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
 | 3 W｜｜EIX | 0 | 0 | 0 | 0 | － | 0 | 0 | 0 | 0 | 0 |
 | 4 \｜阿X | 0 | － | － | 0 | － | － | 0 | 0 | 0 | 0 |
 | | 0 | － | － | 0 | － | － | 0 | 0 | 0 | 0 |
 | X | 0 | － | － | － | － | － | － | － | － | － |
 | W1HX | － | － | － | － | － | － | 0 | － | 0 | － |
 | X $\mathrm{P}^{\text {a }}$ | － | － | － | － | － | － | － | － | 0 | － |
 | | － | － | － | － | － | － | 0 | － | － | － |
 | | 0 | － | － | 0 | － | － | － | － | 0 | － |
 | 㖠和 | － | － | － | － | － | － | 0 | － | － | － |
 | 7 W｜rn | \bigcirc | 0 | － | － | － | － | 0 | 0 | \bigcirc | 0 |
 | | 0 | 0 | 0 | － | － | 0 | 0 | 0 | － | － |
 | 9 叫边 | 0 | － | － | 0 | － | － | 0 | － | 0 | |
 | 10 \｜\｜？ | 0 | － | － | 0 | － | － | 0 | － | 0 | |
 | 11 W｜ITX | 0 | － | － | － | － | － | 0 | － | 0 | － |
 | 12 Wrsix | 0 | － | － | 0 | － | － | 0 | － | 0 | － |

 Position \＃3
 Position \＃2
 Position \＃1（\＃2，in case of $\mathrm{DM}_{\mathrm{G}}^{\mathrm{T}}-01 / 03-2 \mathrm{~B} *, \mathrm{DM}_{\mathrm{G}}^{\mathrm{T}}-03-2 \mathrm{D} *$ ）
 Note：The O mark indicate the spool ty pe available for each ty pe．

 ## YTKEN

 ## Manually Operated Directional Valves DMT－03／06／10 DMG－01／03／04／06／10

 ## DIRECTIONAL CONTROLS

 ## Valves Using Neutral Position and Side Position

 －Valves Using Neutral Position and Side Position（Special Tw o Position Valve）
 In addition to the standard two positions valves（ $2 \mathrm{D} *, 2 \mathrm{~B} *$ ），the following two types of two positions valves are available：Valves with neutral position（\＃2）and position \＃1（ $2 \mathrm{~B} * \mathrm{~A}, 2 \mathrm{D} * \mathrm{~A}$ ），valves with neutral position（\＃2）and position \＃3（ $2 \mathrm{~B} * \mathrm{~B}, 2 \mathrm{D} * \mathrm{~B}$ ）．
 The O mark in the table below indicates the spool type available for each models．
 －Spring Ofset Models

 | Valve
 Ty pe | Graphic Symbols | Model | | | Valve Type | Graphic Symbols | Model | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|
 | | | DMT－03
 DMG－03 | DMT－06＊ DMT－10＊ | DMG－04 DMG－06 DMG－10 | | | DMG－01 | DMT－03
 DMG－03 | DMT－06＊
 DMT－10＊ | DMG－04
 DMG－06
 DMG－10 |
 | 2B2A | ＋17r | \bigcirc | \bigcirc | 0 | 2B2B | FX | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
 | 2B3A | \％11］ | \bigcirc | \bigcirc | 0 | 2B3B | HX | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
 | 2B4A | 41！ | － | \bigcirc | 0 | 2B4B | $4{ }^{1}$ | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
 | 2B40A | 419 | － | \bigcirc | 0 | 2B40B | 5 河 | \bigcirc | － | \bigcirc | \bigcirc |
 | | | － | － | － | 2B5B | Fid | \bigcirc | － | － | － |
 | 2B5A | 411］ | － | \bigcirc | 0 | | FX | － | － | \bigcirc | \bigcirc |
 | 2B6A | XI凫 | － | － | 0 | 2B6B | \％迢 | － | － | － | \bigcirc |
 | | ＋1010 | － | O | － | | 成如 | － | － | O | － |
 | 2B60A | X凧 | － | － | 0 | 2B60B | | \bigcirc | \bigcirc | － | O |
 | | 91凧 | － | O | － | | | － | － | \bigcirc | － |
 | 2B7A | 个｜｜戊 | － | \bigcirc | 0 | 2B7B | 同建 | \bigcirc | － | \bigcirc | \bigcirc |
 | 2B8A | | － | \bigcirc | － | 2B8B | Fry | \bigcirc | － | \bigcirc | － |
 | 2B9A | ＋1］ | － | \bigcirc | 0 | 2B9B | PX | \bigcirc | － | \bigcirc | O |
 | 2B10A | $4 \\|_{T}$ | － | \bigcirc | 0 | 2B10B | F］ | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
 | 2B11A | A｜｜ll | － | \bigcirc | 0 | 2B11B | ［戈 | \bigcirc | － | \bigcirc | \bigcirc |
 | 2B12A | $4{ }^{4}$ | － | \bigcirc | 0 | 2B12B | $5]$ | \bigcirc | \bigcirc | \bigcirc | \bigcirc |

 ## －No－spring Detented Models

 | Valve Ty pe | Graphic Symbols | Model | | Valve Type | | Model | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | DMT－06＊ DMT－10＊ | DMG－04 DMG－06 DMG－10 | | | DMG－01 | DMT－06＊ DMT－10＊ | DMG－04 DMG－06 DMG－10 |
 | 2D2A | Hill | 0 | 0 | 2D2B | ［ | 0 | 0 | 0 |
 | 2D3A | \％1］ | 0 | 0 | 2D3B | H1X | 0 | 0 | 0 |
 | 2D4A | A1！ | 0 | 0 | 2D4B | ［ | 0 | 0 | \bigcirc |
 | 2D40A | H1䢕 | 0 | 0 | 2D40B | 或匃 | 0 | 0 | 0 |
 | － | － | － | － | | Filll | 0 | － | － |
 | 2D5A | ［1］ | 0 | 0 | 2DSB | FlX | － | 0 | 0 |
 | 2D6A | 8 | － | 0 | 2D6B | 巸相 | － | － | 0 |
 | | H1凧 | 0 | － | | 号勿 | － | 0 | － |
 | 2D60A | X問 | － | 0 | 2D60B | 卧相 | 0 | － | 0 |
 | | \％10廹 | 0 | － | | 巸入 | － | 0 | － |
 | 2D7A | H｜fer | \bigcirc | \bigcirc | 2D7B | ［1X | 0 | \bigcirc | \bigcirc |
 | 2D8A | H17 | \bigcirc | － | 2D8B | ［－7 | 0 | \bigcirc | － |
 | 2D9A | H1］ | 0 | 0 | 2D9B | P］${ }^{\text {］}}$ | 0 | O | O |
 | 2D10A | H1T | 0 | 0 | 2D10B | ［1］ | 0 | 0 | 0 |
 | 2D11A | ＋11 | \bigcirc | \bigcirc | 2D11B | ［1 ${ }^{\text {a }}$ | 0 | \bigcirc | \bigcirc |
 | 2D12A | H1N | 0 | 0 | 2D12B | dx | 0 | 0 | 0 |

 ＊．Position number is determined with three position ty pe（ $3 \mathrm{C} *$ and $3 \mathrm{D} *$ ）as the standard．

 Sub-plates

 | Valve
 Model
 Num bers | Japanese Standard "JIS" | | | European Design Standard | | | N. American Design Standard | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Sub-plate Model Num bers | Thread Size | | Sub-plate Model Numbers | Thread Size | | Sub-plate Model Numbers | Thread Size | Approx. Mass kg (1bs.) |
 | DMG-01 | DSGM-01-30 | Rc 1/8 | 0.8 (1.8) | DSGM-01-3080 | 1/8 BSP.F | 0.8 (1.8) | DSGM-01-3090 | 1/8 NPT | 0.8 (1.8) |
 | | DSGM-01X-30 | Rc 1/4 | 0.8 (1.8) | DSGM-01X-3080 | 1/4 BSP.F | 0.8 (1.8) | DSGM-01X-3090 | $1 / 4 \mathrm{NPT}$ | 0.8 (1.8) |
 | | DSGM-01Y-30 | Rc 3/8 | $0.8 \quad$ (1.8) | - | | | DSGM-01Y-3090 | $3 / 8 \mathrm{NPT}$ | 0.8 (1.8) |
 | DMG-03 | DSGM-03-40 | Rc 3/8 | 3.0 (6.6) | DSGM-03-2180 | 3/8 BSP.F | 3.0 (6.6) | DSGM-03-2190 | 3/8 NPT | 3.0 (6.6) |
 | | DSGM-03X-40 | Rc $1 / 2$ | 3.0 (6.6) | DSGM-03X-2180 | 1/2 BSP.F | 3.0 (6.6) | DSGM-03X-2190 | $1 / 2 \mathrm{NPT}$ | 3.0 (6.6) |
 | | DSGM-03Y-40 | Rc 3/4 | 4.7 (10.4) | DSGM-03Y-2180 | 3/4 BSP.F | 4.7 (10.4) | DSGM-03Y-2190 | $3 / 4 \mathrm{NPT}$ | 4.7 (10.4) |
 | DMG-04 | DHGM-04-20 | Rc 1/2 | 4.4 (9.7) | DHGM-04-2080 | 1/2 BSP.F | 4.4 (9.7) | DHGM-04-2090 | $1 / 2$ NPT | 4.4 (9.7) |
 | | DHGM-04X-20 | Rc 3/4 | 4.1 (9.0) | DHGM-04X-2080 | 3/4 BSP.F | 4.1 (9.0) | DHGM-04X-2090 | 3/4 NPT | 4.1 (9.0) |
 | DMG-06 | DHGM-06-50 | Rc 3/4 | 7.4 (16.3) | DHGM-06-5080 | 3/4 BSP.F | 8.5 (18.7) | DHGM-06-5090 | 3/4 NPT | 7.4 (16.3) |
 | | DHGM-06X-50 | Rc 1 | 7.4 (16.3) | DHGM-06X-5080 | 1 BSP.F | 8.5 (18.7) | DHGM-06X-5090 | 1 NPT | 7.4 (16.3) |
 | DMG-10 | DHGM-10-40 | Rc 1-1/4 | 21.5 (47.4) | DHGM-10-4080 | 1-1/4 BSP.F | 21.5 (47.4) | DHGM-10-4090 | 1-1/4 NPT | 21.5 (47.4) |
 | | DHGM-10X-40 | Rc 1-1/2 | 21.5 (47.4) | DHGM-10X-4080 | 1-1/2 BSP.F | 21.5 (47.4) | DHGM-10X-4090 | 1-1/2 NPT | 21.5 (47.4) |

 - Sub-plates are available. Specify the sub-plate model number from the table above.

 When sub-plates are not used, the mounting surface should have a good machined finish.

 - Sharable with Solenoid Operand Directional Valves and Solenoid Controlled Pilot Operated Directional Valves. For dimensions, refer to the right table then see the corresponding pages.

 ## Mounting Bolts

 | Valve
 Model
 Numbers | Sapanese Standard "JIS"
 European Design Standard | N. American
 Design Standard | Qty. | Tightening Torque
 Nm (in. 1bs.) | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | DMG-01 | M5 $\times 45 \mathrm{Lg}$. | No. $10-24$ UNC $\times 1-3 / 4 \mathrm{Lg}$. | 4 | $5-7$ | $(44-62)$ |
 | DMG-03 | M6 $\times 35 \mathrm{Lg}$. | $1 / 4-20$ UNC $\times 1-3 / 4 \mathrm{Lg}$. | 4 | $12-15$ | $(106-133)$ |
 | DMG-04 | M6 $\times 40 \mathrm{Lg}$. | $1 / 4-20$ UNC $\times 1-1 / 2 \mathrm{Lg}$. | 2 | $12-15$ | $(106-133)$ |
 | | M10 $\times 45 \mathrm{Lg}$. | $3 / 8-16$ UNC $\times 1-3 / 4 \mathrm{Lg}$. | 4 | $58-72$ | $(513-637)$ |
 | DMG-06 | M12 $\times 60 \mathrm{Lg}$. | $1 / 2-13$ UNC $\times 2-1 / 2 \mathrm{Lg}$. | 6 | $100-123$ | $(885-1089)$ |
 | DMG-10 | M20 $\times 75 \mathrm{Lg}$. | $3 / 4-10 \mathrm{UNC} \times 3 \mathrm{Lg}$. | 8 | $473-585$ | $(4195-5177)$ |

 Sub-plate dimensions appearing page

 | Subplate Model Num bers | Page |
 | :---: | :---: |
 | DSGM-01* | 18 |
 | DSGM-03* | 47 |
 | DHGM-04 $*$ | 26 |
 | DHGM-06* | 27 |
 | DHGM-10 $*$ | 28 |

 ## Instructions

 - Avoid connecting the Tank Port "T" to a line with possible surge pressure.

 ## Pressure Drop

 The following characteristics are based on the following conditions: viscosity of the fluid: $35 \mathrm{~mm}^{2} / \mathrm{s}(164 \mathrm{SSU})$ and Specific Gravity: 0.850

 - For any other viscosity, multiply the factors in the table below.

 | Viscosity | $\mathrm{mm}^{2} / \mathrm{s}$ | 15 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | SSU | 77 | 98 | 141 | 186 | 232 | 278 | 324 | 371 | 417 | 464 |
 | Factor | | 0.81 | 0.87 | 0.96 | 1.03 | 1.09 | 1.14 | 1.19 | 1.23 | 1.27 | 1.30 |

 For any other specific gravity (G^{\prime}), the pressure $\mathrm{dr} / \mathrm{p}\left(\mathrm{P}^{\prime}\right)$ may be obtained from the formula below.
 $\left.\angle P^{\prime}=\right\lrcorner P\left(G^{\prime} / G\right)$ where, P is a value on the following chart and G is 0.850 .

 - DMT-06, 06X

 | Spool Type | Pressure Drop Curve Number | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | P \rightarrow A | $\mathrm{B} \rightarrow \mathrm{T}$ | $\mathrm{P} \rightarrow \mathrm{B}$ | $\mathrm{A}^{\text {a }}$ T | $\mathrm{P} \rightarrow \mathrm{T}$ |
 | 2 | (2) | (2) | (2) | (2) | |
 | 3 | (3) | (2) | (3) | (2) | (2) |
 | 4 | (2) | (3) | (2) | (2) | - |
 | 40 | (2) | (2) | (2) | (2) | - |
 | 5 | (3) | (2) | (2) | (2) | - |
 | 6 | (3) | (2) | (3) | (2) | (1) |
 | 60 | (3) | (2) | (3) | (2) | (1) |
 | 7 | (2) | (2) | (2) | (2) | - |
 | 8 | (2) | - | (2) | - | - |
 | 9 | (3) | (2) | (3) | (2) | - |
 | 10 | (2) | (2) | (2) | (2) | - |
 | 11 | (3) | (2) | (2) | (2) | - |
 | 12 | (2) | (2) | (2) | (2) | - |

 Pressure Drop

 - DMT-10, 10X

 | $\begin{aligned} & \text { Spool } \\ & \text { Type } \end{aligned}$ | Pressure Drop Curve Number | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | $\mathrm{P} \rightarrow \mathrm{A}$ | $\mathrm{B} \rightarrow \mathrm{T}$ | $\mathrm{P} \rightarrow \mathrm{B}$ | $\mathrm{A} \rightarrow \mathrm{T}$ | $\mathrm{P} \rightarrow \mathrm{T}$ |
 | 2 | (3) | (2) | (3) | (2) | - |
 | 3 | (3) | (2) | (3) | (2) | (2) |
 | 4 | (3) | (2) | (3) | (2) | - |
 | 40 | (3) | (2) | (3) | (2) | - |
 | 5 | (3) | (2) | (3) | (2) | - |
 | 6 | (3) | (3) | (3) | (3) | (1) |
 | 60 | (3) | (3) | (3) | (3) | (1) |
 | 7 | (3) | (2) | (3) | (2) | - |
 | 8 | (3) | - | (3) | - | - |
 | 9 | (3) | (2) | (3) | (2) | - |
 | 10 | (3) | (2) | (3) | (2) | - |
 | 11 | (3) | (2) | (3) | (2) | - |
 | 12 | (3) | (2) | (3) | (2) | - |

 - DMG-01

 | Valve type | | | | Pressure Drop Curve Number | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 3C* | 3D* | 2D* | 2B* | $\mathrm{P} \rightarrow \mathrm{A}$ | $\mathrm{B} \rightarrow \mathrm{T}$ | $\mathrm{P} \rightarrow \mathrm{B}$ | $\mathrm{A} \rightarrow \mathrm{T}$ | $\mathrm{P} \rightarrow \mathrm{T}$ |
 | 3C2 | 3D2 | 2D2 | | (3) | (3) | (3) | (3) | - |
 | 3C3 | 3D3 | 2D3 | | (3) | (3) | (3) | (3) | (2) |
 | 3 C 4 | 3D4 | | | (3) | (3) | (3) | (3) | - |
 | 3 C 40 | 3D40 | | | (3) | (3) | (3) | (3) | - |
 | 3C5 | 3D5 | | | (2) | (1) | (1) | (1) | (3) |
 | 3C60 | 3D60 | | | (1) | (1) | (1) | (1) | (3) |
 | 3 C 7 | 3D7 | 2D7 | | (3) | (3) | (3) | (3) | - |
 | 3C8 | 3D8 | 2D8 | | (3) | - | (3) | - | - |
 | 3C9 | 3D9 | | | (3) | (3) | (3) | (3) | - |
 | 3 C 10 | 3D10 | | | (3) | (3) | (3) | (3) | - |
 | 3 C 11 | 3D11 | | | (3) | (3) | (3) | (3) | - |
 | 3 C 12 | 3D12 | | | (3) | (3) | (3) | (3) | - |
 | | | | 2B2 | (2) | (2) | (3) | (3) | - |
 | | | | 2B3 | (2) | (2) | (3) | (3) | - |
 | | | | 2B8 | (3) | - | (3) | - | - |

 ## - DMG-04

 | $\begin{aligned} & \text { Spool } \\ & \text { Type } \end{aligned}$ | Pressure Drop Curve Number | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | | $\mathrm{P} \rightarrow \mathrm{A}$ | $\mathrm{B} \rightarrow \mathrm{T}$ | $\mathrm{P} \rightarrow \mathrm{B}$ | $\mathrm{A} \rightarrow \mathrm{T}$ | $\mathrm{P} \rightarrow \mathrm{T}$ |
 | 2 | (1) | (2) | (1) | (4) | - |
 | 3 | (6) | (3) | (1) | (5) | (3) |
 | 4 | (5) | (4) | (5) | (5) | - |
 | 40 | () | (4) | (1) | () | - |
 | 5 | (5) | (2) | (4) | (5) | (1) |
 | 6 | (2) | (3) | (4) | (2) | (1) |
 | 60 | (2) | (3) | (4) | (2) | (1) |
 | 7 | (5) | (2) | (5) | (5) | - |
 | 9 | (6) | (2) | (6) | (5) | - |
 | 10 | (1) | (4) | (1) | () | - |
 | 11 | (5) | (4) | (5) | (5) | - |
 | 12 | (5) | (3) | (5) | (5) | - |

 - For DMT-03, DMG-03, DMG-06, and DMG-10, refer to the table below then see the related page.

 | Model Num ber | Pressure Drop Characteristics | Page | Remarks |
 | :---: | :--- | :---: | :---: |
 | DMT-03
 DMG-03 | Same as DSG-03 Series Solenoid Operated Directional Valves
 (Standard Ty pe) | Catalogue
 No. Pub. EC-0403 | 3D $*$ is same as 3C* |
 | DMG-06 | Same as Solenoid Controlled Pilot Operated Directional Valves
 (DSHG-06) | 16 | |
 | DMG-10 | Same as Solenoid Controlled Pilot Operated Directional Valves
 (DSHG-10) | 16 | |

 Manually Operated Directional Valves DMT-03 / 06 / 10
 DIRECTIONAL CONTROLS

 DMT-03-***-50/5080/5090

 ## How to Change Lever Position:

 | Model Num bers | "C" Thd. |
 | :--- | :---: |
 | DMT-03- $* * *-50$ | Rc 3/8 |
 | DMT-03- $* * *-$ | $3 / 8$ BSP.F |
 | 5080 | $3 / 8$ NPT |

 | DIMENSIONS IN |
 | :---: |
 | MILLIMETRES (INCHES) |

 DMT-06, 06X-***-30/3080/3090
 DMT-10, 10X-***-30/3080/3090

 | Model No. | Dimension mm (Inches) | |
 | :---: |
 | | C | D | E | F | H | J | K | L | N | Q | S | U | V | X | Y | Z | a | b | d | e | f | g |
 | DMT-06 | $\binom{50}{(1.97}$ | $\begin{gathered} 30 \\ (1.18) \end{gathered}$ | $\begin{array}{\|c\|} \hline 126 \\ (4.96) \end{array}$ | $\begin{array}{\|c\|} \hline 47.5 \\ (1.87) \end{array}$ | $\begin{array}{\|c\|} \hline 24 \\ (.94) \end{array}$ | $\begin{array}{\|c\|} \hline 320 \\ (12.60) \end{array}$ | $\begin{array}{\|c\|} \hline 255 \\ (10.04) \end{array}$ | $\left.\begin{gathered} 137 \\ (5.39) \end{gathered} \right\rvert\,$ | $\begin{gathered} 118 \\ (4.65) \end{gathered}$ | $\begin{gathered} 107 \\ (4.21 \end{gathered}$ | $\left.\begin{gathered} 33.5 \\ (1.32) \end{gathered} \right\rvert\,$ | $\left.\begin{gathered} 86 \\ (3.39) \end{gathered} \right\rvert\,$ | $\left\|\begin{array}{c} 76 \\ (2.99 \end{array}\right\|$ | $\begin{gathered} 9 \\ (.35) \end{gathered}$ | $\left\lvert\, \begin{gathered} 40 \\ (1.57) \end{gathered}\right.$ | $\left\|\begin{array}{c} 25 \\ (.98) \end{array}\right\|$ | $\begin{array}{\|c} 250 \\ (9.84) \end{array}$ | $\begin{gathered} 100 \\ (3.94) \end{gathered}$ | $\left\lvert\, \begin{gathered} 63.5 \\ (2.50) \end{gathered}\right.$ | $\begin{array}{\|c} 12 \\ (.47) \end{array}$ | (.43) | $\begin{aligned} & 17.5 \\ & (.69) \end{aligned}$ |
 | DMT-06X | |
 | DMT-10 | $\left.\left\lvert\, \begin{array}{c} 66 \\ (2.60 \end{array}\right.\right)$ | $\left\lvert\, \begin{array}{c\|} \hline 40 \\ (1.57) \end{array}\right.$ | $\begin{gathered} 160 \\ (6.30) \end{gathered}$ | 62.5 | $\binom{33}{(1.30)}$ | 402(15.83) | 320 | 173(6.81) | $\begin{gathered} 147 \\ (5.79) \end{gathered}$ | $\begin{gathered} 135 \\ (5.31 \end{gathered}$ | $\left.\begin{gathered} 40 \\ (1.57) \end{gathered} \right\rvert\,$ | $\begin{gathered} 102 \\ (4.02) \end{gathered}$ | $\begin{gathered} 90 \\ (3.54) \end{gathered}$ | $\begin{aligned} & 12.5 \\ & (.49) \end{aligned}$ | $\left\|\begin{array}{c} 50 \\ (1.97) \end{array}\right\|$ | $\left.\begin{gathered} 35 \\ (1.38) \end{gathered} \right\rvert\,$ | $\left.\left\lvert\, \begin{array}{c} 300 \\ (11.81) \end{array}\right.\right)$ | $\begin{array}{\|c\|} \hline 120 \\ (4.72) \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 78.5 \\ (3.09) \end{array}$ | $\begin{array}{\|c\|} \hline 15 \\ (.59) \end{array}$ | $\begin{array}{\|l\|} 13.5 \\ (.53) \end{array}$ | $\begin{gathered} 21 \\ (.83) \\ \hline \end{gathered}$ |
 | DMT-10X | |

 $\star 2$. The position of operating lever can be changed as required. For the detail, see the DMT-03 in the previous page.
 \star 3. Lever Operating Torque: Not exceeding 30 Nm (266 IN. 1bs.)

 Sub- plates
 DSGM-03*-40/2180/2190

 | Sub-plate | Piping Size "C" Thd. | "D" Thd. | Dimensions mm (Inches) | | | | | | | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Model Numbers | | | E | F | H | J | K | L | N | P | Q | S | T |
 | DSGM-03-40 | Rc 3/8 | M6 | 13 (.51) | $\begin{gathered} 110 \\ (4.33) \end{gathered}$ | $\begin{gathered} 9 \\ (.35) \end{gathered}$ | $\begin{gathered} 10 \\ (.39) \end{gathered}$ | $\begin{gathered} 32 \\ (1.26) \end{gathered}$ | $\begin{gathered} 62 \\ (2.44) \end{gathered}$ | $\begin{gathered} 40 \\ (1.57) \end{gathered}$ | $\begin{gathered} 16 \\ (.63) \end{gathered}$ | $\left(\begin{array}{c} 48 \\ (1.89) \end{array}\right.$ | $\begin{gathered} 21 \\ (.83) \end{gathered}$ | $\begin{gathered} 24 \\ (.94) \end{gathered}$ |
 | DSGM-03-2180 | 3/8 BSP.F | | | | | | | | | | | | |
 | DSGM-03-2190 | $3 / 8 \mathrm{NPT}$ | 1/4-20 UNC | 15 (.59) | | | | | | | | | | |
 | DSGM-03X-40 | Rc 1/2 | M6 | 13 (.51) | $\begin{gathered} 110 \\ (4.33) \end{gathered}$ | $\begin{gathered} 9 \\ (.35) \end{gathered}$ | $\begin{gathered} 10 \\ (.39) \end{gathered}$ | $\begin{gathered} 32 \\ (1.26) \end{gathered}$ | $\begin{gathered} 62 \\ (2.44) \end{gathered}$ | $\left\lvert\, \begin{gathered} 40 \\ (1.57) \end{gathered}\right.$ | $\begin{gathered} 16 \\ (.63) \end{gathered}$ | $\underset{(1.89)}{48}$ | $\begin{gathered} 21 \\ (.83) \end{gathered}$ | $\begin{gathered} 24 \\ (.94) \end{gathered}$ |
 | DSGM-03X-2180 | 1/2 BSP.F | | | | | | | | | | | | |
 | DSGM-03X-2190 | 1/2 NPT | 1/4-20 UNC | 15 (.59) | | | | | | | | | | |
 | DSGM-03Y-40 | Rc 3/4 | M6 | 13 (.51) | $\begin{gathered} 120 \\ (4.72) \end{gathered}$ | $\begin{gathered} 14 \\ (.55) \end{gathered}$ | $\begin{gathered} 15 \\ (.59) \end{gathered}$ | $\begin{gathered} 50 \\ (1.97) \end{gathered}$ | $\left(\begin{array}{c} 80 \\ (3.15) \end{array}\right.$ | $\left\lvert\, \begin{gathered} 45 \\ (1.77) \end{gathered}\right.$ | $\begin{gathered} 10 \\ (.39) \end{gathered}$ | $\left(\begin{array}{c} 47 \\ (1.85) \end{array}\right.$ | $\begin{gathered} 16 \\ (.63) \end{gathered}$ | $\begin{gathered} 42 \\ (1.65) \end{gathered}$ |
 | DSGM-03Y-2180 | 3/4 BSP.F | | | | | | | | | | | | |
 | DSGM-03Y-2190 | $3 / 4 \mathrm{NPT}$ | 1/4-20 UNC | 15 (.59) | | | | | | | | | | |


    ```
    DIMENSIONS IN
    MILLIMETRES (INCHES)
    ```


 Note: For the valve mounting surface dimensions, see the dimensional drawing of the sharable sub-plate in page 28 .

 ## \. CAUTION

 When making replacement of seals, please do it carefully after reading through the relevant instructions in the Operator's Manual.

 | Item | Name of Parts | Part Num bers | Qty. |
 | :---: | :---: | :---: | :---: |
 | 21 | O-Ring | SO-NB-P18 | 3 |
 | 22 | O-Ring | SO-NA-P6 | 1 |
 | 23 | O-Ring | SO-NB-P9 | 4 |

 Note: When ordering the o-ring, please specify
 the seal kit num ber (KS-DMG-01-10).

 DMT-03-***-50/5080/5090
 DMG-03- $* * *-50 / 5090$

 | Item | Name of Parts | Part Numbers | Qty. |
 | :---: | :---: | :---: | :---: |
 | 14 | O-Ring | SO-NB-P21 | 2 |
 | 15 | O-Ring | SO-NA-P8 | 2 |
 | 16 | Back Up Ring | SO-BB-P8 | 2 |
 | 17 | O-Ring | SO-NB-A023 | 1 |
 | 18 | O-Ring | SO-NB-A014 | 5 |

 | Valve Model Num bers | Seal Kit Num bers |
 | :---: | :---: |
 | DMT-03- $* * *-50 / 5080 / 5090$ | KS-DMT-03-50 |
 | DMG-03- $* * *-50 / 5090$ | KS-DMG-03-50 |

 Note: 1. O-rings of Item (1) are not used for DMT-03.
 2. When ordering the seals, please specify the seal kit number from the table right.

 DMT-06, 06X-***-30/3080/3090
 DMT-10, 10X-***-30/3080/3090

 Note: When ordering the seals, please specify the seal kit number from the table below.
 DMG-04-***-21/2190
 DMG-06-***-50/5090
 DMG-10- $* * *-40 / 4090$

 | Item | Name of Parts | Part Numbers | | | Qty . |
 | :---: | :---: | :--- | :---: | :---: | :---: |
 | | | DMG-04 | DMG-06 | DMG-10 | |
 | 29 | O-Ring | SO-NB-P34 | SO-NB-P40 | SO-NB-G65 | 2 |
 | 30 | O-Ring | SO-NB-P22A | SO-NB-P30 | SO-NB-P42 | 4 |
 | 31 | O-Ring | SO-NA-P20 | SO-NA-P20 | SO-NA-P25 | 2 |
 | 32 | O-Ring | SO-NB-P9 | SO-NB-P14 | SO-NB-P20 | 1 |
 | 33 | O-Ring | SO-NB-P9 | SO-NB-P10 | SO-NB-P14 | 2 |

 | List of Seal Kits | |
 | :--- | :---: |
 | Valve Model Num bers | Seal Kit Num bers |
 | DMT-06 $*-* * *-30 / 3080 / 3090$ | KS-DMT-06-30 |
 | DMT-10 $*-* * *-30 / 3080 / 3090$ | KS-DMT-10-30 |
 | DMG-04 $*-* * *-21 / 2190$ | KS-DMG-04-21 |
 | DMG-06 $*-* * *-50 / 5090$ | KS-DMG-06-50 |
 | DMG-10- $* * *-40 / 4090$ | KS-DMG-10-40 |

 # Attachment G-11e

 Manufacturers' Submittals and Individual O\&M Manuals

 ## VALVES \& PIPING

 Directional Valve Maintenance Manual

 | Ref.No. | ME-0410A |
 | :---: | :---: |
 | Date | $186-05-10$ |

 MAINTENANCE MANUAL
 FOR

 ## SOLENOID CONTROLLED PILOT OPERATED DIRECTIONAL VALVES

 MODEL: DSHG-03
 DSHG-04
 DSHG-06
 DSHG-10

 YUKEN KOGYO CO., LTD.
 TOKYO, JAPAN

 The explanation described in this manual mainly the solenoid controlled pilot operated directional valve. Please refer to the under-mentioned manuals pertaining to the pilot valve:

 | Model | Instruction Manual of the Pilot Valve |
 | :--- | :---: |
 | DSHG-03,04 | ME-0409 |
 | DSHG-06,10 | |

 ## 1. Maintenance

 On the top of the precautions common to the whole hydraulic device such as control of hydraulic oil, inspection of filters, etc., check the daily items given below. If any abnormality is found, take measures referring to Item 5 "Troubleshooting".

 1) Isn't there any burnout or beat in the solenoid?
 2) Isn't unsual heat generation found in the solenoid?
 3) Check whether the spool is changing over properly.
 4) Check for oil leak to the outside.
 2. Disassembly
 (Refer to the separate instruction Manual of the Pilot Valve concerning the pilot valve.)
 2.1 Preparation before disassembly
 1) Prepare the following.
 a. Clean washing oil (kerosene or light oil): for cleaning the components.
 b. Clean hydraulic oil similar to that used so far for hydraulic device: for lubricating the components.
 2) Stop the operation of hydraulic device reduce pressure to zero completely, and turn off the power switch.
 2.2 Cautions on disassembly

 Disassemble in order referring to the construction drawing. In that case, be careful with t he following.

 1) Never scratch or bruise the components.
 2) Do not stain the components (keep the surface on which the components are put clean.).
 3) Cover the openings (valve mounting parts) of hydraulic device to prevent ingress of foreign matters.
 4) Keep and arrange the components neatly to enable them to be reassembled later correctly and smoothly.
 3. Inspection and repair

 Check the components following the detailed procedures of inspection suggested below.

 If damage is minor, correct carefully by using emery paper or lapping. If it is impossible to reuse, replace. When placing an order with YUKEN for the replacement part need, inform us of the designation and drawing No. mentioned in the construction drawing, and quantity you need.

 | Description | Detailed procedures of inspection
 Body
 path, etc.
 o Check for damage and wear of sliding part with
 spool. |
 | :--- | :--- |
 | Spool foreign matters sticking to the groove, | |
 | 0-ring | o Check for damage and wear of sliding part. |
 | Pilot valve | o Check for elasiticity, permanent set and damage. |

 4. Reassembly
 (Please refer to the separate Instruction Manual of
 Pilot Valve pertaining to the pilot valve.)
 Reassemble the components in the reverse order of disassembly referring to the construction drawing. In that case, pay attention to the following items.
 1) Clean the components carefully with a clean washing oil.
 2) Soak the cleaned components into a clean hydraulic oil .
 3) Never scratch or bruise the components.
 4) There is the spool assembling orientation according to the types, so refer to the appended construction drawing.
 5) Be careful with ingress of foreign matters during reassembly.
 6) For assembling the spool, check by pushing the spool for its smooth movement.

 ## 5. Troubleshooting

 | Trouble | Cause | Remedy |
 | :---: | :---: | :---: |
 | Cross-over time of spool longer than specified | Contaminated system fluid | Flush system circuit. Disassemble and wash if necessary |
 | | Pilot pressure low | Check the system pressure and restore a specified pressure |
 | | Defective operation of solenoid | Check power source for voltage and frequency |
 | Defective operation of spool | Contaminated system fluid | Disassemble and wash |
 | | Pilot pressure does not exist at spool | Check pilot pressure source and its passage. If there is any failure, correct. |
 | | Improper draining | Check drain line. If there is any failure, correct. |
 | | Excessive flow | Replace the existing valve with large-size valve. |
 | | Improperly assembled after overhauling | Disassemble and reassemble properly. |
 | Flow direction is wrong | Electric circuit improperly wired | Check and correct wiring |
 | | Different type of spool installed | Specified spool should be installed |
 | | Piping is not proper | Check and correct the wrong piping |
 | | Direction of spool improper | Reverse the spool. |
 | Oil leaks | Fixing bolts loosened | Tighten the bolts |
 | | 0-ring injured or deteriorated | Replace the 0-ring |

 ## Attachment G-11f

 Manufacturers' Submittals and Individual O\&M Manuals

 ## VALVES \& PIPING

 El-o-Matic Actuator IOM Manual

 # Installation and Operation

 EL Series Electric Actuator

 ## El-O-matic Electric Actuators.....

 ## Where to Find Information

 El-o-matic electric actuators are the most advanced actuators of their type on the market today, this achievement is due to many years of improvement and development. Basic actuators provide all the features normally required for modern plant automation and a wide range of control options are available to tailor actuators to individual applications.

 The basic operation of El-o-matic valve actuators is the same for all sizes. Models EL20 through EL2500 feature a disengageable manual override. Torque switches are standard on models EL100 - EL2500. A double reduction worm/worm gear system is utilized on models EL20 to EL150. The EL200 through EL2500 utilize an extra spur gear reduction on the motor shaft.
 Installation Tips 2
 Parts and Materials

 - EL20 4
 - EL55 6
 - EL100/150 8
 - EL200/350 10
 - EL500/800 12
 - EL1200/1600 14
 - EL2500 16
 Installation, Setting and Calibration
 - Mechanical Limit Stop Setting 18
 - Limit Switch Setting 19
 - Potentiometer 20
 - Speed Controller 21
 - Position Transmitter, 2 Wire 22
 - Position Transmitter, 4 Wire 24
 - Positioner 26
 - Plug and Socket 29
 - Local Control Station 31
 Disassembly and Re-assembly 33
 Trouble Shooting 34
 Wiring Diagrams 35
 - Index 35
 - Basic Actuators 36
 - Kit Options 38
 Notes and Up-dates 42
 Dimensions and Performance data 43

 ## Installation

 ## CAUTION

 Do not attempt to store, install, or operate your El-OMatic EL actuator without taking account of the following;

 ## ELECTRICAL WIRING

 The control circuitry feeding the actuator must not allow power to be supplied to both "open" and "close" motor windings at the same instance in time. For example, when power is applied to the "open" terminal, the "close" terminal must be isolated from the power supply and vice versa. Failure to do so will result in the motor overheating.

 If several actuators are controlled from a common control switch, which has only a D.P.D.T. type electrical contact on it, then the result can be that the actuators will run in different directions.

 For example: An open/stop/close switch with only D.P.D.T. contacts on it controls three actuators. When the switch is turned to the open control position, all three actuators will start to run open. If any one of the three actuators reaches its open position before the other two it can receive power via the common D.P.D.T contacts and the other actuators close motor winding, resulting in that actuator running closed.

 When several actuators are required to be controlled in parallel with one 3-position switch, that switch must have separate contacts for each actuator being controlled.

 ## Also:

 1. Use wire with proper gauge and insulation. (follow standards prescribed by the relevant electrical code)
 2. Actuator chassis must be correctly grounded.
 3. Use appropriate conduit or cable glands for weather proof or explosion proof applications.
 4. Follow the wiring diagram to ensure proper connection of power and control voltage to the actuator.
 5. Make all splices or connections using the correct pin connector or terminal strip.
 6. Always connect anti condensation heater.

 ## STORAGE

 ## Warehouse Storage

 1. Actuators should be stored in a clean, dry warehouse free from excessive vibration and rapid temperature change.
 2. Actuators should not be stored on any floor surface.
 3. In areas of high humidity the actuator should have a packet of desiccant placed in the motor compartment. (this will absorb excessive moisture)

 ## On Site Storage

 1. Actuators should be stored in a clean, dry location free from excessive vibration and rapid temperature change.
 2. Ensure all actuator covers are in place and securely fastened.
 3. If power is not available, place a packet of desiccant in the motor compartment. (replace cover and securely fasten)
 4. Replace plastic conduit plugs with appropriate pipe plugs.

 Failure to follow proper storage guidelines will void warranty.

 DO

 1. Keep motor compartment clean and dry.
 2. When applicable connect the compartment heater. (not fitted on EL20)
 3. Check unit wiring and ensure it coincides with the proper wiring diagram.
 4. Power supply should be free from excessive voltage transients (spikes).
 5. Control lines should be shielded properly.
 6. CAUTION: Shut off incoming power before installing or repairing any electrical device.
 7. Check motor nameplate to be certain that the actuator voltage is the same as your incoming voltage.
 8. Schedule a periodic maintenance check of all El-OMatic actuators to prolong life and ensure proper performance. (we suggest check for correct opening and closing once a month)
 9. Set open and close limit switches manually, in accordance with instructions. (see page 19)
 10. Be sure and lubricate unit during reassembly. (see LUBRICATION)
 11. Check limit switch setting prior to motor operation if the actuator has been repaired or disassembled.

 ## DON'T.

 1. CAUTION: Do not attempt to install or repair any electric device without shutting off incoming power.
 2. Do not operate valve without first setting limit switches and checking direction of motor rotation.
 3. Release torque before disassembling gear train components or the actuator from the valve.
 4. Do not adjust torque switch settings. (these are factory set and need no adjustment)
 5. Do not use a cheater or extension bar on the handwheel. (this could result in damage to the valve assembly or cause physical injury)
 6. Do not alternately start and stop motor to seat or un-seat a valve. If properly sized, the running torque of the actuator should seat the valve in normal operation.

 ## LUBRICATION

 El-O-Matic utilizes a totally sealed and permanently lubricated gear case. The actuator can be mounted in any position. It is not unusual to find a very small amount of lubricant weeping around shaft seals. This situation can occur during long periods of storage. This lubrication will not affect operation and should simply be wiped up with a clean cloth. Once equipment has begun operating, this weeping should disappear.

 The actuator gearbox is filled with FINA CERAN M ($\mathrm{MO} \mathrm{S}_{2}$). This standard lubricant has been proven extremely reliable. Should the gearbox be disassembled, repack with EP370 or any good quality mineral based gear grease.
 ie. DROPPING POINT: $>300^{\circ} \mathrm{C}$.
 BASE: Calcium Sulphate.
 CLASSIFICATION :NLGI Class 1.

 | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | 1 | Motor | | 71 | 1 | Dial | Steel |
 | 2 | 4 | Screw | Steel | 72 | 1 | Window | Lexan |
 | 3 | 1 | Terminal Block | | 73 | 1 | Window Holder | Steel |
 | 4 | 1 | Marking Tag | | 74 | 3 | Screw | Steel |
 | 5 | 2 | Screw | Steel | 75 | 4 | Lockwasher | Steel |
 | 6 | 1 | Cover | Steel | 77 | 4 | Washer | Steel |
 | 7 | 1 | Capacitor | | 78 | 2 | Key | Steel |
 | 8 | 1 | O-Ring | | 79 | 3 | Retaining Ring | Steel |
 | 9 | 1 | Housing | Aluminium | 88 | 1 | Support Plate L.S. | Steel |
 | 10 | 1 | Limitswitch Cam | Aluminium | 89 | 1 | Gasket Motor | |
 | 11 | 1 | Motor Support Plate | Steel | | | | |
 | 12 | 1 | Drive Sleeve Bearing | Steel | | | | |
 | 13 | 1 | Pin | Steel | | | | |
 | 14 | 1 | Spring | Steel | | | | |
 | 15 | 1 | O-Ring | Buna | | | | |
 | 16 | 1 | Top Bearing | Steel | | | | |
 | 17 | 4 | Screw | Steel | | | | |
 | 18 | 11 | Lockwasher | Steel | | | | |
 | 19 | 1 | Limitswitch Cam | Aluminium | | | | |
 | 20 | 7 | Hex Nut | Steel | | | | |
 | 21 | 1 | Terminal Bracket | Steel | | | | |
 | 22 | 2 | Blindstop | Bronze | | | | |
 | 23 | 4 | Screw | Steel | | | | |
 | 24 | 9 | Lock Washer | Steel | | | | |
 | 25 | 5 | Screw | Steel | | | | |
 | 26 | 5 | Isolation Plate | | | | | |
 | 27 | 4 | Micro Switch | | | | | |
 | 28 | 2 | Screw | Steel | | | | |
 | 29 | 2 | Lock Washer | Steel | | | | |
 | 30 | 1 | Limitswitch Bracket | Steel | | | | |
 | 31 | 2 | Limitswitch Cam | Aluminium | | | | |
 | 32 | 4 | Screw | Steel | | | | |
 | 33 | 1 | Indicator Shaft | Steel | | | | |
 | 34 | 1 | Wormshaft | Steel | | | | |
 | 35 | 1 | Thrustbearing | Steel | | | | |
 | 36 | 1 | Worm Wheel | Bronze | | | | |
 | 38 | 1 | Worm | Steel | | | | |
 | 39 | 2 | Bearing | Steel | | | | |
 | 40 | 1 | Ball | Steel | | | | |
 | 41 | 1 | Screw | Steel | | | | |
 | 42 | 1 | Worm | Steel | | | | |
 | 43 | 2 | Gasket Window | Rubber | | | | |
 | 44 | 2 | Pin | Steel | | | | |
 | 45 | 1 | Drive Sleeve | Cast Iron | | | | |
 | 46 | 1 | Hex nut | Steel | | | | |
 | 47 | 1 | Sticker Terminal | | | | | |
 | 48 | 1 | Gasket Top Bearing | | | | | |
 | 50 | 1 | Gasket Motor Support | | | | | |
 | 53 | 1 | Pin | Steel | | | | |
 | 56 | 1 | Gasket Handwheel | | | | | |
 | 57 | 3 | Screw | Steel | | | | |
 | 58 | 1 | Sticker Open-close | | | | | |
 | 59 | 1 | Handwheel | Aluminium | | | | |
 | 60 | 1 | Pin | Steel | | | | |
 | 61 | 2 | Washer Handwheel | Steel | | | | |
 | 62 | 1 | Spring | Steel | | | | |
 | 63 | 1 | Handwheel Cover | Steel | | | | |
 | 64 | 1 | Bushing | Steel | | | | |
 | 65 | 1 | O-Ring | Buna | | | | |
 | 66 | 1 | O-Ring | Buna | | | | |
 | 67 | 2 | Screw | Steel | | | | |
 | 68 | 2 | Screw | | | | | |
 | 69 | 2 | Hex Nut | Steel | | | | |
 | 70 | 1 | Screw | | | | | |

 | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | 1 | Motor | | 68 | 4 | Screw | |
 | 2 | 1 | Pin Spiral | Steel | 69 | 9 | Lock Washer | |
 | 3 | 1 | Cover | Steel | 70 | 1 | Limitswitch Cam green | Aluminium |
 | 4 | 1 | Indicator Shaft | Steel | 71 | 2 | Terminal Block | |
 | 5 | 2 | Limit Switch cam | Aluminium | 72 | 4 | Screw | |
 | 7 | 4 | Screw | Steel | 73 | 2 | Marking Tag | |
 | 8 | 1 | O-Ring | Buna | 74 | 1 | O-Ring | Buna |
 | 9 | 4 | Micro Switch | | 75 | 1 | Sticker Terminal | |
 | 10 | 2 | Screw | | 76 | 1 | Support Plate Switch | Steel |
 | 11 | 1 | Nut | | 85 | 2 | Window gasket | Rubber |
 | 12 | 5 | Insulation plate | | 86 | 1 | Tooth Washer | |
 | 13 | 1 | Tooth Washer | | 87 | 1 | Window Holder | Steel |
 | 14 | 1 | Housing | Aluminium | 88 | 1 | Motor support plate gasket | |
 | 15 | 1 | Motor Support plate | Steel | 89 | 3 | Blindstop | |
 | 16 | 7 | Screw | | 90 | 1 | Top Bearing gasket | |
 | 17 | 9 | Lock Washer | | 92 | 1 | Limitswitch Cam Red | Aluminium |
 | 18 | 1 | Bearing | Steel | 93 | 4 | Screw | |
 | 19 | 2 | Screw | | | | | |
 | 20 | 1 | Sticker Terminal | | | | | |
 | 21 | 1 | Bearing | Steel | | | | |
 | 22 | 2 | Curved Spring washer | Steel | | | | |
 | 23 | 1 | Pin Spiral | | | | | |
 | 24 | 1 | O-Ring | Buna | | | | |
 | 25 | 1 | Window | Lexan | | | | |
 | 26 | 1 | Dial | | | | | |
 | 27 | 1 | Motor Gasket | | | | | |
 | 28 | 3 | Screw | | | | | |
 | 29 | 7 | Nut | | | | | |
 | 30 | 1 | Heater | | | | | |
 | 31 | 1 | Capacitor | | | | | |
 | 32 | 1 | Heater Bracket | Steel | | | | |
 | 33 | 1 | Handwheel gasket | | | | | |
 | 34 | 3 | Screw | | | | | |
 | 35 | 4 | Screw | | | | | |
 | 36 | 4 | Lock Washer | | | | | |
 | 37 | 1 | Bearing | Bronze | | | | |
 | 38 | 1 | Worm Wheel | Bronze | | | | |
 | 39 | 2 | Key | | | | | |
 | 40 | 1 | Worm Shaft | Steel | | | | |
 | 41 | 1 | Worm | Steel | | | | |
 | 42 | 1 | Retaining Ring | Steel | | | | |
 | 44 | 1 | Endcap | Aluminium | | | | |
 | 45 | 1 | Bearing | Steel | | | | |
 | 46 | 1 | O-Ring | Buna | | | | |
 | 47 | 1 | Thrust Bearing | Steel | | | | |
 | 48 | 1 | Worm | Steel | | | | |
 | 49 | 1 | Spacer | Steel | | | | |
 | 50 | 1 | Drive Sleeve | Bronze | | | | |
 | 51 | 2 | Screw | | | | | |
 | 52 | 2 | Screw | | | | | |
 | 53 | 2 | Nut | | | | | |
 | 54 | 2 | Dowel Pin | | | | | |
 | 55 | 1 | Handwheel bearing | Brass | | | | |
 | 56 | 1 | Handwheel | Aluminium | | | | |
 | 57 | 1 | Pin Spiral | | | | | |
 | 58 | 2 | Washer | | | | | |
 | 59 | 1 | Spring | | | | | |
 | 60 | 1 | Handwheel Cover | | | | | |
 | 61 | 1 | Limit Switch Bracket | Steel | | | | |
 | 62 | 2 | Screw | | | | | |
 | 63 | 2 | Lock Washer | | | | | |
 | 64 | 2 | Terminal Bracket | | | | | |
 | 65 | 1 | Sticker Open/Close | | | | | |
 | 66 | 1 | Window Sticker | | | | | |

 | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | 1 | Motor | | 67 | 1 | Key | Steel |
 | 2 | 7 | Screw | | 68 | 1 | Worm | Steel |
 | 3 | 1 | Housing | Aluminium | 69 | 1 | Key | |
 | 4 | 1 | Motor Support Plate | Steel | 70 | 8 | Torque Spring | |
 | 5 | 7 | Screw | | 71 | 1 | Screw | Steel |
 | 6 | 11 | Lock Washer | | 72 | 1 | Worm Shaft | Steel |
 | 7 | 1 | Torque Switch Bracket | Steel | 73 | 1 | Wormcap | Aluminium |
 | 8 | 2 | Screw | | 74 | 1 | Screw | |
 | 9 | 9 | Nut | | 75 | 3 | Nut | |
 | 10 | 11 | Screw | | 76 | 1 | Ball | Steel |
 | 11 | 13 | Lock Washer | | 77a | 1 | Drive Sleeve (EL-100) | Cast Iron |
 | 12 | 1 | Torque Switch Collar | | 77b | 1 | Drive Sleeve (EL-150) | Bronze |
 | 13 | 1 | Torque Switch Bush Bearing | g Brass | 78 | 2 | Screw | |
 | 14 | 1 | Dowel Pin | | 79 | 2 | Plain Washer | |
 | 15 | 1 | T.S. Gasket | | 80 | 2 | Dowel Pin | |
 | 16 | 6 | Micro Switch | | 81 | 1 | Worm | Steel |
 | 17 | 1 | Torque Switch Spacer | | 82 | 2 | Slotted set screw | |
 | 18 | 1 | Adaptor | | 83 | 1 | Pin Spiral | Steel |
 | 19 | 9 | Lock Washer | | 84 | 1 | Window Sticker | |
 | 20 | 1 | Drive Sleeve Bearing | Steel | 86 | 1 | Sticker Open/Closed | |
 | 21 | 2 | O-Ring | Buna | 87 | 3 | Blindstop | |
 | 22 | 1 | Pin Spiral | | 88 | 1 | Motor Gasket | |
 | 23 | 2 | Top Spring | | 89 | 4 | Screw | |
 | 24 | 1 | Top Bearing | Steel | 91 | 1 | Window Holder | |
 | 25 | 2 | Screw | | 92 | 1 | Topbearing gasket | |
 | 28 | 9 | Insulation Plate | | 93 | 6 | Tooth Washer | |
 | 29 | 2 | Screw | | 94 | 1 | Retaining Ring | |
 | 30 | 4 | Screw | | 95 | 1 | Motor support plate gasket | |
 | 31 | 2 | Limit Switch Cam | Aluminium | 100 | 1 | Support Plate Switch | Steel |
 | 32 | 4 | Screw | | 110 | 1 | Limitswitch Cam Green | Aluminium |
 | 33 | 1 | Indicator Shaft | Steel | 111 | 1 | Limitswitch Cam Red | Aluminium |
 | 34 | 1 | Dial | | | | | |
 | 35 | 1 | Shimring | | | | | |
 | 36 | 1 | Retaining Ring | | | | | |
 | 37 | 1 | Window | Lexan | | | | |
 | 38 | 1 | Cover | Steel | | | | |
 | 39 | 1 | Heater | | | | | |
 | 40 | 3 | Screw | | | | | |
 | 41 | 2 | Screw | | | | | |
 | 42 | 1 | Handwheel gasket | | | | | |
 | 43 | 2 | Window gasket | | | | | |
 | 44 | 1 | Heater Bracket | | | | | |
 | 45 | 2 | Terminal Block | | | | | |
 | 46 | 2 | Marking Tag | | | | | |
 | 47 | 2 | Sticker Terminal No's | | | | | |
 | 48 | 4 | Screw | | | | | |
 | 49 | 2 | Terminal Bracket | | | | | |
 | 50 | 1 | Lock Washer | | | | | |
 | 51 | 1 | Limit Switch Bracket | Steel | | | | |
 | 52 | 1 | O-Ring | Buna | | | | |
 | 53 | 4 | Screw | | | | | |
 | 54 | 4 | Lock Washer | | | | | |
 | 55 | 1 | Capacitor | | | | | |
 | 56 | 1 | Handwheel | Aluminium | | | | |
 | 57 | 1 | O-ring | Buna | | | | |
 | 58 | 1 | Washer | | | | | |
 | 59 | 1 | Spring | | | | | |
 | 60 | 1 | Handwheel Cover | | | | | |
 | 61 | 1 | Clutch Ring | Steel | | | | |
 | 62 | 1 | O-Ring | Buna | | | | |
 | 63 | 1 | Handwheel Bearing | Bronze | | | | |
 | 64 | 2 | Worm Bearing | Bronze | | | | |
 | 65 | 2 | Thrust Bearing | Steel | | | | |
 | 66 | 1 | Wormwheel | Bronze | | | | |

 | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. | PC.NO. | | DESCRIPTION. | MATERIAL. |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | 1 | Motor | | 65 | 1 | Screw | |
 | 2 | 5 | Screw | | 66 | 1 | Key | |
 | 3 | 1 | Housing | Aluminium | 67 | 16 | Torque Spring | |
 | 4 | 1 | Motor Support Plate | Steel | 68 | 1 | Worm | Steel |
 | 5 | 1 | T.Sw. Spacer | Steel | 69 | 1 | Worm Shaft | Steel |
 | 6 | 8 | Lock Washer | | 70 | 1 | Ball | Steel |
 | 7 | 1 | Hexnut | Steel | 71 | 1 | key | |
 | 8 | 2 | Screw | | 72 | 1 | Worm Cap | Aluminium |
 | 9 | 3 | Nut | | 73 | 1 | O-Ring | Buna |
 | 10 | 4 | Screw | Steel | 74 | 1 | Screw | |
 | 11 | 13 | Lock Washer | | 75 | 2 | Nut | |
 | 12 | 1 | Torque Switch Collar | Aluminium | 76 a | 1 | Drive Sleeve (EL-200) | Cast iron |
 | 13 | 1 | Torque Switch Bracket | Steel | 76 b | | Drive Sleeve (EL-350) | Bronze |
 | 14 | 1 | Torque Switch Bearing | Brass | 77 | 2 | Screw | |
 | 15 | 1 | Dowel Pin | | 78 | 2 | Window gasket | |
 | 16 | 6 | Micro Switch | | 79 | 2 | Dowel Pin | |
 | 17 | 2 | Torque Switch Spacer | | 80 | 1 | Bearing | Bronze |
 | 18 | 2 | Screw | | 81 | 1 | Worm Shaft Gear | Steel |
 | 19 | 2 | Screw | Steel | 82 | 1 | Pin Spiral | Steel |
 | 20 | 1 | Drive Sleeve Bearing | Steel | 83 | 1 | Worm | Steel |
 | 21 | 1 | O-Ring | Buna | 84 | 1 | Pin Spiral | Steel |
 | 22 | 1 | Pin Spiral | Steel | 85 | 1 | Worm Shaft | Steel |
 | 23 | 1 | Top Spring | | 86 | 2 | Thrust Bearing | Steel |
 | 24 | 1 | Top Bearing | Steel | 87 | 1 | Bearing | Bronze |
 | 25 | 1 | O-Ring | Buna | 88 | 1 | Motor Pinion | Steel |
 | 26 | 9 | Insulation plate | | 89 | 1 | Pin Spiral | |
 | 27 | 2 | Screw | | 90 | 1 | Window Sticker | |
 | 28 | 1 | Motor Gasket | | 92 | 1 | Sticker Open/Closed | |
 | 29 | 2 | Limit Switch cam | Aluminium | 93 | 3 | Blindstop | |
 | 30 | 4 | Screw | | 94 | 1 | Washer | Steel |
 | 31 | 1 | Indicator Shaft | Steel | 95 | 2 | Screw | |
 | 32 | 1 | Dial | | 96 | 4 | Screw | |
 | 33 | 1 | Gasket T.S. | | 98 | 1 | Screw | Steel |
 | 34 | 1 | Screw | | 99 | 1 | Screw | |
 | 35 | 1 | Window | Lexan | 100 | 3 | Screw | |
 | 36 | 1 | Cover | Steel | 101 | 1 | Window holder | Steel |
 | 37 | 1 | Heater | | 102 | 1 | Topbearing gasket | |
 | 38 | 3 | Screw | | 103 | 7 | Toothwasher | |
 | 39 | 6 | Screw | | 104 | | Motor support plate gasket | |
 | 40 | 1 | Screw | Steel | 119 | 1 | Limitswitch Cam Green | Aluminium |
 | 41 | 1 | Handwheel gasket | | 120 | 1 | Limitswitch Cam Red | Aluminium |
 | 42 | | Heater Bracket | Steel | 125 | 1 | Support Plate Switch | Steel |
 | 43 | 2 | Terminal Block | | | | | |
 | 44 | 2 | Marking Tag | | | | | |
 | 45 | 2 | Terminal Sticker | | | | | |
 | 46 | 4 | Screw | | | | | |
 | 47 | 2 | Terminal Bracket | Steel | | | | |
 | 48 | 6 | Screw | | | | | |
 | 49 | 1 | Limit Switch Bracket | Steel | | | | |
 | 50 | 1 | O-Ring | Buna | | | | |
 | 51 | 4 | Screw | | | | | |
 | 52 | 4 | Lock Washer | | | | | |
 | 53 | , | Capacitor | | | | | |
 | 54 | 1 | Handwheel | Aluminium | | | | |
 | 55 | 2 | O-Ring | Buna | | | | |
 | 56 | 4 | Washer | | | | | |
 | 57 | 1 | Handwheel Spring | steel | | | | |
 | 58 | | Handwheel Cover | | | | | |
 | 59 | 1 | Pin Spiral | | | | | |
 | 60 | 1 | O-Ring | Buna | | | | |
 | 61 | 1 | Handwheel Bearing | Bronze | | | | |
 | 62 | 2 | Worm Bearing | Bronze | | | | |
 | 63 | 2 | Thrust Bearing | Steel | | | | |
 | 64 | , | Worm Wheel | Bronze | | | | |

 PC.NO. QTY. DESCRIPTION.

 | 1 | 1 | Housing | Aluminium |
 | :---: | :---: | :---: | :---: |
 | 2 a | 1 | Drive Sleeve (EL-500) | Cast iron |
 | 2 b | 1 | Drive Sleeve (EL-800) | Bronze |
 | 3 | 1 | Handwheel | Aluminium |
 | 4 | 1 | Pin | |
 | 5 | 2 | Washer | |
 | 6 | 1 | Spring | |
 | 7 | 1 | Handwheel Cover | |
 | 8 | 1 | Sticker Open/Close | |
 | 9 | 1 | Bearing | Bronze |
 | 10 | 2 | Thrust Bearing | Steel |
 | 11 | 1 | Worm | |
 | 12 | 1 | Pin | |
 | 13 | 1 | Worm Shaft Gear | Delrin |
 | 14 | 1 | Pin | |
 | 15 | 1 | Bearing | Bronze |
 | 16 | 14 | Lock Washer | |
 | 17 | 4 | Screw | Steel |
 | 18 | 1 | O-Ring | Buna |
 | 19 | 1 | O-Ring | Buna |
 | 20 | 1 | Handwheel Bearing | Brass |
 | 21 | 1 | Worm Shaft | Steel |
 | 22 | 1 | Motor Pinion | Delrin |
 | 23 | 2 | Worm Shaft Bearing | Bronze |
 | 24 | 2 | Thrust Bearing | Steel |
 | 25 | 1 | Worm Wheel | Bronze |
 | 26 | 1 | Key | |
 | 27a | 16 | Torque Spring (EL 500) | Steel |
 | 27b | 24 | Torque Spring (EL 800) | Steel |
 | 28 | 2 | Dowel Pin | |
 | 29 | 1 | Key | |
 | 30 | 1 | Worm | Steel |
 | 31 | 1 | WormCap | Aluminium |
 | 32 | 1 | Ball | Steel |
 | 33 | 15 | Lock Washer | |
 | 34 | 4 | Screw | |
 | 35 | 1 | Screw | |
 | 36 | 1 | Screw | |
 | 37 | 1 | O-Ring | Buna |
 | 38 | 2 | Screw | |
 | 39 | 2 | Screw | |
 | 40 | 2 | Nut | |
 | 41 | 2 | Washer | |
 | 42 | 1 | Limit Switch Bracket | Steel |
 | 43 | 4 | Lock Washer | |
 | 44 | 4 | Screw | |
 | 45 | 1 | Heater | |
 | 46 | 8 | Screw | Steel |
 | 47 | 2 | Screw | |
 | 48 | 1 | Bung Drive Sleeve | Steel |
 | 49 | 1 | Dowel Pin | Steel |
 | 50 | 1 | Heater Bracket | Steel |
 | 51 | 2 | Terminal Block | |
 | 52 | 2 | Marking Tag | |
 | 53 | 2 | Terminal Sticker | |
 | 54 | 4 | Screw | |
 | 55 | 2 | Terminal Bracket | Steel |
 | 56 | 8 | Screw | |
 | 57 | 4 | Screw | |
 | 58 | 4 | Lock Washer | |
 | 60 | 3 | Blindstop | |
 | 61 | 1 | Motor Support Plate | Steel |
 | 62 | 7 | Screw | |
 | 63 | 1 | Dial | |

 PC.NO. QTY. DESCRIPTION

 | 64 | 2 | Limitswitch Cam | Aluminium |
 | ---: | :--- | :--- | :--- |
 | 65 | 1 | Limitswitch Cam Green | Aluminium |
 | 66 | 1 | Window | Lexan |
 | 67 | 2 | Window Sticker | Steel |
 | 69 | 1 | Indicator Shaft | Aluminium |
 | 70 | 1 | Limit Switch Cam Red | |
 | 71 | 4 | Screw | |
 | 72 | 6 | Micro Switch | |
 | 73 | 3 | Screw | |
 | 74 | 9 | Insulation plate | |
 | 75 | 2 | Screw | Steel |
 | 76 | 1 | Handwheel gasket | Buna |
 | 77 | 1 | Cover | |
 | 78 | 1 | O-Ring | |
 | 79 | 1 | Torque Switch spacer | |
 | 80 | 2 | Screw | |
 | 81 | 9 | Nut | |
 | 83 | 2 | Torque Switch Spacer | |
 | 84 | 2 | Screw | |
 | 85 | 1 | Torque Switch Collar | Aluminium |
 | 86 | 1 | Torque Switch Bearing | Brass |
 | 87 | 1 | Torque Switch Bracket | Steel |
 | 88 | 1 | Dowel Pin | |
 | 90 | 1 | Drive Sleeve Bearing | Steel |
 | 91 | 1 | O-Ring | Buna |
 | 92 | 1 | Pin Spiral | Steel |
 | 93 | 2 | Drive Sleeve Spring | Steel |
 | 94 | 1 | Thrust Bearing | Steel |
 | 95 | 1 | Top Bearing | Steel |
 | 96 | 1 | Worm Shaft | Suna |
 | 97 | 1 | O-Ring | |
 | 98 | 1 | Motor | |
 | 99 | 2 | Screw | |
 | 100 | 1 | Capacitor | |
 | 103 | 1 | Pin | |
 | 104 | 1 | Screw | Steel |
 | 105 | 1 | Window holder | |
 | 106 | 7 | Tooth Washer | |
 | 107 | 1 | Motor support plate gasket | |
 | 108 | 2 | Window gasket | Rubber |
 | 109 | 1 | Motor gasket | |
 | 110 | 1 | Topbearing gasket | |
 | 111 | 1 | Toothwasher | |
 | 112 | 1 | Hex nut | |
 | 120 | 1 | Washer | |
 | 121 | 1 | Nut | |
 | 122 | 1 | Torque Switch Gasket | Steel |
 | 123 | 1 | Support Plate Switch | Steel |
 | | | | |

 PC.NO. QTY. DESCRIPTION

 | 1 | 1 | Handwheel | Aluminium | 79 | 1 | Gasket Motor Support Pla | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 2 | 1 | O-Ring | Buna | 81 | 4 | Screw | Steel |
 | 3 | 1 | Handwheel Cap | Aluminium | 82 | 13 | Screw | Steel |
 | 4 | 7 | Screw | Steel | 83 | 1 | Terminal Bracket | Steel |
 | 5 | 12 | Lockwasher | Steel | | 4 | Screw | Steel |
 | 6 | 1 | H.W. Adaptor | Aluminium | 87 | 1 | Terminal Block | |
 | 7 | 1 | O-Ring | Buna | 88 | 1 | Capacitor | |
 | 8 | 1 | Retaining Ring | Steel | 89 | 3 | Blindplug | |
 | 9 | 1 | Spring | Steel | 90 | 1 | Housing | Aluminium |
 | 10 | 3 | Key | Steel | 91 | 1 | Toothwasher | Steel |
 | 15 | 1 | Declutch Shaft | Steel | 92 | 1 | Gasket Top Bearing | |
 | 16 | 2 | Key | Steel | 94 | 4 | Screw | Steel |
 | 18 | 1 | Clutch | Steel | 96 | 1 | T.S. Collar | Aluminium |
 | 19 | 1 | Retaining Ring | Steel | 97 | 1 | T.S. Bush Bearing | Bronze |
 | 20 | 1 | Worm Gear Sleeve | Steel | 98 | 1 | Hex Nut | Steel |
 | 21 | 1 | Bearing | Steel | 99 | 1 | Spacer | Steel |
 | 22 | 1 | Wormwheel | Bronze | 100 | 1 | T.S. Bracket | Steel |
 | 23 | 7 | Screw | Steel | 101 | 2 | Screw | Steel |
 | 24 | 1 | Bearing | Steel | 103 | 2 | Screw | Steel |
 | 25 | 16 | Spring EL1200 | Steel | 104 | 1 | Screw | Steel |
 | 25a | 16 | Spring EL1600 | Steel | 105 | 1 | Gasket Torque Switch | |
 | 26 | 1 | Worm EL1200 | Steel | 106 | 2 | Lifting Bolt | Steel |
 | 26a | 1 | Worm EL1600 | Steel | 109 | 1 | Shim Ring | Steel |
 | 27 | 1 | Bearing | Steel | 111 | 1 | Pin | Steel |
 | 28 | 1 | O-Ring | Buna | 112 | 1 | Shim Ring | Steel |
 | 29 | 1 | Endcap | Aluminium | 113 | 1 | Pin | Steel |
 | 30 | 2 | Declutch Rivet | Steel | 114 | 1 | Ball Bearing | |
 | 31 | 2 | Pin | Steel | 115 | 1 | Ball Bearing | |
 | 32 | 1 | Drive Sleeve EL1200 | Cast Iron | 116 | 1 | Thrust Bearing | |
 | 32a | 1 | Drive Sleeve EL1600 | Bronze | 118 | 1 | Motor Pinion | Steel |
 | 33 | 2 | Washer | Steel | 119 | 1 | Worm Shaft Gear | Steel |
 | 34 | 2 | Hex nut | Steel | 120 | 1 | Worm Shaft | Steel |
 | 35 | 2 | Screw | Steel | 121 | 1 | Gasket Motor | |
 | 36 | 1 | Wormshaft | Steel | 122 | 1 | Heater | |
 | 40 | 1 | Screw | Steel | 123 | 2 | T.S. Spacer | Steel |
 | 42 | 1 | Window Holder | Steel | 124 | 1 | Heater Bracket | Steel |
 | 43 | 1 | Window | Glass | 125 | 1 | Capacitor Bracket | Steel |
 | 46 | 1 | Cover | Aluminium | 126 | 1 | Thrust Bearing | Steel |
 | 47 | 1 | Dial | Steel | 127 | 1 | Retaining Ring | Steel |
 | 49 | 1 | Bearing | Bronze | 128 | 2 | Limitswitch Cam | Aluminium |
 | 51 | 1 | Indicator Shaft | Steel | 129 | 1 | Limitswitch Cam | Aluminium |
 | 52 | 1 | Limitswitch Bracket | Steel | 130 | 1 | Support Plate Limitswitch | Steel |
 | 53 | 1 | Motor | | 132 | 1 | Terminal Bracket | Steel |
 | 54 | 4 | Screw | Steel | 137 | 4 | Spacer | Steel |
 | 55 | 4 | Lockwasher | Steel | 138 | 3 | Screw | Steel |
 | 56 | 1 | Worm | Steel | 139 | 10 | Lockwasher | Steel |
 | 57 | 1 | Key | Steel | 140 | 1 | Bearing Cap | Steel |
 | 58 | 4 | Retaining Ring | Steel | 141 | 1 | Wormwheel Ring | Bronze |
 | 60 | 1 | O-Ring | Buna | 143 | 3 | Screw | Steel |
 | 61 | 1 | Bearing | Steel | 144 | 1 | Declutch Fork | Steel |
 | 62 | 1 | Bung D.S. | Steel | 145 | 1 | Spring Declutch | Steel |
 | 63 | 1 | Pin | Steel | 146 | 1 | Spacer | Steel |
 | 64 | 2 | Spring | Steel | 147 | 1 | Latch | Steel |
 | 65 | 1 | Bearing | Steel | 148 | 1 | Latch screw | Steel |
 | 66 | 1 | Top Bearing | Steel | 149 | 1 | Screw | Steel |
 | 67 | 2 | Screw | Steel | 150 | 1 | Lockwasher | Steel |
 | 68 | 6 | Lockwasher | Steel | | | | |
 | 69 | 1 | O-Ring | Buna | | | | |
 | 70 | 2 | Screws | Steel | | | | |
 | 71 | 6 | Hex Nut + Lockwasher | Steel | | | | |
 | 72 | 7 | Isolation Plate | | | | | |
 | 73 | 6 | Microswitch | | | | | |
 | 75 | 1 | Limitswitch Cam | Aluminium | | | | |
 | 78 | 1 | Motor Support Plate | Steel | | | | |

 MATERIAL.
 Aluminium
 Buna
 Steel
 Aluminium
 Buna
 Steel
 Steel
 Steel
 Steel
 Bronze
 Steel
 Steel
 Steel
 Steel
 Aluminium
 Steel
 Bronze
 Steel
 Ster

 Steel

 Aluminium
 Bronze
 Steel

 Steel
 Steel
 Steel
 Buna
 Steel
 Steel
 Steel
 Ster
 Steel
 Steel
 Steel

 Aluminium Steel

 PC.NO. QTY. DESCRIPTION.
 MATERIAL.

 Steel
 Steel
 Steel

 Aluminium
 Steel
 Steel
 Aluminium
 Bronz
 Steel
 Steel
 Steel
 Steel
 Steel
 Steel
 Stee
 Steel

 Steel
 Steel
 Steel

 Steel
 Steel
 Steel
 Aluminium
 Aluminium
 Steel
 Steel
 Steel
 Steel
 Stee
 Steel
 Steel
 Steel
 Steel
 Steel
 Steel

 ## Parts and Materials

 | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | 1 | Handwheel | Aluminium | 105 | 1 | Housing | Aluminium |
 | 2 | 2 | Lifting Bolt | Steel | 106 | 1 | Bearing | |
 | 3 | 4 | Screw | Steel | 107 | 1 | O-Ring | Buna |
 | 4 | 4 | Lockwasher | Steel | 108 | 1 | Support Plate Limitswitch | Steel |
 | 5 | 8 | Screw | Steel | 109 | 1 | Motor | |
 | 6 | 12 | Lockwasher | Steel | 110 | 1 | Motor Bushing | Steel |
 | 7 | 1 | Handwheel Adaptor | Aluminium | 111 | 1 | Key | Steel |
 | 8 | 1 | O-Ring | Buna | 112 | 1 | Adaptor | Steel |
 | 10 | 1 | Handwheel Cap | Aluminium | 113 | 2 | Heater | |
 | 11 | 1 | O-Ring | Buna | 114 | 1 | Heater Bracket | Steel |
 | 12 | 1 | Latch Shaft | Steel | 115 | 6 | Micro Switch | |
 | 13 | 1 | Declutch Fork | Steel | 116 | 2 | Terminal Block | |
 | 14 | 2 | Spring Declutch | Steel | 117 | 1 | Terminal Bracket | Steel |
 | 17 | 4 | Plain Bearing | | 118 | 1 | Torque Switch Compleet | |
 | 18 | 1 | Spring Pack Cover | Aluminium | 119 | 1 | T.S. Pinion + Rol Pin | |
 | 19 | 1 | O-Ring | Buna | 120 | 1 | Wormshaft | Steel |
 | 20 | 1 | Declutch Lever | Aluminium | 121 | 1 | Wormshaft Bush | Steel |
 | 21 | 4 | Screw | Steel | 122 | 2 | Key | Steel |
 | 23 | 2 | Declutch Rivet | Steel | 123 | 1 | Spring | Steel |
 | 24 | 3 | Retaining Ring | Steel | 124 | 1 | Clutch | Steel |
 | 25 | 1 | Declutch Link | Steel | 126 | 1 | Worm Gear Sleeve | Steel |
 | 26 | 2 | Declutch Rivet | Steel | 127 | 2 | Retaining Ring | Steel |
 | 27 | 1 | Key | Steel | 128 | 1 | Bearing Plate | Steel |
 | 29 | 1 | Shaft Declutch Lever | Steel | | 4 | Screw + Washer | Steel |
 | | 1 | O-Ring Shaft Decl. | Buna | 129 | 2 | Ball Bearing | |
 | 30 | 1 | Pin Declutch Lever | Steel | 130 | 1 | Wormwheel | Bronze |
 | 31 | 1 | Declutch Link | Steel | 131 | 1 | Key | Steel |
 | 32 | 1 | Latch Left | Steel | 132 | 1 | Retaining Ring | Steel |
 | 33 | 1 | Latch Right | Steel | 133 | 2 | Bearing | Steel |
 | 35 | 1 | Declutch Shaft | Steel | 134 | 1 | Torque Limiter Sleeve | Steel |
 | 36 | 2 | Cover Plug | | 135 | 8 | Spring | Steel |
 | 37 | 1 | Window | Glass | 136 | 1 | Lock Nut | Steel |
 | 38 | 1 | Window Holder | Steel | 138 | 8 | Isolation Plate | |
 | 42 | 2 | Screw | Steel | 139 | 1 | Screw | Steel |
 | 43 | 1 | Dial | Steel | 140 | 2 | Threaded Rod | Bronze |
 | 46 | 1 | Screw + Washer | Steel | 141 | 1 | Spacer | Aluminium |
 | 47 | 1 | Limitswitch Cam | Aluminium | | | | |
 | 48 | 1 | Cover | Aluminium | | | | |
 | 49 | 1 | O-Ring | Buna | | | | |
 | 50 | 15 | Screw | Steel | | | | |
 | 51 | 1 | Gasket | | | | | |
 | | 1 | Indicator Shaft | Steel | | | | |
 | 53 | 1 | Top Bearing | Steel | | | | |
 | 54 | 1 | Drive Sleeve | Bronze | | | | |
 | 55 | 1 | Bung Drive Sleeve | Steel | | | | |
 | 56 | 1 | Pin | Steel | | | | |
 | 57 | 3 | Spring | Steel | | | | |
 | 58 | 2 | Bearing | | | | | |
 | 59 | | Retaining Ring | Steel | | | | |
 | 60 | 2 | Stop Pin | Steel | | | | |
 | 61 | 1 | Motor Support Plate | Steel | | | | |
 | 62 | | Key | Steel | | | | |
 | 63 | 2 | Bearing | | | | | |
 | 64 | | Plain Washer | Steel | | | | |
 | 65 | 1 | Bearing | | | | | |
 | 66 | 1 | Wormshaft | Steel | | | | |
 | 67 69 | 2 1 | ${ }_{\text {Shim }}^{\text {Retaining }}$ Ring + Shim Ring | Steel | | | | |
 | 70 | 2 | Limitswitch Cam | Aluminium | | | | |
 | 71 | 1 | Limitswitch Cam | Aluminium | | | | |
 | 101 | 3 | Blindplug | Steel | | | | |
 | 102 | 2 | Screw | Steel | | | | |
 | 103 | 2 | Hex Nut | Steel | | | | |
 | 104 | 2 | Washer | Steel | | | | |

 fig. 2a.
 Location of Limit Stops

 All El-series electric actuators are equipped with a manual override feature and a Stroke Adjustment System. The purpose of this system is to limit the stroke of the valve while under manual control.

 On torque switch equipped actuators the limit stops may be used to provide a greater degree of stroke precision than by limit switches. ie. for high performance butterfly valves.

 After the actuator has been fitted on a valve and the end of travel limit switches have been set, the mechanical stops can be set as follows:

 Before beginning please note:

 ## Important.

 - For torque seated applications the mechanical stops do not need setting in the positions that torque seating is required and the stop screws should be backed off approx. 2 turns from the fully closed or open position. This to prevent the torque switch from tripping on the stop screws and not on the valve seat.

 ## Procedure

 1. With actuator mounted to a valve, electrically or manually move the valve away from the fully open position.
 2. Turn the open stop screw out (ccw) 4 turns.
 3. Manually operate the actuator to the full open position.
 4. Now turn the open stop screw in (cw) until an obstruction is felt (do not force) then backoff 1/2 turn and lock the stop screw with the locknut.
 5. Follow the same procedure at the closed end of travel and adjust the "close" stop screw the same way.

 ## Limit Switch Setting

 Set mechanical stops before setting limit switches. The end of travel limit switches have been factory set for approximately 90° of valve travel. They will however coincide with the exact end of valve travel positions.

 The switches should be adjusted after the actuator is installed on the valve and after the mechanical stops have been set.
 The switches and their operating cams are located under the limit switch bracket which is fixed to the top of the motor.

 fig. 1a. Location of Limit Switches
 Before beginning please note:

 ## Important

 - The motor is de-energized once the flatted side of the cam is in contact with the limit switch actuator arm, and the switch is no longer depressed.

 fig. 1b. Switch Break Position

 ## Also

 \diamond Capacitor may be removed from the limit switch bracket for better access.

 - For more precise setting you can leave the allen wrench in the cam during setting procedure.

 ## Procedure

 1. Remove actuator cover.
 2. The limit switches are marked "1" for close and " 2 ' for open.

 fig. 1c. Switch Functions.

 ## CCW (Open) switch setting

 3. Manually or electrically rotate actuator/valve to the desired position.
 4. REMOVE ELECTRICAL POWER.
 5. Using a 2 mm allen wrench loosen set screw on cam.
 6. Rotate green cam until switch lever arm rides on the curved portion of the cam. (fig 1d).

 ## fig. 1d. Initial Position

 7. Rotate cam counter-clockwise until the switch trips. This can be detected by a slight audible "click", or use a battery powered test light across terminal 8 and 10.
 8. Tighten set screws.
 9. Electrically cycle the actuator to check switch setting.

 ## CW (Close) limit switch setting

 10. Manually or electrically rotate actuator/valve to the desired position.
 11. REMOVE ELECTRICAL POWER.
 12. Using a 2 mm allen wrench loosen set screw on cam.
 13. Rotate red cam until switch lever arm rides on the curved portion of the cam (fig 1d).
 14. Rotate cam clockwise until the switch trips. This can be detected by a slight audible "click", or use a battery powered test light across terminal 5 and 7.
 15. Tighten set screws.
 16. Electrically cycle the actuator to check switch settings.

 The potentiometer itself is fixed on the limit switch bracket and is driven by a pair of gears from the indicator shaft.

 Before starting check "POT" kit to ensure that all parts are available.
 Always verify if potentiometer value suits your requirement prior to mounting in actuator.

 | Pc.Nr. | Qty | Description |
 | :--- | :---: | :--- |
 | 3 | 1 | Drive pinion (large). |
 | 4 | 1 | Potentiometer pinion (small). |
 | 5 | 1 | Potentiometer spacer. |
 | 6 | 1 | Potentiometer. |

 ## Procedure

 1. Remove actuator cover (1).
 2. Remove dial (2).

 Fig. 1.
 General Arangement

 3. Mount potentiometer (6) on limit switch bracket using nut and spacer (5).
 4. Slide potentiometer pinion (4) (small) onto pot. shaft and tighten screw.
 5. Slide drive pinion (3) (large) over indicator shaft.
 6. Ensure that end of travel limit switches have been set correctly and actuator is in mid position. Turn potentiometer shaft in mid position and tighten drive pinion screw onto the indicator shaft (do not overtighten).

 Fig. 2. Potentiometer detail
 7. Replace dial (1) and align in the proper position. Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove.

 EL100-114

 EL 100-1600 shown, EL 55 is the same except that it has no torque switches. Limit switches are shown in mid stroke.

 SRIT SWITCES SHOWN
 Dec.'96

 The speed controller board is fixed on the limit switch bracket on top of the motor

 Before starting check the kit to ensure that all parts are available and the speed controller card voltage is the same as the actuator voltage.

 $$
 \begin{array}{ll}
 \text { There are two versions } & : 110-250 \mathrm{~V} \text { AC } \\
 & : 24 \mathrm{~V} \text { DC }
 \end{array}
 $$

 | Pc.Nr. | Qty | Description | Used on |
 | :---: | :---: | :--- | :--- |
 | 9 | 3 | Print spacer | EL 55 |
 | 9 | 3 | Spacer | EL 100 -1600 |
 | 10 | 1 | Speed controller board | EL 55-1600 |

 ## Procedure

 1. Remove actuator cover (1).
 2. Remove dial (2).

 Fig. 1.
 General Arangement

 3a. For EL 55
 Insert three spacers (9) into the limit switch bracket and place speed control board so that the spacers locate correctly in the three holes in the circuit board. Press firmly into place.
 3b. For EL 100 through 800 only.
 Mount speed control board on limit switch bracket using 3 screws and 3 plastic spacers (the screws engage with 3 nuts welded to top motor plate).

 Fig. 2. Speed controller detail
 4. Connect speed control terminal 40 (brown) to terminal 12.
 5. Remove violet motor lead from terminal 4 and crimp to the violet wire connected to terminal 4 a on the speed control board.
 Then connect the violet wire connected to terminal 4 on the speed control board to terminal 4 on the main actuator terminal strip.
 6. Connect power supply to the actuator. This must be the correct voltage as shown on the actuator name plate.
 7. Pre-set pot "Speed Adjustment Control" fully CW (fastest) and operate actuator to verify correct operation. "Speed Adjustment Control" may now be adjusted CCW to achieve desired operating time.
 8. Replace dial (1). Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove.
 properly located in the "O" ring groove.
 (100-218

 The position transmitter card is fixed on top of the limit switch bracket with the potentiometer fixed to the bracket itself, the drive for this is by a pair of gears from the indicator shaft.

 Before starting check "PT2" kit to ensure that all parts are available.

 | Pc. Nr. Qty | | | | | Description | Used on |
 | :---: | :---: | :--- | :--- | :---: | :---: | :---: |
 | 3 | 1 | Drive pinion (large). | EL $55-$ EL 2500 | | | |
 | 4 | 1 | Pinion (small). | EL $55-$ EL 2500 | | | |
 | 5 | 1 | Potentiometer spacer. | EL 55-EL 2500 | | | |
 | 6 | 1 | Potentiometer | EL 55-EL 2500 | | | |
 | 9 | 3 | Print spacer | EL 55-EL 2500 | | | |
 | 9 | 3 | Print spacer and screw | EL 100 - EL 1600 | | | |
 | 16 | 1 | Position transmittercard | EL 55-EL 2500 | | | |

 ## Installation Procedure

 1. Remove actuator cover (1).
 2. Remove dial (2).

 Fig. 1.
 General Arangement

 Fig. 2. Position Transmitter Detail
 3. Mount potentiometer (6) on limit switch bracket using nut and spacer (5).
 4. Slide potentiometer pinion (4) (small) onto pot. shaft and tighten screw. (Do not overtighten)
 5. Slide drive pinion (3) (large) onto indicator shaft.
 6. Ensure that end of travel limit switches have been set correctly and actuator is in mid position. Turn potentiometer shaft in mid position and tighten drive pinion screw onto the indicator shaft (do not overtighten).

 7a. For EL-55.
 Insert three spacers (9) into limit switch bracket and place position transmitter board so that the spacers locate correctly in the three holes in the circuit board. Press firmly into place.

 7b For EL-100 through EL-1600.
 Mount position transmitter on limit switch bracket using 3 screws (9) and 3 plastic spacers (the screws engage with 3 nuts welded to top motor plate).

 7c For EL-2500.
 Insert three spacers (9) into print bracket and place position transmitter board so that the spacers locate correctly in the three holes in the circuit board. Press firmly into place.

 Fig. 3.
 Position Transmitter Card Layout

 ## Calibration Procedure

 8. Connect 24 V DC. power supply to terminals 35 and 36, positive lead to be connected to terminal 36. Connect a 4-20 mA meter in series with positive power supply and terminal 36. As shown in the wiring diagram below.
 9. Turn actuator to the fully closed position and install 24 V.DC. power supply to position transmitter and check if mA meter indicates approximately 4 mA . If meter indicates approx 20 mA , reverse brown potmeter leads at terminals 19 and 21, meter should now indicate 4 mA .

 Note: EL55 does not have torque switches.
 10. Adjust trimpotmeter marked "ZERO" to achieve 4 mA. then operate actuator to the fully open position and adjust trim potmeter marked "SPAN" to achieve 20 mA .
 (This step may have to be repeated several times to achieve accurate indication).

 Note: A digital mA meter may be connected in series with power supply for a more accurate setting.
 11. Replace dial (1) and align in the proper position. Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove

 The position transmitter card is fixed on top of the limit switch bracket with the potentiometer fixed to the bracket itself, the drive for this is by a pair of gears from the indicator shaft.

 Before starting check "PT4" kit to ensure that all parts are available.

 | Pc.Nr. | Qty | Description | Used on |
 | :---: | :---: | :--- | :--- | :--- |
 | 3 | 1 | Drive pinion (large). | EL $55-$ EL 2500 |
 | 4 | 1 | Pinion (small). | EL $55-$ EL 2500 |
 | 5 | 1 | Potentiometer spacer. | EL $55-$ EL 2500 |
 | 6 | 1 | Potentiometer | EL $55-$ EL 2500 |
 | 9 | 3 | Print spacer | EL $55-$ EL 2500 |
 | 9 | 3 | Print spacer and screw | EL 100 - EL 1600 |
 | 16 | 1 | Position transmittercard | EL $55-$ EL 2500 |

 Fig. 2. Position Transmitter Detail
 3. Mount potentiometer (6) on limit switch bracket using nut and spacer 5.
 4. Slide potentiometer pinion (4) (small) onto pot. shaft and tighten screw.
 5. Slide drive pinion (3) (large) onto indicator shaft.
 6. Ensure that end of travel limit switches have been set correctly and actuator is in mid position. Turn potentiometer shaft in mid position and tighten drive pinion screw onto the indicator shaft (do not overtighten).

 7a. For EL-55.
 Insert three spacers (9) into limit switch bracket and place position transmitter board so that the spacers locate correctly in the three holes in the circuit board.
 Press firmly into place.
 7b For EL-100 through 1600.
 Mount position transmitter on limit switch bracket using 3 screws and 3 plastic spacers (the screws engage with 3 nuts welded to limit switch bracket).

 7c For EL-2500.
 Insert three spacers (9) into print bracket and place position transmitter board so that the spacers locate correctly in the three holes in the circuit board. Press firmly into place.

 Fig. 1.
 General Arangement

 Fig. 3.
 Position Transmitter Card Layout

 ## Calibration Procedure

 ## 8. Important:

 220 Volt: Connect power supply leads to terminals 38 and 40, and place a link between terminals 37 39.

 120 Volt: Connect power supply leads to terminals 38 and 40, place one link between terminals 37-40 and another between terminals 38-39.
 9. Connect a 4-20 mA meter to terminals 33 and 34 .
 10. Apply power to the actuator and operate to the fully closed position, check if mA meter indicates approximately 4 mA .
 If meter indicates approx 20 mA , reverse brown potmeter leads at terminals 19 and 21, meter should now indicate 4 mA .
 11. Adjust trimpotmeter marked "ZERO" to achieve 4 mA .
 Then operate actuator to the fully open position and adjust trimpotmeter marked "SPAN" to achieve 20 mA .
 (This step may have to be repeated several times to achieve accurate indication).

 Note: A digital mA meter may be connected in series with a panel meter and one of the terminals 33 or 34 , this will not affect final readout on panel meters.
 12. Replace dial (1) and align in the proper position. Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove.

 Note: EL55 does not have torque switches.

 ## THEORY OF OPERATION:

 This electric valve actuator option provides continuous proportional position modulation for process control applications. The positioner drives the actuator to an angle of rotation proportional to the level of a 4-20 mA.DC process control signal (other input current and voltage ranges are available) applied to its input terminals. Comparator circuits in the positioner compare the control signal with a reference signal generated by a potentiometer coupled to the actuator output shaft. A difference between the control signal and reference signal energizes the drive motor in the appropriate direction to eliminate the difference (achieve a null). The actuator drives at full speed until the difference signal is approximately 5% of span. At that point, a slow-approach-to-setpoint pulsing circuit slows the motor to achieve accurate positioning without overshoot. The slow-approach feature, by eliminating actuator over-shoot and attendant hunting, reduces motor heating and the need for high-duty-cycle motor ratings for positioning applications.

 Calibration controls on the circuit board include Zero, Span, Alignment (mid-position linearity) and Deadband. Deadband adjustment is provided to eliminate hunting caused by small, frequent changes in process value.

 Opto-isolation provides a high degree of noise immunity, especially important in industrial plants with high levels of power line noise. Triac motor switching eliminates relay contacts and improves long term reliability. Zero-crossing triac drivers further improve reliability while eliminating line noise generation. Limit switches and torque switches control actuator travel through positioner low-level control circuitry, further enhancing long term reliability.

 A Re-transmit output signal (of the same current or voltage range as the input signal) is provided for remote position indication, process control feedback or an other process element.

 ## PHYSICAL DESCRIPTION:

 The positioner circuit board is mounted inside the actuator electric compartment cover, becoming an integral part of the actuator. The feedback pot (potentiometer) supplied with the positioner option is of the conductive plastic type, offering stepless resistance feedback. The pot is environmentally sealed for improved durability. The pot is driven through spur gears by the actuator indicator shaft at a reduction ratio (for a 90° actuator) to enhance resolution. The pot is rigidly mounted to the actuator limit switch bracket, which also supports the positioner board. Available in field-retrofit kit form, the circuit board is supplied with pot and connection wires already attached, requiring only physical mounting and wiring to the actuator main terminal strip and field wiring.

 ## INSTALLATION:

 Before Beginning Positioner Installation:

 1. Connect the actuator as without positioner and operate to check for normal operation.
 2. Set limit switches per instruction elswhere in this Actuator Installation and Operation Manual.
 3. Set actuator to mid position.
 4. Leave electrical compartment cover off.
 5. Disconnect power.
 6. Motor capacitor may be temporarily removed from limit switch bracket to provide more working space.
 7. Review the entire installation procedure before beginning.
 8. Check kit contents against items in Table 1 (below).

 | PARTS LIST: MOD INSTALLATION KIT | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Fig \# | Qty | Description | Used on EL | |
 | | | | 55 | 100/1600 |
 | 3 | 1 | Drive pinion (large) | * | * |
 | 4 | 1 | Potentiometer pinion (small) | * | * |
 | 5 | 1 | Potentiometer spacer | * | * |
 | 6 | 1 | Potentiometer 10K Ohms | * | * |
 | 9 | 3 | Standoff | * | * |
 | 9 | 3 | Spacer/screw/washer | * | * |
 | 16 | 1 | Positioner board | * | * |
 | | 1 | Set screw, drive pinion | * | * |
 | | 2 | Pin terminal, blue | * | * |
 | | 3 | Wire tie | * | * |

 Table 1

 ## Mounting:

 Refer to Fig. 1 for the following steps (numbers in brackets are figure references):

 fig. 1. Positioner Mounting.

 1. Remove position indicator dial.
 2. EL-55: snap self-locking plastic spacers into three holes provided in limit switch bracket (position spacers with "wings" toward limit switch bracket).
 3. Install setscrew in hub of large gear (potentiometer drive gear).
 4. Install drive gear on indicator shaft (leave setscrew loose).

 ## Electronic Positioner - Installation and Calibration

 5. EL-55: slide positioner circuit board over indicator shaft and position on self-locking spacers but don't press board onto spacers at this time. EL- 100 to 1600: slide board over indicator shaft and rest on limit switch bracket in proper orientation.
 6. Remove nut from pot bushing, leaving plastic spacer (5) in place. Install pot (6) in large hole in limit switch bracket (next to motor capacitor). Reinstall nut and tighten.
 7. Install pot gear on pot shaft and tighten setscrew (DO NOT OVERTIGHTEN).
 8. Rotate pot to mid position.
 9. Mesh drive and driven gears (do not rotate pot during this step). Align top surfaces of gears to prevent setscrew interference during rotation. Tighten drive gear setscrew (DO NOT OVERTIGHTEN).
 10. EL-55: Press circuit board onto spacers so spacers lock into holes. EL-100 to 1600: Install circuit board with spacers/screws/flat washers/star washers provided.
 11. Re-install motor capacitor if it was removed for access.

 ## Wiring:

 Before beginning wiring connections, remove yellow and blue jumper wires from right side of main terminal strip.

 Refer to the wiring diagram (fig. 2) and connection diagram (fig. 3). For 3 phase and DC actuators, or actuators with Local Control, see further in this Installation and Operation manual. If your configuration is not included in the manual, contact EL-O-MATIC before attempting to wire positioner.

 1. Connect positioner board terminals 37 and 40 (brown leads) to terminals 11 and 12 on the left side of the actuator's main terminal strip. To do this, remove the heater leads from terminals 11 \& 12 and cut off the pin terminals. Using new pin terminals (blue) from the kit, install one heater wire and one positioner wire into each pin terminal and crimp them in place. Replace the pin terminals into the main terminal strip. Observe correct terminal numbering (heater leads may be connected either way).
 2a. First: remove links from 2-10 and 3-7.
 2. Connect remaining positioner leads to the main actuator terminal strip on the right side as follows: 41 to 4,42 to 2,43 to 3,45 to 5,45 to 8 (there are two terminal 45 's), 50 to 7,51 to 10.
 3. Use wire ties to harness leads into neat groups and away from heater and torque switches.
 4. Select line voltage with selector switch on positioner board.

 Fig. 3a. Actuator Main Terminal Strip.

 fig. 2. Positioner Wiring.

 ## Calibration:

 ## Before You Begin:

 1. Actuator limit switches and mechanical stops must be properly set.
 2. It is best to adjust the positioner with actuator mounted to the valve on which it is to be used. Since the closed position of the valve is generally more important (for shut-off) then the fully open position, you should provide a method for determining when the valve is closed.
 3. Calibration pots are of the twenty turn type (end of rotation can be detected by listening for a click).
 4. Re-install position indicator dial before beginning positioner adjustment, as it will provide a useful reference for motion and position during the adjustment process.
 5. Pre-set DEADBAND pot to narrowest setting (fully ccw).

 ## Setting Procedure:

 1. Connect a variable milliamp source (signal generator) to terminals 48(+) and 49(-).
 2. Connect a milliammeter or jumper wire between terms 44(-) and 46(+).
 3. Apply power to actuator.

 fig. 3b. Positioner Board Layout.
 4. Set milliamp source to 4 mA . Actuator will run towards closed (cw) position (red LED will light while actuator runs). If reverse operation is desired (close on rising signal) see note 1 below.
 5. Turn ZERO pot so that actuator moves toward fully closed position. Advance pot slowly so as not to overshoot the limit switch. The 4 mA point should correspond with the point at which the limit switch just clicks.

 ## Note: The actuator will not run past the limit

 switches. If valve travel is inadequate, readjust the limit switches.6. Set milliamp source to 20 mA . Actuator will run towards open (ccw) position. Green LED will light while actuator runs.
 7. Turn SPAN pot in the same manner as in step 4 for fully open valve position.
 8. Repeat steps 4 through 7 until both open and closed positions are satisfactory.
 9. Set milliamp source to 12 ma .
 10. Adjust "ALIGNMENT" pot so that actuator moves to 45° (for a 90° actuator). Your ammeter, if connected to the output terminals, will indicate approximately 12 mA . Adjust this setting until 12 mA is indicated.
 11. Re-check ZERO and SPAN for output indication. Steps 4 through 10 may be repeated to obtain the highest degree of accuracy, however output indication cannot be set independently of position. Accuracy of output is $+/-0.15 \mathrm{~mA}$ of command signal (i.e., for a command signal of 4.00 mA , an output indication of 3.85 to 4.15 mA or better should be attainable).

 ## Notes:

 1. For "reverse acting" (i.e., 20 mA to close) reverse pot leads on terminals 19 and 21, motor leads on terminals 42 and 43, and limit switch leads on terminals 50 and 51.
 2. The positioner board, as supplied, is configured for "fail in place" on loss of control signal. This may be changed to "fail closed" by removing configuring plugs (next to terminal 46) from pins 2 and 3 and replacing them on pins 1 and 4.
 3. Deadband and slow-approach: You will observe, during positioner adjustment, that as the actuator nears the set point, the appropriate LED will pulse several times before the actuator stops. If the pulsing seems prolonged or excessive, increase the dead-band (rotate cw). Note that this will affect the zero and span settings so these points should be re-adjusted if the deadband is widened after they have been initially set.
 4. All signal wires are to be free of electrical noise and interference. It is recommended that all signal wires be shielded or run in separate grounded metal conduit.
 5. Actuator must be properly grounded for MOD to operate correctly.

 The plug and socket assembly is fixed to the actuator housing on one of the two ancillary mounting pads. The small pad is for the 6 pole socket and the large pad is for the 16 pole version.

 ## Before starting check "PL" kit to ensure that all parts are available.

 | Pc.Nr. | Qty | Description |
 | :--- | :---: | :--- |
 | 1 | 1 | Rubber gasket, 6 pole. |
 | 2 | 4 | Screw and lock washer. |
 | 3 | 1 | Socket connector, 6 pole. |
 | 4 | 1 | Plug connector, 6 pole. |
 | 5 | 1 | Rubber gasket, 16 pole. |
 | 6 | 1 | Socket connector, 16 pole. |
 | 7 | 1 | Plug connector, 16 pole. |

 ## Installation Procedure

 1. Remove actuator cover (2).
 2. Remove one blindplug from actuator conduit entry.
 3. Bolt connector socket (male pins) (3) to actuator housing after feeding 7 electrical leads through actuator conduit entry into motor compartment.
 4. Ensure that rubber gasket (1) is placed between Connector Socket and actuator housing.

 Fig. 1.
 General Arangement
 5. Connect wiring
 from connector socket to actuator terminal strip as follows:-

 | From Socket Connector | Term. No. | | |
 | :--- | :---: | :---: | :---: |
 | | | EL-55 | EL-100/2500. |
 | Yellow/Green | - | 1 | 1 |
 | Purple | - | 4 | 4 |
 | Black | - | 5 | 5 |
 | Red | - | 6 | 13 |
 | White | - | 8 | 8 |
 | Green | - | 9 | 14 |
 | Brown | - | 12 | 12 |

 EL35-381
 EL 55 PLUG AND SOCKET WIRING

 Dec.'96

 Fig. 2.

 ## Plug and Socket Layout

 6. Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove.
 7. Connect connector plug (female pins) as follows:-

 ## Cable.

 Earth
 Neutral Close command Close signal Open command Open signal Heater Phase

 Plug connector. terminal. No.

 - Plug chassis.
 - 1
 - 2
 - 3
 - 4
 - 5

 Please note:
 The above is the method of wiring for the 6 pole plug and socket. Should you require to connect more cores to your unit we suggest that you use a 16 pole plug and socket connector. The wiring diagram for this will be available through El-o-matic.

 The wiring shown here is for a single phase supply. If you are working with a different supply please be sure to obtain a proper diagram.

 The local controller assembly is fixed to the actuator housing located on the smaller of the two ancillary mounting pads.

 Before starting check "LC" kit to ensure that all parts are available.

 | Pc.Nr. | Qty | Description |
 | :--- | :---: | :--- |
 | 1 | 1 | Rubber gasket. |
 | 2 | 4 | Screw and lock washer. |
 | 3 | 1 | Local control station. |

 ## Installation Procedure

 1. Remove actuator cover (2).
 2. Bolt Local Control Station to actuator housing after feeding the Five electrical leads through the conduit entry into the motor compartment.
 3. Ensure that rubber gasket (1) is placed between Local Control Station and actuator housing.
 4. Remove one blind plug from actuator conduit entry (always mount the Local Control Station on the face with one conduit entry, leaving both the other entries available for cabling).

 Fig. 1.
 General Arangement

 EL35-157

 Dec.' 96

 MPORTANT

 crut feed butheme me or rime criantort

 NOTE 1
 IN EXPLOSION PFOOF EXECUTION
 NEXPLOEION PKOOF EXECUTIGN
 SWITCHES ARE COMBINED IMTO
 ONE SWITCH
 LIMIT SWITCHES SHOWN IN MID-STROKE

 Fig. 2.
 Location of Terminal Strip
 5. Connect wiring from Local Control Station to terminal strips as follows:-

 Cable from Control Station Term No.

 | Black 5A | 5A | (aux. term. strip) |
 | :--- | :--- | :--- |
 | Black 5 | 5 | (main term. strip) |
 | Brown 12 | 12 | (main term. strip) |
 | White 8A | 8 A | (aux. term. strip) |
 | White 8 | 8 | (main term. strip) |

 6. Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove.

 Fig. 3.
 Local Controller Layout.

 Please note:
 The above procedure may be used for either the standard LC, or the alternative version with the key lock.

 The wiring shown here is for a single phase supply. If you are working with a different supply, or MOD option, please be sure to obtain a proper diagram.

 ## Caution:

 - Do not attempt to work on your EL-O-MATIC actuator until all power to the unit has been shut off.
 - Always disconnect all incoming power leads from the actuator terminal strips.
 - Never disassemble or reset torqueswitches
 - For bracket drawing reference numbers refer to the applicable parts drawing.

 ## EL-20.

 1. Remove cover (6).
 2. Remove motor support plate (11) by removing five screws (25).
 3. Lift motor support plate, motor and switch assembly from the unit housing, taking care not to bend the indicator shaft. The indicator shaft comes out, it must be removed with the motor support plate.
 4. Remove setscrew (41) and pins (37) and slide the wormshaft (34) from the unit housing.
 5. All gearing can now be removed from the housing.

 ## EL-35/55

 1. Remove cover (3).
 2. Remove the indicator dial (26).
 3. Remove motor support plate (15) by removing seven screws (16).
 4. Fix indicatorshaft (with cams) to prevent sliding down.
 5. Lift motor support plate, motor and switch assembly from the unit housing, taking care not to bend the indicator shaft. The indicator shaft comes out, it must be removed with the motor support plate.
 6. Remove setscrew (45), pins (39) and (42) and draw the wormshaft from the unit housing by pulling handwheel (56).
 7. All gearing can now be removed from the housing.

 ## EL-100/150.

 1. Remove cover (38).
 2. Remove motor support plate (4) by removing seven screws (5).
 3. Important: Be sure that unit is not torqued against the stop screws. If it is, relieve by turning hand wheel
 4. Fix indicatorshaft (with cams) to prevent sliding down.
 5. Lift motor support plate, motor and switch assembly from the unit housing, taking care not to bend the indicator shaft. The indicator shaft comes out, it must be removed with the motor support plate.
 6. Remove four screws (71) and remove wormcap (73).
 7. Slide thrust bearing (65) and torque springs (70) from the worm shaft (72). The worm (68) and four torque springs (70) can now be removed from the wormshaft.
 8. Remove key (69) and retaining ring (67).
 9. Slide worm gear (66) over worm shaft and remove key and remove wormshaft (72) by pulling handwheel (56).

 ## EL-200/350.

 1. Remove cover (36).
 2. Remove motor support plate (4) by removing six screws.
 3. Important: Be sure that unit is not torqued against the stop screws. If it is, relieve by turning hand wheel
 4. Fix indicatorshaft (with cams) to prevent sliding down.
 5. Lift motor support plate, motor and switch assembly from the unit housing, taking care not to bend the indicator shaft. The indicator shaft comes out, it must be removed with the motor support plate.
 6. Remove spur gear (81), worm (84), Wormshaft (85) and two thrust bearings (86) by lifting spur gear (81) upwards out of the gear case.
 7. Remove four screws (99) and remove wormcap (72).
 8. Slide thrust bearing (63) and eight torque springs (67) from the wormshaft (69).
 9. Slide worm gear (64) and eight torque springs from the wormshaft.
 10.Remove Key (66) and (71) and screws (65) and draw the wormshaft (69) from the unit by pulling handwheel (54).

 ## EL-500/800.

 1. Remove cover (77).
 2. Remove motor support plate (61) by removing 7 screws (62).
 3. Important: Be sure that unit is not torqued against the stop screws. If it is, relieve by turning hand wheel.
 4. Fix indicatorshaft (with cams) to prevent sliding down.
 5. Lift motor support plate, motor and switch assembly from the unit housing, taking care not to bend the indicator shaft. The indicator shaft comes out, it must be removed with the motor support plate.
 6. Remove spur gear (13), worm (11), Wormshaft (21) and two thrust bearings (10) by lifting spur gear (13) upwards out of the gear case.
 7. Remove four screws (34) and remove wormcap (31).
 8. Slide thrust bearing (24) and torque springs (27) from the wormshaft (96).
 9. Remove key (29) and screw (104) and slide worm gear (26) and eight torque springs from the wormshaft.
 10.Remove key (26) and (29) and screw (104) and draw the wormshaft (96) from the unit by pulling handwheel (3).

 ## REASSEMBLY

 Assembly in reverse order of above

 ## Trouble Shooting

 ## Trouble Shooting

 Although we would not expect you to experience any problems with your El-O-Matic valve actuator we have listed some checkpoints should your actuator not function as desired.

 ## Rotation

 If limit switch fails to stop valve travel, check the following:

 - Direction of rotation of output shaft
 - Control wiring
 - Limit switch setting

 Actuators with torque switches. If limit switch fails to stop valve travel:

 - \quad Check if link has been placed, for torque seated valve application. If not required - remove it.

 ## Motor Not Running

 If unable to operate your El-O-Matic by motor:

 - Check both motor power and control circuits for supply and continuity.
 - Compare supply voltage with motor nameplate, if OK, then check motor amperage load.
 - If stalled motor is indicated and torque switches have not tripped or valve is moveable by the hand wheel, consult your supplier.

 ## Overload

 Excessive handwheel effort, motor overheating and/or high motor amperage load can indicate the following:

 - Excessive valve load.
 - Valve packing gland too tight.
 - Improperly lubricated valve.
 - Incorrect Motor capacitor.
 - Ambient temperature too high.
 - Valve cycling too often.
 - Incorrect voltage.
 - Incorrect wiring.

 ## Motor Stops

 If torque switch trips before reaching end of valve travel:

 - Incorrect setting of mechanical end stops.
 - Obstacle in valve.
 - Valve required torque higher than actuator rated torque.

 ## No Valve Movement - Motor Runs

 - Drive sheared or not connected.

 ## No Valve Movement - Motor won't Run

 - Valve plug/disk jammed or obstructed.
 - Valve requires torque higher than actuator rated torque.
 - Valve packing gland too tight.

 ## Stroking

 It is not possible to stroke valve the full 90° :

 - Check mechanical end stops.
 - Check valve and actuator position.
 - Actuator in open position = Valve in open position.

 ## Condensation

 Moisture inside electrical compartment:

 - Check if compartment heater has been connected.
 - Check if compartment heater has been connected to the correct supply voltage.
 - \quad Check if compartment heater is continuously under power - not only when motor is energized.
 - Check heater resistance: 120 V - $1 \mathrm{~K} \Omega$
 $230 \mathrm{~V}-4700 \Omega$
 $380-480 \mathrm{~V}-15 \mathrm{~K} \Omega$
 $24 \mathrm{~V}-47 \Omega$
 - Check compartment cover seal.
 - Check indicator window seal
 - Check cable glands.
 - \quad Check pipe plugs in unused conduit entries.

 ## Wiring diagrams - Electric actuator

 Following is a short list of wiring diagrams. If you need wiring for an actuator not listed please contact your nearest Elomatic facility or representitave.

 ## Basic Actuators

 \(\left.\begin{array}{llllc}Actuator model \& Function \& Drawing No. \& Page

 \& \& \& \& EL35-101\end{array}\right]\)| 36 |
 | :--- |
 | EL35/55 |
 | EL35/55 |

 ## Kit Options

 | Option | Actuator model | Function | Prawing No. | Page |
 | :--- | :--- | :--- | :--- | :--- |
 | Speed control | EL35/55 | ON/OFF | 1 Phase \sim | EL35-239 |

 ## Remark;

 * For EL1200/1600 only 220V
 ** For EL1200/1600 only 120V

 LIMTV SHITCHES SHOWN IN MIO SIFOKE

 POTENTIOMETER (POT) 1 Phase ~

 LIMIT. SWITLHES SHOWN IA MID-STRORE

 POSITION TRANSMITTER (PT2) 2 WIRE, 1 Phase ~
 Drw.: EL35-351

 3 POSITION CONTROL (3 POS)
 1 Phase ~
 Drw.: EL100-118

 Actuator model : EL1200/2500 1 Phase ~ Drawingnr : EL2500-017

 LOCAL CONTROL STATION (LC) 3 Phase~
 Drw.: EL100-395

 * Likr for topoue seateo values

 Limit swithenes shown in mio- stroke

 INTEGRAL CONTACTORS
 \& LOCAL CONTROL STATION 3 Phase ~
 Drw.: EL100-268

 Notes

 DIMENSIONS AND TECHNICAL DETAILS - ELECTRIC ACTUATOR - EL

 # Attachment G-11g

 Manufacturers' Submittals and Individual O\&M Manuals

 ## VALVES \& PIPING

 El-o-Matic Actuator Reference Guide

 # Installation and Operation

 EL Series Electric Actuator

 ## El-O-matic Electric Actuators.....

 ## Where to Find Information

 El-o-matic electric actuators are the most advanced actuators of their type on the market today, this achievement is due to many years of improvement and development. Basic actuators provide all the features normally required for modern plant automation and a wide range of control options are available to tailor actuators to individual applications.

 The basic operation of El-o-matic valve actuators is the same for all sizes. Models EL20 through EL2500 feature a disengageable manual override. Torque switches are standard on models EL100 - EL2500. A double reduction worm/worm gear system is utilized on models EL20 to EL150. The EL200 through EL2500 utilize an extra spur gear reduction on the motor shaft.
 Installation Tips 2
 Parts and Materials

 - EL20 4
 - EL55 6
 - EL100/150 8
 - EL200/350 10
 - EL500/800 12
 - EL1200/1600 14
 - EL2500 16
 Installation, Setting and Calibration
 - Mechanical Limit Stop Setting 18
 - Limit Switch Setting 19
 - Potentiometer 20
 - Speed Controller 21
 - Position Transmitter, 2 Wire 22
 - Position Transmitter, 4 Wire 24
 - Positioner 26
 - Plug and Socket 29
 - Local Control Station 31
 Disassembly and Re-assembly 33
 Trouble Shooting 34
 Wiring Diagrams 35
 - Index 35
 - Basic Actuators 36
 - Kit Options 38
 Notes and Up-dates 42
 Dimensions and Performance data 43

 ## Installation

 ## CAUTION

 Do not attempt to store, install, or operate your El-OMatic EL actuator without taking account of the following;

 ## ELECTRICAL WIRING

 The control circuitry feeding the actuator must not allow power to be supplied to both "open" and "close" motor windings at the same instance in time. For example, when power is applied to the "open" terminal, the "close" terminal must be isolated from the power supply and vice versa. Failure to do so will result in the motor overheating.

 If several actuators are controlled from a common control switch, which has only a D.P.D.T. type electrical contact on it, then the result can be that the actuators will run in different directions.

 For example: An open/stop/close switch with only D.P.D.T. contacts on it controls three actuators. When the switch is turned to the open control position, all three actuators will start to run open. If any one of the three actuators reaches its open position before the other two it can receive power via the common D.P.D.T contacts and the other actuators close motor winding, resulting in that actuator running closed.

 When several actuators are required to be controlled in parallel with one 3-position switch, that switch must have separate contacts for each actuator being controlled.

 ## Also:

 1. Use wire with proper gauge and insulation. (follow standards prescribed by the relevant electrical code)
 2. Actuator chassis must be correctly grounded.
 3. Use appropriate conduit or cable glands for weather proof or explosion proof applications.
 4. Follow the wiring diagram to ensure proper connection of power and control voltage to the actuator.
 5. Make all splices or connections using the correct pin connector or terminal strip.
 6. Always connect anti condensation heater.

 ## STORAGE

 ## Warehouse Storage

 1. Actuators should be stored in a clean, dry warehouse free from excessive vibration and rapid temperature change.
 2. Actuators should not be stored on any floor surface.
 3. In areas of high humidity the actuator should have a packet of desiccant placed in the motor compartment. (this will absorb excessive moisture)

 ## On Site Storage

 1. Actuators should be stored in a clean, dry location free from excessive vibration and rapid temperature change.
 2. Ensure all actuator covers are in place and securely fastened.
 3. If power is not available, place a packet of desiccant in the motor compartment. (replace cover and securely fasten)
 4. Replace plastic conduit plugs with appropriate pipe plugs.

 Failure to follow proper storage guidelines will void warranty.

 DO

 1. Keep motor compartment clean and dry.
 2. When applicable connect the compartment heater. (not fitted on EL20)
 3. Check unit wiring and ensure it coincides with the proper wiring diagram.
 4. Power supply should be free from excessive voltage transients (spikes).
 5. Control lines should be shielded properly.
 6. CAUTION: Shut off incoming power before installing or repairing any electrical device.
 7. Check motor nameplate to be certain that the actuator voltage is the same as your incoming voltage.
 8. Schedule a periodic maintenance check of all El-OMatic actuators to prolong life and ensure proper performance. (we suggest check for correct opening and closing once a month)
 9. Set open and close limit switches manually, in accordance with instructions. (see page 19)
 10. Be sure and lubricate unit during reassembly. (see LUBRICATION)
 11. Check limit switch setting prior to motor operation if the actuator has been repaired or disassembled.

 ## DON'T.

 1. CAUTION: Do not attempt to install or repair any electric device without shutting off incoming power.
 2. Do not operate valve without first setting limit switches and checking direction of motor rotation.
 3. Release torque before disassembling gear train components or the actuator from the valve.
 4. Do not adjust torque switch settings. (these are factory set and need no adjustment)
 5. Do not use a cheater or extension bar on the handwheel. (this could result in damage to the valve assembly or cause physical injury)
 6. Do not alternately start and stop motor to seat or un-seat a valve. If properly sized, the running torque of the actuator should seat the valve in normal operation.

 ## LUBRICATION

 El-O-Matic utilizes a totally sealed and permanently lubricated gear case. The actuator can be mounted in any position. It is not unusual to find a very small amount of lubricant weeping around shaft seals. This situation can occur during long periods of storage. This lubrication will not affect operation and should simply be wiped up with a clean cloth. Once equipment has begun operating, this weeping should disappear.

 The actuator gearbox is filled with FINA CERAN M ($\mathrm{MO} \mathrm{S}_{2}$). This standard lubricant has been proven extremely reliable. Should the gearbox be disassembled, repack with EP370 or any good quality mineral based gear grease.
 ie. DROPPING POINT: $>300^{\circ} \mathrm{C}$.
 BASE: Calcium Sulphate.
 CLASSIFICATION :NLGI Class 1.

 | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | 1 | Motor | | 71 | 1 | Dial | Steel |
 | 2 | 4 | Screw | Steel | 72 | 1 | Window | Lexan |
 | 3 | 1 | Terminal Block | | 73 | 1 | Window Holder | Steel |
 | 4 | 1 | Marking Tag | | 74 | 3 | Screw | Steel |
 | 5 | 2 | Screw | Steel | 75 | 4 | Lockwasher | Steel |
 | 6 | 1 | Cover | Steel | 77 | 4 | Washer | Steel |
 | 7 | 1 | Capacitor | | 78 | 2 | Key | Steel |
 | 8 | 1 | O-Ring | | 79 | 3 | Retaining Ring | Steel |
 | 9 | 1 | Housing | Aluminium | 88 | 1 | Support Plate L.S. | Steel |
 | 10 | 1 | Limitswitch Cam | Aluminium | 89 | 1 | Gasket Motor | |
 | 11 | 1 | Motor Support Plate | Steel | | | | |
 | 12 | 1 | Drive Sleeve Bearing | Steel | | | | |
 | 13 | 1 | Pin | Steel | | | | |
 | 14 | 1 | Spring | Steel | | | | |
 | 15 | 1 | O-Ring | Buna | | | | |
 | 16 | 1 | Top Bearing | Steel | | | | |
 | 17 | 4 | Screw | Steel | | | | |
 | 18 | 11 | Lockwasher | Steel | | | | |
 | 19 | 1 | Limitswitch Cam | Aluminium | | | | |
 | 20 | 7 | Hex Nut | Steel | | | | |
 | 21 | 1 | Terminal Bracket | Steel | | | | |
 | 22 | 2 | Blindstop | Bronze | | | | |
 | 23 | 4 | Screw | Steel | | | | |
 | 24 | 9 | Lock Washer | Steel | | | | |
 | 25 | 5 | Screw | Steel | | | | |
 | 26 | 5 | Isolation Plate | | | | | |
 | 27 | 4 | Micro Switch | | | | | |
 | 28 | 2 | Screw | Steel | | | | |
 | 29 | 2 | Lock Washer | Steel | | | | |
 | 30 | 1 | Limitswitch Bracket | Steel | | | | |
 | 31 | 2 | Limitswitch Cam | Aluminium | | | | |
 | 32 | 4 | Screw | Steel | | | | |
 | 33 | 1 | Indicator Shaft | Steel | | | | |
 | 34 | 1 | Wormshaft | Steel | | | | |
 | 35 | 1 | Thrustbearing | Steel | | | | |
 | 36 | 1 | Worm Wheel | Bronze | | | | |
 | 38 | 1 | Worm | Steel | | | | |
 | 39 | 2 | Bearing | Steel | | | | |
 | 40 | 1 | Ball | Steel | | | | |
 | 41 | 1 | Screw | Steel | | | | |
 | 42 | 1 | Worm | Steel | | | | |
 | 43 | 2 | Gasket Window | Rubber | | | | |
 | 44 | 2 | Pin | Steel | | | | |
 | 45 | 1 | Drive Sleeve | Cast Iron | | | | |
 | 46 | 1 | Hex nut | Steel | | | | |
 | 47 | 1 | Sticker Terminal | | | | | |
 | 48 | 1 | Gasket Top Bearing | | | | | |
 | 50 | 1 | Gasket Motor Support | | | | | |
 | 53 | 1 | Pin | Steel | | | | |
 | 56 | 1 | Gasket Handwheel | | | | | |
 | 57 | 3 | Screw | Steel | | | | |
 | 58 | 1 | Sticker Open-close | | | | | |
 | 59 | 1 | Handwheel | Aluminium | | | | |
 | 60 | 1 | Pin | Steel | | | | |
 | 61 | 2 | Washer Handwheel | Steel | | | | |
 | 62 | 1 | Spring | Steel | | | | |
 | 63 | 1 | Handwheel Cover | Steel | | | | |
 | 64 | 1 | Bushing | Steel | | | | |
 | 65 | 1 | O-Ring | Buna | | | | |
 | 66 | 1 | O-Ring | Buna | | | | |
 | 67 | 2 | Screw | Steel | | | | |
 | 68 | 2 | Screw | | | | | |
 | 69 | 2 | Hex Nut | Steel | | | | |
 | 70 | 1 | Screw | | | | | |

 | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | 1 | Motor | | 68 | 4 | Screw | |
 | 2 | 1 | Pin Spiral | Steel | 69 | 9 | Lock Washer | |
 | 3 | 1 | Cover | Steel | 70 | 1 | Limitswitch Cam green | Aluminium |
 | 4 | 1 | Indicator Shaft | Steel | 71 | 2 | Terminal Block | |
 | 5 | 2 | Limit Switch cam | Aluminium | 72 | 4 | Screw | |
 | 7 | 4 | Screw | Steel | 73 | 2 | Marking Tag | |
 | 8 | 1 | O-Ring | Buna | 74 | 1 | O-Ring | Buna |
 | 9 | 4 | Micro Switch | | 75 | 1 | Sticker Terminal | |
 | 10 | 2 | Screw | | 76 | 1 | Support Plate Switch | Steel |
 | 11 | 1 | Nut | | 85 | 2 | Window gasket | Rubber |
 | 12 | 5 | Insulation plate | | 86 | 1 | Tooth Washer | |
 | 13 | 1 | Tooth Washer | | 87 | 1 | Window Holder | Steel |
 | 14 | 1 | Housing | Aluminium | 88 | 1 | Motor support plate gasket | |
 | 15 | 1 | Motor Support plate | Steel | 89 | 3 | Blindstop | |
 | 16 | 7 | Screw | | 90 | 1 | Top Bearing gasket | |
 | 17 | 9 | Lock Washer | | 92 | 1 | Limitswitch Cam Red | Aluminium |
 | 18 | 1 | Bearing | Steel | 93 | 4 | Screw | |
 | 19 | 2 | Screw | | | | | |
 | 20 | 1 | Sticker Terminal | | | | | |
 | 21 | 1 | Bearing | Steel | | | | |
 | 22 | 2 | Curved Spring washer | Steel | | | | |
 | 23 | 1 | Pin Spiral | | | | | |
 | 24 | 1 | O-Ring | Buna | | | | |
 | 25 | 1 | Window | Lexan | | | | |
 | 26 | 1 | Dial | | | | | |
 | 27 | 1 | Motor Gasket | | | | | |
 | 28 | 3 | Screw | | | | | |
 | 29 | 7 | Nut | | | | | |
 | 30 | 1 | Heater | | | | | |
 | 31 | 1 | Capacitor | | | | | |
 | 32 | 1 | Heater Bracket | Steel | | | | |
 | 33 | 1 | Handwheel gasket | | | | | |
 | 34 | 3 | Screw | | | | | |
 | 35 | 4 | Screw | | | | | |
 | 36 | 4 | Lock Washer | | | | | |
 | 37 | 1 | Bearing | Bronze | | | | |
 | 38 | 1 | Worm Wheel | Bronze | | | | |
 | 39 | 2 | Key | | | | | |
 | 40 | 1 | Worm Shaft | Steel | | | | |
 | 41 | 1 | Worm | Steel | | | | |
 | 42 | 1 | Retaining Ring | Steel | | | | |
 | 44 | 1 | Endcap | Aluminium | | | | |
 | 45 | 1 | Bearing | Steel | | | | |
 | 46 | 1 | O-Ring | Buna | | | | |
 | 47 | 1 | Thrust Bearing | Steel | | | | |
 | 48 | 1 | Worm | Steel | | | | |
 | 49 | 1 | Spacer | Steel | | | | |
 | 50 | 1 | Drive Sleeve | Bronze | | | | |
 | 51 | 2 | Screw | | | | | |
 | 52 | 2 | Screw | | | | | |
 | 53 | 2 | Nut | | | | | |
 | 54 | 2 | Dowel Pin | | | | | |
 | 55 | 1 | Handwheel bearing | Brass | | | | |
 | 56 | 1 | Handwheel | Aluminium | | | | |
 | 57 | 1 | Pin Spiral | | | | | |
 | 58 | 2 | Washer | | | | | |
 | 59 | 1 | Spring | | | | | |
 | 60 | 1 | Handwheel Cover | | | | | |
 | 61 | 1 | Limit Switch Bracket | Steel | | | | |
 | 62 | 2 | Screw | | | | | |
 | 63 | 2 | Lock Washer | | | | | |
 | 64 | 2 | Terminal Bracket | | | | | |
 | 65 | 1 | Sticker Open/Close | | | | | |
 | 66 | 1 | Window Sticker | | | | | |

 | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | 1 | Motor | | 67 | 1 | Key | Steel |
 | 2 | 7 | Screw | | 68 | 1 | Worm | Steel |
 | 3 | 1 | Housing | Aluminium | 69 | 1 | Key | |
 | 4 | 1 | Motor Support Plate | Steel | 70 | 8 | Torque Spring | |
 | 5 | 7 | Screw | | 71 | 1 | Screw | Steel |
 | 6 | 11 | Lock Washer | | 72 | 1 | Worm Shaft | Steel |
 | 7 | 1 | Torque Switch Bracket | Steel | 73 | 1 | Wormcap | Aluminium |
 | 8 | 2 | Screw | | 74 | 1 | Screw | |
 | 9 | 9 | Nut | | 75 | 3 | Nut | |
 | 10 | 11 | Screw | | 76 | 1 | Ball | Steel |
 | 11 | 13 | Lock Washer | | 77a | 1 | Drive Sleeve (EL-100) | Cast Iron |
 | 12 | 1 | Torque Switch Collar | | 77b | 1 | Drive Sleeve (EL-150) | Bronze |
 | 13 | 1 | Torque Switch Bush Bearing | g Brass | 78 | 2 | Screw | |
 | 14 | 1 | Dowel Pin | | 79 | 2 | Plain Washer | |
 | 15 | 1 | T.S. Gasket | | 80 | 2 | Dowel Pin | |
 | 16 | 6 | Micro Switch | | 81 | 1 | Worm | Steel |
 | 17 | 1 | Torque Switch Spacer | | 82 | 2 | Slotted set screw | |
 | 18 | 1 | Adaptor | | 83 | 1 | Pin Spiral | Steel |
 | 19 | 9 | Lock Washer | | 84 | 1 | Window Sticker | |
 | 20 | 1 | Drive Sleeve Bearing | Steel | 86 | 1 | Sticker Open/Closed | |
 | 21 | 2 | O-Ring | Buna | 87 | 3 | Blindstop | |
 | 22 | 1 | Pin Spiral | | 88 | 1 | Motor Gasket | |
 | 23 | 2 | Top Spring | | 89 | 4 | Screw | |
 | 24 | 1 | Top Bearing | Steel | 91 | 1 | Window Holder | |
 | 25 | 2 | Screw | | 92 | 1 | Topbearing gasket | |
 | 28 | 9 | Insulation Plate | | 93 | 6 | Tooth Washer | |
 | 29 | 2 | Screw | | 94 | 1 | Retaining Ring | |
 | 30 | 4 | Screw | | 95 | 1 | Motor support plate gasket | |
 | 31 | 2 | Limit Switch Cam | Aluminium | 100 | 1 | Support Plate Switch | Steel |
 | 32 | 4 | Screw | | 110 | 1 | Limitswitch Cam Green | Aluminium |
 | 33 | 1 | Indicator Shaft | Steel | 111 | 1 | Limitswitch Cam Red | Aluminium |
 | 34 | 1 | Dial | | | | | |
 | 35 | 1 | Shimring | | | | | |
 | 36 | 1 | Retaining Ring | | | | | |
 | 37 | 1 | Window | Lexan | | | | |
 | 38 | 1 | Cover | Steel | | | | |
 | 39 | 1 | Heater | | | | | |
 | 40 | 3 | Screw | | | | | |
 | 41 | 2 | Screw | | | | | |
 | 42 | 1 | Handwheel gasket | | | | | |
 | 43 | 2 | Window gasket | | | | | |
 | 44 | 1 | Heater Bracket | | | | | |
 | 45 | 2 | Terminal Block | | | | | |
 | 46 | 2 | Marking Tag | | | | | |
 | 47 | 2 | Sticker Terminal No's | | | | | |
 | 48 | 4 | Screw | | | | | |
 | 49 | 2 | Terminal Bracket | | | | | |
 | 50 | 1 | Lock Washer | | | | | |
 | 51 | 1 | Limit Switch Bracket | Steel | | | | |
 | 52 | 1 | O-Ring | Buna | | | | |
 | 53 | 4 | Screw | | | | | |
 | 54 | 4 | Lock Washer | | | | | |
 | 55 | 1 | Capacitor | | | | | |
 | 56 | 1 | Handwheel | Aluminium | | | | |
 | 57 | 1 | O-ring | Buna | | | | |
 | 58 | 1 | Washer | | | | | |
 | 59 | 1 | Spring | | | | | |
 | 60 | 1 | Handwheel Cover | | | | | |
 | 61 | 1 | Clutch Ring | Steel | | | | |
 | 62 | 1 | O-Ring | Buna | | | | |
 | 63 | 1 | Handwheel Bearing | Bronze | | | | |
 | 64 | 2 | Worm Bearing | Bronze | | | | |
 | 65 | 2 | Thrust Bearing | Steel | | | | |
 | 66 | 1 | Wormwheel | Bronze | | | | |

 | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. | PC.NO. | | DESCRIPTION. | MATERIAL. |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | 1 | Motor | | 65 | 1 | Screw | |
 | 2 | 5 | Screw | | 66 | 1 | Key | |
 | 3 | 1 | Housing | Aluminium | 67 | 16 | Torque Spring | |
 | 4 | 1 | Motor Support Plate | Steel | 68 | 1 | Worm | Steel |
 | 5 | 1 | T.Sw. Spacer | Steel | 69 | 1 | Worm Shaft | Steel |
 | 6 | 8 | Lock Washer | | 70 | 1 | Ball | Steel |
 | 7 | 1 | Hexnut | Steel | 71 | 1 | key | |
 | 8 | 2 | Screw | | 72 | 1 | Worm Cap | Aluminium |
 | 9 | 3 | Nut | | 73 | 1 | O-Ring | Buna |
 | 10 | 4 | Screw | Steel | 74 | 1 | Screw | |
 | 11 | 13 | Lock Washer | | 75 | 2 | Nut | |
 | 12 | 1 | Torque Switch Collar | Aluminium | 76 a | 1 | Drive Sleeve (EL-200) | Cast iron |
 | 13 | 1 | Torque Switch Bracket | Steel | 76 b | | Drive Sleeve (EL-350) | Bronze |
 | 14 | 1 | Torque Switch Bearing | Brass | 77 | 2 | Screw | |
 | 15 | 1 | Dowel Pin | | 78 | 2 | Window gasket | |
 | 16 | 6 | Micro Switch | | 79 | 2 | Dowel Pin | |
 | 17 | 2 | Torque Switch Spacer | | 80 | 1 | Bearing | Bronze |
 | 18 | 2 | Screw | | 81 | 1 | Worm Shaft Gear | Steel |
 | 19 | 2 | Screw | Steel | 82 | 1 | Pin Spiral | Steel |
 | 20 | 1 | Drive Sleeve Bearing | Steel | 83 | 1 | Worm | Steel |
 | 21 | 1 | O-Ring | Buna | 84 | 1 | Pin Spiral | Steel |
 | 22 | 1 | Pin Spiral | Steel | 85 | 1 | Worm Shaft | Steel |
 | 23 | 1 | Top Spring | | 86 | 2 | Thrust Bearing | Steel |
 | 24 | 1 | Top Bearing | Steel | 87 | 1 | Bearing | Bronze |
 | 25 | 1 | O-Ring | Buna | 88 | 1 | Motor Pinion | Steel |
 | 26 | 9 | Insulation plate | | 89 | 1 | Pin Spiral | |
 | 27 | 2 | Screw | | 90 | 1 | Window Sticker | |
 | 28 | 1 | Motor Gasket | | 92 | 1 | Sticker Open/Closed | |
 | 29 | 2 | Limit Switch cam | Aluminium | 93 | 3 | Blindstop | |
 | 30 | 4 | Screw | | 94 | 1 | Washer | Steel |
 | 31 | 1 | Indicator Shaft | Steel | 95 | 2 | Screw | |
 | 32 | 1 | Dial | | 96 | 4 | Screw | |
 | 33 | 1 | Gasket T.S. | | 98 | 1 | Screw | Steel |
 | 34 | 1 | Screw | | 99 | 1 | Screw | |
 | 35 | 1 | Window | Lexan | 100 | 3 | Screw | |
 | 36 | 1 | Cover | Steel | 101 | 1 | Window holder | Steel |
 | 37 | 1 | Heater | | 102 | 1 | Topbearing gasket | |
 | 38 | 3 | Screw | | 103 | 7 | Toothwasher | |
 | 39 | 6 | Screw | | 104 | | Motor support plate gasket | |
 | 40 | 1 | Screw | Steel | 119 | 1 | Limitswitch Cam Green | Aluminium |
 | 41 | 1 | Handwheel gasket | | 120 | 1 | Limitswitch Cam Red | Aluminium |
 | 42 | | Heater Bracket | Steel | 125 | 1 | Support Plate Switch | Steel |
 | 43 | 2 | Terminal Block | | | | | |
 | 44 | 2 | Marking Tag | | | | | |
 | 45 | 2 | Terminal Sticker | | | | | |
 | 46 | 4 | Screw | | | | | |
 | 47 | 2 | Terminal Bracket | Steel | | | | |
 | 48 | 6 | Screw | | | | | |
 | 49 | 1 | Limit Switch Bracket | Steel | | | | |
 | 50 | 1 | O-Ring | Buna | | | | |
 | 51 | 4 | Screw | | | | | |
 | 52 | 4 | Lock Washer | | | | | |
 | 53 | , | Capacitor | | | | | |
 | 54 | 1 | Handwheel | Aluminium | | | | |
 | 55 | 2 | O-Ring | Buna | | | | |
 | 56 | 4 | Washer | | | | | |
 | 57 | 1 | Handwheel Spring | steel | | | | |
 | 58 | | Handwheel Cover | | | | | |
 | 59 | 1 | Pin Spiral | | | | | |
 | 60 | 1 | O-Ring | Buna | | | | |
 | 61 | 1 | Handwheel Bearing | Bronze | | | | |
 | 62 | 2 | Worm Bearing | Bronze | | | | |
 | 63 | 2 | Thrust Bearing | Steel | | | | |
 | 64 | , | Worm Wheel | Bronze | | | | |

 PC.NO. QTY. DESCRIPTION.

 | 1 | 1 | Housing | Aluminium |
 | :---: | :---: | :---: | :---: |
 | 2 a | 1 | Drive Sleeve (EL-500) | Cast iron |
 | 2 b | 1 | Drive Sleeve (EL-800) | Bronze |
 | 3 | 1 | Handwheel | Aluminium |
 | 4 | 1 | Pin | |
 | 5 | 2 | Washer | |
 | 6 | 1 | Spring | |
 | 7 | 1 | Handwheel Cover | |
 | 8 | 1 | Sticker Open/Close | |
 | 9 | 1 | Bearing | Bronze |
 | 10 | 2 | Thrust Bearing | Steel |
 | 11 | 1 | Worm | |
 | 12 | 1 | Pin | |
 | 13 | 1 | Worm Shaft Gear | Delrin |
 | 14 | 1 | Pin | |
 | 15 | 1 | Bearing | Bronze |
 | 16 | 14 | Lock Washer | |
 | 17 | 4 | Screw | Steel |
 | 18 | 1 | O-Ring | Buna |
 | 19 | 1 | O-Ring | Buna |
 | 20 | 1 | Handwheel Bearing | Brass |
 | 21 | 1 | Worm Shaft | Steel |
 | 22 | 1 | Motor Pinion | Delrin |
 | 23 | 2 | Worm Shaft Bearing | Bronze |
 | 24 | 2 | Thrust Bearing | Steel |
 | 25 | 1 | Worm Wheel | Bronze |
 | 26 | 1 | Key | |
 | 27a | 16 | Torque Spring (EL 500) | Steel |
 | 27b | 24 | Torque Spring (EL 800) | Steel |
 | 28 | 2 | Dowel Pin | |
 | 29 | 1 | Key | |
 | 30 | 1 | Worm | Steel |
 | 31 | 1 | WormCap | Aluminium |
 | 32 | 1 | Ball | Steel |
 | 33 | 15 | Lock Washer | |
 | 34 | 4 | Screw | |
 | 35 | 1 | Screw | |
 | 36 | 1 | Screw | |
 | 37 | 1 | O-Ring | Buna |
 | 38 | 2 | Screw | |
 | 39 | 2 | Screw | |
 | 40 | 2 | Nut | |
 | 41 | 2 | Washer | |
 | 42 | 1 | Limit Switch Bracket | Steel |
 | 43 | 4 | Lock Washer | |
 | 44 | 4 | Screw | |
 | 45 | 1 | Heater | |
 | 46 | 8 | Screw | Steel |
 | 47 | 2 | Screw | |
 | 48 | 1 | Bung Drive Sleeve | Steel |
 | 49 | 1 | Dowel Pin | Steel |
 | 50 | 1 | Heater Bracket | Steel |
 | 51 | 2 | Terminal Block | |
 | 52 | 2 | Marking Tag | |
 | 53 | 2 | Terminal Sticker | |
 | 54 | 4 | Screw | |
 | 55 | 2 | Terminal Bracket | Steel |
 | 56 | 8 | Screw | |
 | 57 | 4 | Screw | |
 | 58 | 4 | Lock Washer | |
 | 60 | 3 | Blindstop | |
 | 61 | 1 | Motor Support Plate | Steel |
 | 62 | 7 | Screw | |
 | 63 | 1 | Dial | |

 PC.NO. QTY. DESCRIPTION

 | 64 | 2 | Limitswitch Cam | Aluminium |
 | ---: | :--- | :--- | :--- |
 | 65 | 1 | Limitswitch Cam Green | Aluminium |
 | 66 | 1 | Window | Lexan |
 | 67 | 2 | Window Sticker | Steel |
 | 69 | 1 | Indicator Shaft | Aluminium |
 | 70 | 1 | Limit Switch Cam Red | |
 | 71 | 4 | Screw | |
 | 72 | 6 | Micro Switch | |
 | 73 | 3 | Screw | |
 | 74 | 9 | Insulation plate | |
 | 75 | 2 | Screw | Steel |
 | 76 | 1 | Handwheel gasket | Buna |
 | 77 | 1 | Cover | |
 | 78 | 1 | O-Ring | |
 | 79 | 1 | Torque Switch spacer | |
 | 80 | 2 | Screw | |
 | 81 | 9 | Nut | |
 | 83 | 2 | Torque Switch Spacer | |
 | 84 | 2 | Screw | |
 | 85 | 1 | Torque Switch Collar | Aluminium |
 | 86 | 1 | Torque Switch Bearing | Brass |
 | 87 | 1 | Torque Switch Bracket | Steel |
 | 88 | 1 | Dowel Pin | |
 | 90 | 1 | Drive Sleeve Bearing | Steel |
 | 91 | 1 | O-Ring | Buna |
 | 92 | 1 | Pin Spiral | Steel |
 | 93 | 2 | Drive Sleeve Spring | Steel |
 | 94 | 1 | Thrust Bearing | Steel |
 | 95 | 1 | Top Bearing | Steel |
 | 96 | 1 | Worm Shaft | Suna |
 | 97 | 1 | O-Ring | |
 | 98 | 1 | Motor | |
 | 99 | 2 | Screw | |
 | 100 | 1 | Capacitor | |
 | 103 | 1 | Pin | |
 | 104 | 1 | Screw | Steel |
 | 105 | 1 | Window holder | |
 | 106 | 7 | Tooth Washer | |
 | 107 | 1 | Motor support plate gasket | |
 | 108 | 2 | Window gasket | Rubber |
 | 109 | 1 | Motor gasket | |
 | 110 | 1 | Topbearing gasket | |
 | 111 | 1 | Toothwasher | |
 | 112 | 1 | Hex nut | |
 | 120 | 1 | Washer | |
 | 121 | 1 | Nut | |
 | 122 | 1 | Torque Switch Gasket | Steel |
 | 123 | 1 | Support Plate Switch | Steel |
 | | | | |

 PC.NO. QTY. DESCRIPTION

 | 1 | 1 | Handwheel | Aluminium | 79 | 1 | Gasket Motor Support Pla | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 2 | 1 | O-Ring | Buna | 81 | 4 | Screw | Steel |
 | 3 | 1 | Handwheel Cap | Aluminium | 82 | 13 | Screw | Steel |
 | 4 | 7 | Screw | Steel | 83 | 1 | Terminal Bracket | Steel |
 | 5 | 12 | Lockwasher | Steel | | 4 | Screw | Steel |
 | 6 | 1 | H.W. Adaptor | Aluminium | 87 | 1 | Terminal Block | |
 | 7 | 1 | O-Ring | Buna | 88 | 1 | Capacitor | |
 | 8 | 1 | Retaining Ring | Steel | 89 | 3 | Blindplug | |
 | 9 | 1 | Spring | Steel | 90 | 1 | Housing | Aluminium |
 | 10 | 3 | Key | Steel | 91 | 1 | Toothwasher | Steel |
 | 15 | 1 | Declutch Shaft | Steel | 92 | 1 | Gasket Top Bearing | |
 | 16 | 2 | Key | Steel | 94 | 4 | Screw | Steel |
 | 18 | 1 | Clutch | Steel | 96 | 1 | T.S. Collar | Aluminium |
 | 19 | 1 | Retaining Ring | Steel | 97 | 1 | T.S. Bush Bearing | Bronze |
 | 20 | 1 | Worm Gear Sleeve | Steel | 98 | 1 | Hex Nut | Steel |
 | 21 | 1 | Bearing | Steel | 99 | 1 | Spacer | Steel |
 | 22 | 1 | Wormwheel | Bronze | 100 | 1 | T.S. Bracket | Steel |
 | 23 | 7 | Screw | Steel | 101 | 2 | Screw | Steel |
 | 24 | 1 | Bearing | Steel | 103 | 2 | Screw | Steel |
 | 25 | 16 | Spring EL1200 | Steel | 104 | 1 | Screw | Steel |
 | 25a | 16 | Spring EL1600 | Steel | 105 | 1 | Gasket Torque Switch | |
 | 26 | 1 | Worm EL1200 | Steel | 106 | 2 | Lifting Bolt | Steel |
 | 26a | 1 | Worm EL1600 | Steel | 109 | 1 | Shim Ring | Steel |
 | 27 | 1 | Bearing | Steel | 111 | 1 | Pin | Steel |
 | 28 | 1 | O-Ring | Buna | 112 | 1 | Shim Ring | Steel |
 | 29 | 1 | Endcap | Aluminium | 113 | 1 | Pin | Steel |
 | 30 | 2 | Declutch Rivet | Steel | 114 | 1 | Ball Bearing | |
 | 31 | 2 | Pin | Steel | 115 | 1 | Ball Bearing | |
 | 32 | 1 | Drive Sleeve EL1200 | Cast Iron | 116 | 1 | Thrust Bearing | |
 | 32a | 1 | Drive Sleeve EL1600 | Bronze | 118 | 1 | Motor Pinion | Steel |
 | 33 | 2 | Washer | Steel | 119 | 1 | Worm Shaft Gear | Steel |
 | 34 | 2 | Hex nut | Steel | 120 | 1 | Worm Shaft | Steel |
 | 35 | 2 | Screw | Steel | 121 | 1 | Gasket Motor | |
 | 36 | 1 | Wormshaft | Steel | 122 | 1 | Heater | |
 | 40 | 1 | Screw | Steel | 123 | 2 | T.S. Spacer | Steel |
 | 42 | 1 | Window Holder | Steel | 124 | 1 | Heater Bracket | Steel |
 | 43 | 1 | Window | Glass | 125 | 1 | Capacitor Bracket | Steel |
 | 46 | 1 | Cover | Aluminium | 126 | 1 | Thrust Bearing | Steel |
 | 47 | 1 | Dial | Steel | 127 | 1 | Retaining Ring | Steel |
 | 49 | 1 | Bearing | Bronze | 128 | 2 | Limitswitch Cam | Aluminium |
 | 51 | 1 | Indicator Shaft | Steel | 129 | 1 | Limitswitch Cam | Aluminium |
 | 52 | 1 | Limitswitch Bracket | Steel | 130 | 1 | Support Plate Limitswitch | Steel |
 | 53 | 1 | Motor | | 132 | 1 | Terminal Bracket | Steel |
 | 54 | 4 | Screw | Steel | 137 | 4 | Spacer | Steel |
 | 55 | 4 | Lockwasher | Steel | 138 | 3 | Screw | Steel |
 | 56 | 1 | Worm | Steel | 139 | 10 | Lockwasher | Steel |
 | 57 | 1 | Key | Steel | 140 | 1 | Bearing Cap | Steel |
 | 58 | 4 | Retaining Ring | Steel | 141 | 1 | Wormwheel Ring | Bronze |
 | 60 | 1 | O-Ring | Buna | 143 | 3 | Screw | Steel |
 | 61 | 1 | Bearing | Steel | 144 | 1 | Declutch Fork | Steel |
 | 62 | 1 | Bung D.S. | Steel | 145 | 1 | Spring Declutch | Steel |
 | 63 | 1 | Pin | Steel | 146 | 1 | Spacer | Steel |
 | 64 | 2 | Spring | Steel | 147 | 1 | Latch | Steel |
 | 65 | 1 | Bearing | Steel | 148 | 1 | Latch screw | Steel |
 | 66 | 1 | Top Bearing | Steel | 149 | 1 | Screw | Steel |
 | 67 | 2 | Screw | Steel | 150 | 1 | Lockwasher | Steel |
 | 68 | 6 | Lockwasher | Steel | | | | |
 | 69 | 1 | O-Ring | Buna | | | | |
 | 70 | 2 | Screws | Steel | | | | |
 | 71 | 6 | Hex Nut + Lockwasher | Steel | | | | |
 | 72 | 7 | Isolation Plate | | | | | |
 | 73 | 6 | Microswitch | | | | | |
 | 75 | 1 | Limitswitch Cam | Aluminium | | | | |
 | 78 | 1 | Motor Support Plate | Steel | | | | |

 MATERIAL.
 Aluminium
 Buna
 Steel
 Aluminium
 Buna
 Steel
 Steel
 Steel
 Steel
 Bronze
 Steel
 Steel
 Steel
 Steel
 Aluminium
 Steel
 Bronze
 Steel
 Ster

 Steel

 Aluminium
 Bronze
 Steel

 Steel
 Steel
 Steel
 Buna
 Steel
 Steel
 Steel
 Ster
 Steel
 Steel
 Steel

 Aluminium Steel

 PC.NO. QTY. DESCRIPTION.
 MATERIAL.

 Steel
 Steel
 Steel

 Aluminium
 Steel
 Steel
 Aluminium
 Bronz
 Steel
 Steel
 Steel
 Steel
 Steel
 Steel
 Stee
 Steel

 Steel
 Steel
 Steel

 Steel
 Steel
 Steel
 Aluminium
 Aluminium
 Steel
 Steel
 Steel
 Steel
 Stee
 Steel
 Steel
 Steel
 Steel
 Steel
 Steel

 ## Parts and Materials

 | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. | PC.NO. | QTY. | DESCRIPTION. | MATERIAL. |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1 | 1 | Handwheel | Aluminium | 105 | 1 | Housing | Aluminium |
 | 2 | 2 | Lifting Bolt | Steel | 106 | 1 | Bearing | |
 | 3 | 4 | Screw | Steel | 107 | 1 | O-Ring | Buna |
 | 4 | 4 | Lockwasher | Steel | 108 | 1 | Support Plate Limitswitch | Steel |
 | 5 | 8 | Screw | Steel | 109 | 1 | Motor | |
 | 6 | 12 | Lockwasher | Steel | 110 | 1 | Motor Bushing | Steel |
 | 7 | 1 | Handwheel Adaptor | Aluminium | 111 | 1 | Key | Steel |
 | 8 | 1 | O-Ring | Buna | 112 | 1 | Adaptor | Steel |
 | 10 | 1 | Handwheel Cap | Aluminium | 113 | 2 | Heater | |
 | 11 | 1 | O-Ring | Buna | 114 | 1 | Heater Bracket | Steel |
 | 12 | 1 | Latch Shaft | Steel | 115 | 6 | Micro Switch | |
 | 13 | 1 | Declutch Fork | Steel | 116 | 2 | Terminal Block | |
 | 14 | 2 | Spring Declutch | Steel | 117 | 1 | Terminal Bracket | Steel |
 | 17 | 4 | Plain Bearing | | 118 | 1 | Torque Switch Compleet | |
 | 18 | 1 | Spring Pack Cover | Aluminium | 119 | 1 | T.S. Pinion + Rol Pin | |
 | 19 | 1 | O-Ring | Buna | 120 | 1 | Wormshaft | Steel |
 | 20 | 1 | Declutch Lever | Aluminium | 121 | 1 | Wormshaft Bush | Steel |
 | 21 | 4 | Screw | Steel | 122 | 2 | Key | Steel |
 | 23 | 2 | Declutch Rivet | Steel | 123 | 1 | Spring | Steel |
 | 24 | 3 | Retaining Ring | Steel | 124 | 1 | Clutch | Steel |
 | 25 | 1 | Declutch Link | Steel | 126 | 1 | Worm Gear Sleeve | Steel |
 | 26 | 2 | Declutch Rivet | Steel | 127 | 2 | Retaining Ring | Steel |
 | 27 | 1 | Key | Steel | 128 | 1 | Bearing Plate | Steel |
 | 29 | 1 | Shaft Declutch Lever | Steel | | 4 | Screw + Washer | Steel |
 | | 1 | O-Ring Shaft Decl. | Buna | 129 | 2 | Ball Bearing | |
 | 30 | 1 | Pin Declutch Lever | Steel | 130 | 1 | Wormwheel | Bronze |
 | 31 | 1 | Declutch Link | Steel | 131 | 1 | Key | Steel |
 | 32 | 1 | Latch Left | Steel | 132 | 1 | Retaining Ring | Steel |
 | 33 | 1 | Latch Right | Steel | 133 | 2 | Bearing | Steel |
 | 35 | 1 | Declutch Shaft | Steel | 134 | 1 | Torque Limiter Sleeve | Steel |
 | 36 | 2 | Cover Plug | | 135 | 8 | Spring | Steel |
 | 37 | 1 | Window | Glass | 136 | 1 | Lock Nut | Steel |
 | 38 | 1 | Window Holder | Steel | 138 | 8 | Isolation Plate | |
 | 42 | 2 | Screw | Steel | 139 | 1 | Screw | Steel |
 | 43 | 1 | Dial | Steel | 140 | 2 | Threaded Rod | Bronze |
 | 46 | 1 | Screw + Washer | Steel | 141 | 1 | Spacer | Aluminium |
 | 47 | 1 | Limitswitch Cam | Aluminium | | | | |
 | 48 | 1 | Cover | Aluminium | | | | |
 | 49 | 1 | O-Ring | Buna | | | | |
 | 50 | 15 | Screw | Steel | | | | |
 | 51 | 1 | Gasket | | | | | |
 | | 1 | Indicator Shaft | Steel | | | | |
 | 53 | 1 | Top Bearing | Steel | | | | |
 | 54 | 1 | Drive Sleeve | Bronze | | | | |
 | 55 | 1 | Bung Drive Sleeve | Steel | | | | |
 | 56 | 1 | Pin | Steel | | | | |
 | 57 | 3 | Spring | Steel | | | | |
 | 58 | 2 | Bearing | | | | | |
 | 59 | | Retaining Ring | Steel | | | | |
 | 60 | 2 | Stop Pin | Steel | | | | |
 | 61 | 1 | Motor Support Plate | Steel | | | | |
 | 62 | | Key | Steel | | | | |
 | 63 | 2 | Bearing | | | | | |
 | 64 | | Plain Washer | Steel | | | | |
 | 65 | 1 | Bearing | | | | | |
 | 66 | 1 | Wormshaft | Steel | | | | |
 | 67 69 | 2 1 | ${ }_{\text {Shim }}^{\text {Retaining }}$ Ring + Shim Ring | Steel | | | | |
 | 70 | 2 | Limitswitch Cam | Aluminium | | | | |
 | 71 | 1 | Limitswitch Cam | Aluminium | | | | |
 | 101 | 3 | Blindplug | Steel | | | | |
 | 102 | 2 | Screw | Steel | | | | |
 | 103 | 2 | Hex Nut | Steel | | | | |
 | 104 | 2 | Washer | Steel | | | | |

 fig. 2a.
 Location of Limit Stops

 All El-series electric actuators are equipped with a manual override feature and a Stroke Adjustment System. The purpose of this system is to limit the stroke of the valve while under manual control.

 On torque switch equipped actuators the limit stops may be used to provide a greater degree of stroke precision than by limit switches. ie. for high performance butterfly valves.

 After the actuator has been fitted on a valve and the end of travel limit switches have been set, the mechanical stops can be set as follows:

 Before beginning please note:

 ## Important.

 - For torque seated applications the mechanical stops do not need setting in the positions that torque seating is required and the stop screws should be backed off approx. 2 turns from the fully closed or open position. This to prevent the torque switch from tripping on the stop screws and not on the valve seat.

 ## Procedure

 1. With actuator mounted to a valve, electrically or manually move the valve away from the fully open position.
 2. Turn the open stop screw out (ccw) 4 turns.
 3. Manually operate the actuator to the full open position.
 4. Now turn the open stop screw in (cw) until an obstruction is felt (do not force) then backoff 1/2 turn and lock the stop screw with the locknut.
 5. Follow the same procedure at the closed end of travel and adjust the "close" stop screw the same way.

 ## Limit Switch Setting

 Set mechanical stops before setting limit switches. The end of travel limit switches have been factory set for approximately 90° of valve travel. They will however coincide with the exact end of valve travel positions.

 The switches should be adjusted after the actuator is installed on the valve and after the mechanical stops have been set.
 The switches and their operating cams are located under the limit switch bracket which is fixed to the top of the motor.

 fig. 1a. Location of Limit Switches
 Before beginning please note:

 ## Important

 - The motor is de-energized once the flatted side of the cam is in contact with the limit switch actuator arm, and the switch is no longer depressed.

 fig. 1b. Switch Break Position

 ## Also

 \diamond Capacitor may be removed from the limit switch bracket for better access.

 - For more precise setting you can leave the allen wrench in the cam during setting procedure.

 ## Procedure

 1. Remove actuator cover.
 2. The limit switches are marked "1" for close and " 2 ' for open.

 fig. 1c. Switch Functions.

 ## CCW (Open) switch setting

 3. Manually or electrically rotate actuator/valve to the desired position.
 4. REMOVE ELECTRICAL POWER.
 5. Using a 2 mm allen wrench loosen set screw on cam.
 6. Rotate green cam until switch lever arm rides on the curved portion of the cam. (fig 1d).

 ## fig. 1d. Initial Position

 7. Rotate cam counter-clockwise until the switch trips. This can be detected by a slight audible "click", or use a battery powered test light across terminal 8 and 10.
 8. Tighten set screws.
 9. Electrically cycle the actuator to check switch setting.

 ## CW (Close) limit switch setting

 10. Manually or electrically rotate actuator/valve to the desired position.
 11. REMOVE ELECTRICAL POWER.
 12. Using a 2 mm allen wrench loosen set screw on cam.
 13. Rotate red cam until switch lever arm rides on the curved portion of the cam (fig 1d).
 14. Rotate cam clockwise until the switch trips. This can be detected by a slight audible "click", or use a battery powered test light across terminal 5 and 7.
 15. Tighten set screws.
 16. Electrically cycle the actuator to check switch settings.

 The potentiometer itself is fixed on the limit switch bracket and is driven by a pair of gears from the indicator shaft.

 Before starting check "POT" kit to ensure that all parts are available.
 Always verify if potentiometer value suits your requirement prior to mounting in actuator.

 | Pc.Nr. | Qty | Description |
 | :--- | :---: | :--- |
 | 3 | 1 | Drive pinion (large). |
 | 4 | 1 | Potentiometer pinion (small). |
 | 5 | 1 | Potentiometer spacer. |
 | 6 | 1 | Potentiometer. |

 ## Procedure

 1. Remove actuator cover (1).
 2. Remove dial (2).

 Fig. 1.
 General Arangement

 3. Mount potentiometer (6) on limit switch bracket using nut and spacer (5).
 4. Slide potentiometer pinion (4) (small) onto pot. shaft and tighten screw.
 5. Slide drive pinion (3) (large) over indicator shaft.
 6. Ensure that end of travel limit switches have been set correctly and actuator is in mid position. Turn potentiometer shaft in mid position and tighten drive pinion screw onto the indicator shaft (do not overtighten).

 Fig. 2. Potentiometer detail
 7. Replace dial (1) and align in the proper position. Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove.

 EL100-114

 EL 100-1600 shown, EL 55 is the same except that it has no torque switches. Limit switches are shown in mid stroke.

 SRIT SWITCES SHOWN
 Dec.'96

 The speed controller board is fixed on the limit switch bracket on top of the motor

 Before starting check the kit to ensure that all parts are available and the speed controller card voltage is the same as the actuator voltage.

 $$
 \begin{array}{ll}
 \text { There are two versions } & : 110-250 \mathrm{~V} \text { AC } \\
 & : 24 \mathrm{~V} \text { DC }
 \end{array}
 $$

 | Pc.Nr. | Qty | Description | Used on |
 | :---: | :---: | :--- | :--- |
 | 9 | 3 | Print spacer | EL 55 |
 | 9 | 3 | Spacer | EL 100 -1600 |
 | 10 | 1 | Speed controller board | EL 55-1600 |

 ## Procedure

 1. Remove actuator cover (1).
 2. Remove dial (2).

 Fig. 1.
 General Arangement

 3a. For EL 55
 Insert three spacers (9) into the limit switch bracket and place speed control board so that the spacers locate correctly in the three holes in the circuit board. Press firmly into place.
 3b. For EL 100 through 800 only.
 Mount speed control board on limit switch bracket using 3 screws and 3 plastic spacers (the screws engage with 3 nuts welded to top motor plate).

 Fig. 2. Speed controller detail
 4. Connect speed control terminal 40 (brown) to terminal 12.
 5. Remove violet motor lead from terminal 4 and crimp to the violet wire connected to terminal 4 a on the speed control board.
 Then connect the violet wire connected to terminal 4 on the speed control board to terminal 4 on the main actuator terminal strip.
 6. Connect power supply to the actuator. This must be the correct voltage as shown on the actuator name plate.
 7. Pre-set pot "Speed Adjustment Control" fully CW (fastest) and operate actuator to verify correct operation. "Speed Adjustment Control" may now be adjusted CCW to achieve desired operating time.
 8. Replace dial (1). Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove.
 properly located in the "O" ring groove.
 (100-218

 The position transmitter card is fixed on top of the limit switch bracket with the potentiometer fixed to the bracket itself, the drive for this is by a pair of gears from the indicator shaft.

 Before starting check "PT2" kit to ensure that all parts are available.

 | Pc. Nr. Qty | | | | | Description | Used on |
 | :---: | :---: | :--- | :--- | :---: | :---: | :---: |
 | 3 | 1 | Drive pinion (large). | EL $55-$ EL 2500 | | | |
 | 4 | 1 | Pinion (small). | EL $55-$ EL 2500 | | | |
 | 5 | 1 | Potentiometer spacer. | EL 55-EL 2500 | | | |
 | 6 | 1 | Potentiometer | EL 55-EL 2500 | | | |
 | 9 | 3 | Print spacer | EL 55-EL 2500 | | | |
 | 9 | 3 | Print spacer and screw | EL 100 - EL 1600 | | | |
 | 16 | 1 | Position transmittercard | EL 55-EL 2500 | | | |

 ## Installation Procedure

 1. Remove actuator cover (1).
 2. Remove dial (2).

 Fig. 1.
 General Arangement

 Fig. 2. Position Transmitter Detail
 3. Mount potentiometer (6) on limit switch bracket using nut and spacer (5).
 4. Slide potentiometer pinion (4) (small) onto pot. shaft and tighten screw. (Do not overtighten)
 5. Slide drive pinion (3) (large) onto indicator shaft.
 6. Ensure that end of travel limit switches have been set correctly and actuator is in mid position. Turn potentiometer shaft in mid position and tighten drive pinion screw onto the indicator shaft (do not overtighten).

 7a. For EL-55.
 Insert three spacers (9) into limit switch bracket and place position transmitter board so that the spacers locate correctly in the three holes in the circuit board. Press firmly into place.

 7b For EL-100 through EL-1600.
 Mount position transmitter on limit switch bracket using 3 screws (9) and 3 plastic spacers (the screws engage with 3 nuts welded to top motor plate).

 7c For EL-2500.
 Insert three spacers (9) into print bracket and place position transmitter board so that the spacers locate correctly in the three holes in the circuit board. Press firmly into place.

 Fig. 3.
 Position Transmitter Card Layout

 ## Calibration Procedure

 8. Connect 24 V DC. power supply to terminals 35 and 36, positive lead to be connected to terminal 36. Connect a 4-20 mA meter in series with positive power supply and terminal 36. As shown in the wiring diagram below.
 9. Turn actuator to the fully closed position and install 24 V.DC. power supply to position transmitter and check if mA meter indicates approximately 4 mA . If meter indicates approx 20 mA , reverse brown potmeter leads at terminals 19 and 21, meter should now indicate 4 mA .

 Note: EL55 does not have torque switches.
 10. Adjust trimpotmeter marked "ZERO" to achieve 4 mA. then operate actuator to the fully open position and adjust trim potmeter marked "SPAN" to achieve 20 mA .
 (This step may have to be repeated several times to achieve accurate indication).

 Note: A digital mA meter may be connected in series with power supply for a more accurate setting.
 11. Replace dial (1) and align in the proper position. Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove

 The position transmitter card is fixed on top of the limit switch bracket with the potentiometer fixed to the bracket itself, the drive for this is by a pair of gears from the indicator shaft.

 Before starting check "PT4" kit to ensure that all parts are available.

 | Pc.Nr. | Qty | Description | Used on |
 | :---: | :---: | :--- | :--- | :--- |
 | 3 | 1 | Drive pinion (large). | EL $55-$ EL 2500 |
 | 4 | 1 | Pinion (small). | EL $55-$ EL 2500 |
 | 5 | 1 | Potentiometer spacer. | EL $55-$ EL 2500 |
 | 6 | 1 | Potentiometer | EL $55-$ EL 2500 |
 | 9 | 3 | Print spacer | EL $55-$ EL 2500 |
 | 9 | 3 | Print spacer and screw | EL 100 - EL 1600 |
 | 16 | 1 | Position transmittercard | EL $55-$ EL 2500 |

 Fig. 2. Position Transmitter Detail
 3. Mount potentiometer (6) on limit switch bracket using nut and spacer 5.
 4. Slide potentiometer pinion (4) (small) onto pot. shaft and tighten screw.
 5. Slide drive pinion (3) (large) onto indicator shaft.
 6. Ensure that end of travel limit switches have been set correctly and actuator is in mid position. Turn potentiometer shaft in mid position and tighten drive pinion screw onto the indicator shaft (do not overtighten).

 7a. For EL-55.
 Insert three spacers (9) into limit switch bracket and place position transmitter board so that the spacers locate correctly in the three holes in the circuit board.
 Press firmly into place.
 7b For EL-100 through 1600.
 Mount position transmitter on limit switch bracket using 3 screws and 3 plastic spacers (the screws engage with 3 nuts welded to limit switch bracket).

 7c For EL-2500.
 Insert three spacers (9) into print bracket and place position transmitter board so that the spacers locate correctly in the three holes in the circuit board. Press firmly into place.

 Fig. 1.
 General Arangement

 Fig. 3.
 Position Transmitter Card Layout

 ## Calibration Procedure

 ## 8. Important:

 220 Volt: Connect power supply leads to terminals 38 and 40, and place a link between terminals 37 39.

 120 Volt: Connect power supply leads to terminals 38 and 40, place one link between terminals 37-40 and another between terminals 38-39.
 9. Connect a 4-20 mA meter to terminals 33 and 34 .
 10. Apply power to the actuator and operate to the fully closed position, check if mA meter indicates approximately 4 mA .
 If meter indicates approx 20 mA , reverse brown potmeter leads at terminals 19 and 21, meter should now indicate 4 mA .
 11. Adjust trimpotmeter marked "ZERO" to achieve 4 mA .
 Then operate actuator to the fully open position and adjust trimpotmeter marked "SPAN" to achieve 20 mA .
 (This step may have to be repeated several times to achieve accurate indication).

 Note: A digital mA meter may be connected in series with a panel meter and one of the terminals 33 or 34 , this will not affect final readout on panel meters.
 12. Replace dial (1) and align in the proper position. Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove.

 Note: EL55 does not have torque switches.

 ## THEORY OF OPERATION:

 This electric valve actuator option provides continuous proportional position modulation for process control applications. The positioner drives the actuator to an angle of rotation proportional to the level of a 4-20 mA.DC process control signal (other input current and voltage ranges are available) applied to its input terminals. Comparator circuits in the positioner compare the control signal with a reference signal generated by a potentiometer coupled to the actuator output shaft. A difference between the control signal and reference signal energizes the drive motor in the appropriate direction to eliminate the difference (achieve a null). The actuator drives at full speed until the difference signal is approximately 5% of span. At that point, a slow-approach-to-setpoint pulsing circuit slows the motor to achieve accurate positioning without overshoot. The slow-approach feature, by eliminating actuator over-shoot and attendant hunting, reduces motor heating and the need for high-duty-cycle motor ratings for positioning applications.

 Calibration controls on the circuit board include Zero, Span, Alignment (mid-position linearity) and Deadband. Deadband adjustment is provided to eliminate hunting caused by small, frequent changes in process value.

 Opto-isolation provides a high degree of noise immunity, especially important in industrial plants with high levels of power line noise. Triac motor switching eliminates relay contacts and improves long term reliability. Zero-crossing triac drivers further improve reliability while eliminating line noise generation. Limit switches and torque switches control actuator travel through positioner low-level control circuitry, further enhancing long term reliability.

 A Re-transmit output signal (of the same current or voltage range as the input signal) is provided for remote position indication, process control feedback or an other process element.

 ## PHYSICAL DESCRIPTION:

 The positioner circuit board is mounted inside the actuator electric compartment cover, becoming an integral part of the actuator. The feedback pot (potentiometer) supplied with the positioner option is of the conductive plastic type, offering stepless resistance feedback. The pot is environmentally sealed for improved durability. The pot is driven through spur gears by the actuator indicator shaft at a reduction ratio (for a 90° actuator) to enhance resolution. The pot is rigidly mounted to the actuator limit switch bracket, which also supports the positioner board. Available in field-retrofit kit form, the circuit board is supplied with pot and connection wires already attached, requiring only physical mounting and wiring to the actuator main terminal strip and field wiring.

 ## INSTALLATION:

 Before Beginning Positioner Installation:

 1. Connect the actuator as without positioner and operate to check for normal operation.
 2. Set limit switches per instruction elswhere in this Actuator Installation and Operation Manual.
 3. Set actuator to mid position.
 4. Leave electrical compartment cover off.
 5. Disconnect power.
 6. Motor capacitor may be temporarily removed from limit switch bracket to provide more working space.
 7. Review the entire installation procedure before beginning.
 8. Check kit contents against items in Table 1 (below).

 | PARTS LIST: MOD INSTALLATION KIT | | | | |
 | :---: | :---: | :---: | :---: | :---: |
 | Fig \# | Qty | Description | Used on EL | |
 | | | | 55 | 100/1600 |
 | 3 | 1 | Drive pinion (large) | * | * |
 | 4 | 1 | Potentiometer pinion (small) | * | * |
 | 5 | 1 | Potentiometer spacer | * | * |
 | 6 | 1 | Potentiometer 10K Ohms | * | * |
 | 9 | 3 | Standoff | * | * |
 | 9 | 3 | Spacer/screw/washer | * | * |
 | 16 | 1 | Positioner board | * | * |
 | | 1 | Set screw, drive pinion | * | * |
 | | 2 | Pin terminal, blue | * | * |
 | | 3 | Wire tie | * | * |

 Table 1

 ## Mounting:

 Refer to Fig. 1 for the following steps (numbers in brackets are figure references):

 fig. 1. Positioner Mounting.

 1. Remove position indicator dial.
 2. EL-55: snap self-locking plastic spacers into three holes provided in limit switch bracket (position spacers with "wings" toward limit switch bracket).
 3. Install setscrew in hub of large gear (potentiometer drive gear).
 4. Install drive gear on indicator shaft (leave setscrew loose).

 ## Electronic Positioner - Installation and Calibration

 5. EL-55: slide positioner circuit board over indicator shaft and position on self-locking spacers but don't press board onto spacers at this time. EL- 100 to 1600: slide board over indicator shaft and rest on limit switch bracket in proper orientation.
 6. Remove nut from pot bushing, leaving plastic spacer (5) in place. Install pot (6) in large hole in limit switch bracket (next to motor capacitor). Reinstall nut and tighten.
 7. Install pot gear on pot shaft and tighten setscrew (DO NOT OVERTIGHTEN).
 8. Rotate pot to mid position.
 9. Mesh drive and driven gears (do not rotate pot during this step). Align top surfaces of gears to prevent setscrew interference during rotation. Tighten drive gear setscrew (DO NOT OVERTIGHTEN).
 10. EL-55: Press circuit board onto spacers so spacers lock into holes. EL-100 to 1600: Install circuit board with spacers/screws/flat washers/star washers provided.
 11. Re-install motor capacitor if it was removed for access.

 ## Wiring:

 Before beginning wiring connections, remove yellow and blue jumper wires from right side of main terminal strip.

 Refer to the wiring diagram (fig. 2) and connection diagram (fig. 3). For 3 phase and DC actuators, or actuators with Local Control, see further in this Installation and Operation manual. If your configuration is not included in the manual, contact EL-O-MATIC before attempting to wire positioner.

 1. Connect positioner board terminals 37 and 40 (brown leads) to terminals 11 and 12 on the left side of the actuator's main terminal strip. To do this, remove the heater leads from terminals 11 \& 12 and cut off the pin terminals. Using new pin terminals (blue) from the kit, install one heater wire and one positioner wire into each pin terminal and crimp them in place. Replace the pin terminals into the main terminal strip. Observe correct terminal numbering (heater leads may be connected either way).
 2a. First: remove links from 2-10 and 3-7.
 2. Connect remaining positioner leads to the main actuator terminal strip on the right side as follows: 41 to 4,42 to 2,43 to 3,45 to 5,45 to 8 (there are two terminal 45 's), 50 to 7,51 to 10.
 3. Use wire ties to harness leads into neat groups and away from heater and torque switches.
 4. Select line voltage with selector switch on positioner board.

 Fig. 3a. Actuator Main Terminal Strip.

 fig. 2. Positioner Wiring.

 ## Calibration:

 ## Before You Begin:

 1. Actuator limit switches and mechanical stops must be properly set.
 2. It is best to adjust the positioner with actuator mounted to the valve on which it is to be used. Since the closed position of the valve is generally more important (for shut-off) then the fully open position, you should provide a method for determining when the valve is closed.
 3. Calibration pots are of the twenty turn type (end of rotation can be detected by listening for a click).
 4. Re-install position indicator dial before beginning positioner adjustment, as it will provide a useful reference for motion and position during the adjustment process.
 5. Pre-set DEADBAND pot to narrowest setting (fully ccw).

 ## Setting Procedure:

 1. Connect a variable milliamp source (signal generator) to terminals 48(+) and 49(-).
 2. Connect a milliammeter or jumper wire between terms 44(-) and 46(+).
 3. Apply power to actuator.

 fig. 3b. Positioner Board Layout.
 4. Set milliamp source to 4 mA . Actuator will run towards closed (cw) position (red LED will light while actuator runs). If reverse operation is desired (close on rising signal) see note 1 below.
 5. Turn ZERO pot so that actuator moves toward fully closed position. Advance pot slowly so as not to overshoot the limit switch. The 4 mA point should correspond with the point at which the limit switch just clicks.

 ## Note: The actuator will not run past the limit

 switches. If valve travel is inadequate, readjust the limit switches.6. Set milliamp source to 20 mA . Actuator will run towards open (ccw) position. Green LED will light while actuator runs.
 7. Turn SPAN pot in the same manner as in step 4 for fully open valve position.
 8. Repeat steps 4 through 7 until both open and closed positions are satisfactory.
 9. Set milliamp source to 12 ma .
 10. Adjust "ALIGNMENT" pot so that actuator moves to 45° (for a 90° actuator). Your ammeter, if connected to the output terminals, will indicate approximately 12 mA . Adjust this setting until 12 mA is indicated.
 11. Re-check ZERO and SPAN for output indication. Steps 4 through 10 may be repeated to obtain the highest degree of accuracy, however output indication cannot be set independently of position. Accuracy of output is $+/-0.15 \mathrm{~mA}$ of command signal (i.e., for a command signal of 4.00 mA , an output indication of 3.85 to 4.15 mA or better should be attainable).

 ## Notes:

 1. For "reverse acting" (i.e., 20 mA to close) reverse pot leads on terminals 19 and 21, motor leads on terminals 42 and 43, and limit switch leads on terminals 50 and 51.
 2. The positioner board, as supplied, is configured for "fail in place" on loss of control signal. This may be changed to "fail closed" by removing configuring plugs (next to terminal 46) from pins 2 and 3 and replacing them on pins 1 and 4.
 3. Deadband and slow-approach: You will observe, during positioner adjustment, that as the actuator nears the set point, the appropriate LED will pulse several times before the actuator stops. If the pulsing seems prolonged or excessive, increase the dead-band (rotate cw). Note that this will affect the zero and span settings so these points should be re-adjusted if the deadband is widened after they have been initially set.
 4. All signal wires are to be free of electrical noise and interference. It is recommended that all signal wires be shielded or run in separate grounded metal conduit.
 5. Actuator must be properly grounded for MOD to operate correctly.

 The plug and socket assembly is fixed to the actuator housing on one of the two ancillary mounting pads. The small pad is for the 6 pole socket and the large pad is for the 16 pole version.

 ## Before starting check "PL" kit to ensure that all parts are available.

 | Pc.Nr. | Qty | Description |
 | :--- | :---: | :--- |
 | 1 | 1 | Rubber gasket, 6 pole. |
 | 2 | 4 | Screw and lock washer. |
 | 3 | 1 | Socket connector, 6 pole. |
 | 4 | 1 | Plug connector, 6 pole. |
 | 5 | 1 | Rubber gasket, 16 pole. |
 | 6 | 1 | Socket connector, 16 pole. |
 | 7 | 1 | Plug connector, 16 pole. |

 ## Installation Procedure

 1. Remove actuator cover (2).
 2. Remove one blindplug from actuator conduit entry.
 3. Bolt connector socket (male pins) (3) to actuator housing after feeding 7 electrical leads through actuator conduit entry into motor compartment.
 4. Ensure that rubber gasket (1) is placed between Connector Socket and actuator housing.

 Fig. 1.
 General Arangement
 5. Connect wiring
 from connector socket to actuator terminal strip as follows:-

 | From Socket Connector | Term. No. | | |
 | :--- | :---: | :---: | :---: |
 | | | EL-55 | EL-100/2500. |
 | Yellow/Green | - | 1 | 1 |
 | Purple | - | 4 | 4 |
 | Black | - | 5 | 5 |
 | Red | - | 6 | 13 |
 | White | - | 8 | 8 |
 | Green | - | 9 | 14 |
 | Brown | - | 12 | 12 |

 EL35-381
 EL 55 PLUG AND SOCKET WIRING

 Dec.'96

 Fig. 2.

 ## Plug and Socket Layout

 6. Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove.
 7. Connect connector plug (female pins) as follows:-

 ## Cable.

 Earth
 Neutral Close command Close signal Open command Open signal Heater Phase

 Plug connector. terminal. No.

 - Plug chassis.
 - 1
 - 2
 - 3
 - 4
 - 5

 Please note:
 The above is the method of wiring for the 6 pole plug and socket. Should you require to connect more cores to your unit we suggest that you use a 16 pole plug and socket connector. The wiring diagram for this will be available through El-o-matic.

 The wiring shown here is for a single phase supply. If you are working with a different supply please be sure to obtain a proper diagram.

 The local controller assembly is fixed to the actuator housing located on the smaller of the two ancillary mounting pads.

 Before starting check "LC" kit to ensure that all parts are available.

 | Pc.Nr. | Qty | Description |
 | :--- | :---: | :--- |
 | 1 | 1 | Rubber gasket. |
 | 2 | 4 | Screw and lock washer. |
 | 3 | 1 | Local control station. |

 ## Installation Procedure

 1. Remove actuator cover (2).
 2. Bolt Local Control Station to actuator housing after feeding the Five electrical leads through the conduit entry into the motor compartment.
 3. Ensure that rubber gasket (1) is placed between Local Control Station and actuator housing.
 4. Remove one blind plug from actuator conduit entry (always mount the Local Control Station on the face with one conduit entry, leaving both the other entries available for cabling).

 Fig. 1.
 General Arangement

 EL35-157

 Dec.' 96

 MPORTANT

 crut feed butheme me or rime criantort

 NOTE 1
 IN EXPLOSION PFOOF EXECUTION
 NEXPLOEION PKOOF EXECUTIGN
 SWITCHES ARE COMBINED IMTO
 ONE SWITCH
 LIMIT SWITCHES SHOWN IN MID-STROKE

 Fig. 2.
 Location of Terminal Strip
 5. Connect wiring from Local Control Station to terminal strips as follows:-

 Cable from Control Station Term No.

 | Black 5A | 5A | (aux. term. strip) |
 | :--- | :--- | :--- |
 | Black 5 | 5 | (main term. strip) |
 | Brown 12 | 12 | (main term. strip) |
 | White 8A | 8 A | (aux. term. strip) |
 | White 8 | 8 | (main term. strip) |

 6. Replace actuator cover and fasten bolts securely taking care that the "O" ring is properly located in the "O" ring groove.

 Fig. 3.
 Local Controller Layout.

 Please note:
 The above procedure may be used for either the standard LC, or the alternative version with the key lock.

 The wiring shown here is for a single phase supply. If you are working with a different supply, or MOD option, please be sure to obtain a proper diagram.

 ## Caution:

 - Do not attempt to work on your EL-O-MATIC actuator until all power to the unit has been shut off.
 - Always disconnect all incoming power leads from the actuator terminal strips.
 - Never disassemble or reset torqueswitches
 - For bracket drawing reference numbers refer to the applicable parts drawing.

 ## EL-20.

 1. Remove cover (6).
 2. Remove motor support plate (11) by removing five screws (25).
 3. Lift motor support plate, motor and switch assembly from the unit housing, taking care not to bend the indicator shaft. The indicator shaft comes out, it must be removed with the motor support plate.
 4. Remove setscrew (41) and pins (37) and slide the wormshaft (34) from the unit housing.
 5. All gearing can now be removed from the housing.

 ## EL-35/55

 1. Remove cover (3).
 2. Remove the indicator dial (26).
 3. Remove motor support plate (15) by removing seven screws (16).
 4. Fix indicatorshaft (with cams) to prevent sliding down.
 5. Lift motor support plate, motor and switch assembly from the unit housing, taking care not to bend the indicator shaft. The indicator shaft comes out, it must be removed with the motor support plate.
 6. Remove setscrew (45), pins (39) and (42) and draw the wormshaft from the unit housing by pulling handwheel (56).
 7. All gearing can now be removed from the housing.

 ## EL-100/150.

 1. Remove cover (38).
 2. Remove motor support plate (4) by removing seven screws (5).
 3. Important: Be sure that unit is not torqued against the stop screws. If it is, relieve by turning hand wheel
 4. Fix indicatorshaft (with cams) to prevent sliding down.
 5. Lift motor support plate, motor and switch assembly from the unit housing, taking care not to bend the indicator shaft. The indicator shaft comes out, it must be removed with the motor support plate.
 6. Remove four screws (71) and remove wormcap (73).
 7. Slide thrust bearing (65) and torque springs (70) from the worm shaft (72). The worm (68) and four torque springs (70) can now be removed from the wormshaft.
 8. Remove key (69) and retaining ring (67).
 9. Slide worm gear (66) over worm shaft and remove key and remove wormshaft (72) by pulling handwheel (56).

 ## EL-200/350.

 1. Remove cover (36).
 2. Remove motor support plate (4) by removing six screws.
 3. Important: Be sure that unit is not torqued against the stop screws. If it is, relieve by turning hand wheel
 4. Fix indicatorshaft (with cams) to prevent sliding down.
 5. Lift motor support plate, motor and switch assembly from the unit housing, taking care not to bend the indicator shaft. The indicator shaft comes out, it must be removed with the motor support plate.
 6. Remove spur gear (81), worm (84), Wormshaft (85) and two thrust bearings (86) by lifting spur gear (81) upwards out of the gear case.
 7. Remove four screws (99) and remove wormcap (72).
 8. Slide thrust bearing (63) and eight torque springs (67) from the wormshaft (69).
 9. Slide worm gear (64) and eight torque springs from the wormshaft.
 10.Remove Key (66) and (71) and screws (65) and draw the wormshaft (69) from the unit by pulling handwheel (54).

 ## EL-500/800.

 1. Remove cover (77).
 2. Remove motor support plate (61) by removing 7 screws (62).
 3. Important: Be sure that unit is not torqued against the stop screws. If it is, relieve by turning hand wheel.
 4. Fix indicatorshaft (with cams) to prevent sliding down.
 5. Lift motor support plate, motor and switch assembly from the unit housing, taking care not to bend the indicator shaft. The indicator shaft comes out, it must be removed with the motor support plate.
 6. Remove spur gear (13), worm (11), Wormshaft (21) and two thrust bearings (10) by lifting spur gear (13) upwards out of the gear case.
 7. Remove four screws (34) and remove wormcap (31).
 8. Slide thrust bearing (24) and torque springs (27) from the wormshaft (96).
 9. Remove key (29) and screw (104) and slide worm gear (26) and eight torque springs from the wormshaft.
 10.Remove key (26) and (29) and screw (104) and draw the wormshaft (96) from the unit by pulling handwheel (3).

 ## REASSEMBLY

 Assembly in reverse order of above

 ## Trouble Shooting

 ## Trouble Shooting

 Although we would not expect you to experience any problems with your El-O-Matic valve actuator we have listed some checkpoints should your actuator not function as desired.

 ## Rotation

 If limit switch fails to stop valve travel, check the following:

 - Direction of rotation of output shaft
 - Control wiring
 - Limit switch setting

 Actuators with torque switches. If limit switch fails to stop valve travel:

 - \quad Check if link has been placed, for torque seated valve application. If not required - remove it.

 ## Motor Not Running

 If unable to operate your El-O-Matic by motor:

 - Check both motor power and control circuits for supply and continuity.
 - Compare supply voltage with motor nameplate, if OK, then check motor amperage load.
 - If stalled motor is indicated and torque switches have not tripped or valve is moveable by the hand wheel, consult your supplier.

 ## Overload

 Excessive handwheel effort, motor overheating and/or high motor amperage load can indicate the following:

 - Excessive valve load.
 - Valve packing gland too tight.
 - Improperly lubricated valve.
 - Incorrect Motor capacitor.
 - Ambient temperature too high.
 - Valve cycling too often.
 - Incorrect voltage.
 - Incorrect wiring.

 ## Motor Stops

 If torque switch trips before reaching end of valve travel:

 - Incorrect setting of mechanical end stops.
 - Obstacle in valve.
 - Valve required torque higher than actuator rated torque.

 ## No Valve Movement - Motor Runs

 - Drive sheared or not connected.

 ## No Valve Movement - Motor won't Run

 - Valve plug/disk jammed or obstructed.
 - Valve requires torque higher than actuator rated torque.
 - Valve packing gland too tight.

 ## Stroking

 It is not possible to stroke valve the full 90° :

 - Check mechanical end stops.
 - Check valve and actuator position.
 - Actuator in open position = Valve in open position.

 ## Condensation

 Moisture inside electrical compartment:

 - Check if compartment heater has been connected.
 - Check if compartment heater has been connected to the correct supply voltage.
 - \quad Check if compartment heater is continuously under power - not only when motor is energized.
 - Check heater resistance: 120 V - $1 \mathrm{~K} \Omega$
 $230 \mathrm{~V}-4700 \Omega$
 $380-480 \mathrm{~V}-15 \mathrm{~K} \Omega$
 $24 \mathrm{~V}-47 \Omega$
 - Check compartment cover seal.
 - Check indicator window seal
 - Check cable glands.
 - \quad Check pipe plugs in unused conduit entries.

 ## Wiring diagrams - Electric actuator

 Following is a short list of wiring diagrams. If you need wiring for an actuator not listed please contact your nearest Elomatic facility or representitave.

 ## Basic Actuators

 \(\left.\begin{array}{llllc}Actuator model \& Function \& Drawing No. \& Page

 \& \& \& \& EL35-101\end{array}\right]\)| 36 |
 | :--- |
 | EL35/55 |
 | EL35/55 |

 ## Kit Options

 | Option | Actuator model | Function | Prawing No. | Page |
 | :--- | :--- | :--- | :--- | :--- |
 | Speed control | EL35/55 | ON/OFF | 1 Phase \sim | EL35-239 |

 ## Remark;

 * For EL1200/1600 only 220V
 ** For EL1200/1600 only 120V

 LIMTV SHITCHES SHOWN IN MIO SIFOKE

 POTENTIOMETER (POT) 1 Phase ~

 LIMIT. SWITLHES SHOWN IA MID-STRORE

 POSITION TRANSMITTER (PT2) 2 WIRE, 1 Phase ~
 Drw.: EL35-351

 3 POSITION CONTROL (3 POS)
 1 Phase ~
 Drw.: EL100-118

 Actuator model : EL1200/2500 1 Phase ~ Drawingnr : EL2500-017

 LOCAL CONTROL STATION (LC) 3 Phase~
 Drw.: EL100-395

 * Likr for topoue seateo values

 Limit swithenes shown in mio- stroke

 INTEGRAL CONTACTORS
 \& LOCAL CONTROL STATION 3 Phase ~
 Drw.: EL100-268

 Notes

 DIMENSIONS AND TECHNICAL DETAILS - ELECTRIC ACTUATOR - EL

 # Attachment G-11h

 Manufacturers' Submittals and Individual O\&M Manuals

 ## VALVES \& PIPING

 International Fittings Catalog
 Intarmational fitings

 ## International Fittings

 Brennan Industries, Inc.'s steel and stainless steel international fittings are designed for the hydraulic systems using threads that are the standard throughout the world. These include British (BSPP, BSPT), Japanese (JIS, Komatsu) and German (DIN) threads. Brennan currently offers these fittings in a wide range of sizes and configurations.

 | 7000 MJ-MBSPT | | $7003 \text { MJ-FBSPP }$ | 7004 MJ-FBSPPS | 7005 MJ-MM Port Metric | 7005-L MJ-MM Light Metric (Dual Purpose) |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | 7005-S MJ-MM Heavy Metric (Dual Purpose) | 7007-L MJ-FMS Light Metric | 7007-S MJ-FMS Heavy Metric | 7008 MJ-MJIS Union | | 7009 Komatsu MJ-MK Union |
 | 7009-F Komatsu MJ-FK | 7022 FJS-MBSPP | 7023 FJS-FBSPP | 7025 FJS-MM Metric | $\begin{aligned} & 7030 \text { MP-MBSPT } \\ & \text { Nipple } \end{aligned}$ | 7032 MP-MBSPP Nipple |
 | $7033 \text { MP-FBSPP }$ | 7034 MP-FBSPPS | \square
 7042 FP-MBSPP | 7040 FNPT/MBSPT | 7045 FP-MM Metric | 7062 MORB-MBSPP |
 | | 7102-NWO MJMBSPPADJ 45° Elbow | $7200 \mathrm{MJ}-\mathrm{MBSPT} 90^{\circ}$ Elbow | 7202-NWO MJ-
 MBSPPADJ 90° Elbow | 7204-NWO MJFBSPPS 90° Elbow | 7205-NWO MJ-MMADJ 90° Elbow |

 ## International Fittings

 | 7220 FJS-MBSPT 90°
 Elbow | 7222 FJS-MBSPP 90° Elbow | 7588-P MJIS Plug | 7599-P Komatsu MK Plug | 7688-C FJIS Cap | \square
 7699-C Komatsu FK Cap |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | 8055 Metric MM-MM Nipple | 8080 MJIS-MBSPT | 8088 MJIS-MJIS Union | 8180 MJIS-MBSPT 45° Elbow | 8280 MJIS-MBSPT 90° Elbow | 8555-H Metric MM Hollow Hex Plug |
 | | 8800 Metric Bonded Seal | 9000 MBSPT-MBSPT Nipple | 9001 MBSPT-FBSPT Bushing | 9002 MBSPT-FBSPT
 90° Elbow | 9020 MBSPP-MBSPT
 Straight |
 | 9022 MBSPP-MBSPP Nipple | 9023 MBSPP-FBSPP | 9024 MBSPP-FBSPPS | 9025 Metric MBSPPMM Nipple | \square
 9033 FBSPP-FBSPP Coupling | 9124 MBSPP-FBSPPS Swept 45° |
 | 9222 MBSPP-MBSPP 90° | 9224 MBSPP-FBSPPS 90° | 9224-L MBSPP-
 FBSPPS 90° Long | 9322 MBSPP-MBSPPMBSPP Tee | 9344 FBSPP-FBSPPFBSPP Tee | 9500-P MBSPT Plug |
 | 9522-H MBSPP Hollow Hex Plug | 9522-P MBSPP Hollow Hex Plug | 9644-C FBSPP Cap | 9722-LN MBSPPMBSPP Bulkhead | 9900 British Bonded Seal | 9925 BSPP Locknut |

 BRENNANINDUSTRIES
 Atlanta•Cleveland • Dallas • Los Angeles•Seattle

 ## MJ -MBSPT 7000 Series

 | | $\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$ | $\begin{aligned} & \text { TUBE } \\ & \text { O.D. } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPT } \end{gathered}$ | $\begin{gathered} \text { L } \\ \text { LGTH } \end{gathered}$ | WWIDTH M.M. | $\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | S | FG | SS | B |
 | | 7000-04-02 | 1/4 | 7/16-20 | 1/8-28 | 30.48 | 5.58 | 12.70 | - | | | |
 | | 7000-04-04 | 1/4 | 7/16-20 | 1/4-19 | 38.23 | 7.64 | 14.28 | - | | | |
 | | 7000-04-06 | 1/4 | 7/16-20 | 3/8-19 | 38.83 | 7.64 | 17.46 | - | | | |
 | | 7000-05-04 | 5/16 | 1/2-20 | 1/4-19 | 37.83 | 7.60 | 14.28 | - | | | |
 | | 7000-06-04 | 3/8 | 9/16-18 | 1/4-19 | 38.10 | 7.64 | 15.88 | - | | | |
 | | 7000-06-06 | 3/8 | 9/16-18 | 3/8-19 | 39.89 | 7.64 | 17.46 | - | | | |
 | | 7000-06-08 | 3/8 | 9/16-18 | 1/2-14 | 44.07 | 7.64 | 22.22 | - | | | |
 | | 7000-08-06 | 1/2 | 3/4-16 | 3/8-19 | 41.41 | 8.28 | 20.63 | \cdot | | | |
 | | 7000-08-08 | 1/2 | 3/4-16 | 1/2-14 | 47.88 | 7.64 | 22.22 | - | | | |
 | | 7000-10-08 | 5/8 | 7/8-14 | 1/2-14 | 50.05 | 8.65 | 25.40 | - | | | |
 | | 7000-10-12 | 5/8 | 7/8-14 | 3/4-14 | 51.83 | 10.17 | 28.16 | - | | | |
 | NEW | 7000-12-08 | | | | | | | \cdot | | | |
 | | 7000-12-12 | 3/4 | 11/16-12 | 3/4-14 | 53.95 | 10.17 | 28.59 | - | | | |
 | | 7000-12-16 | 3/4 | 11/16-12 | 1-11 | 60.65 | 10.17 | 34.93 | - | | | |
 | | 7000-16-12 | 1 | 15/16-12 | 3/4-14 | 55.17 | 10.17 | 35.01 | - | | | |
 | | 7000-16-16 | 1 | 15/16-12 | 1-11 | 61.21 | 10.17 | 34.93 | - | | | |
 | | $7000-20-20$ | $11 / 4$ | 15/8-12 | 11/4-11 | 65.02 | 12.70 | 47.64 | - | | | |
 | | 7000-24-24 | 11/2 | 17/8-12 | 11/2-11 | 70.09 | 12.70 | 52.38 | - | | | |

 ## International Fittings

 ## MJ -MBSPP 7002 Series

 | PART | TUBE | B1 | B2 | L | W WIDTH | $\begin{gathered} \text { C } \\ \text { HEX } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | NO. SIZE | O.D. | JIC | BSPP | M. M. | M.M. | M.M. | S | FG | SS | B |
 | 7002-04-02 | 1/4 | 7/16-20 | 1/8-28 | 39.00 | 8.00 | 16.00 | - | | | |
 | 7002-04-04 | 1/4 | 7/16-20 | 1/4-19 | 32.00 | 5.00 | 19.00 | - | | | |
 | 7002-04-06 | 1/4 | 7/16-20 | 3/8-19 | 33.00 | 5.00 | 22.00 | - | | | |
 | 7002-04-08 | 1/4 | 7/16-20 | 1/2-14 | 39.00 | 5.00 | 30.00 | - | | | |
 | 7002-05-02 | 5/16 | 1/2-20 | 1/8-28 | 32.00 | 7.00 | 15.21 | - | | | |
 | 7002-05-04 | 5/16 | 1/2-20 | 1/4-19 | 31.00 | 6.00 | 18.00 | - | | | |
 | 7002-05-06 | 5/16 | 1/2-20 | 3/8-19 | 34.00 | 6.00 | 23.33 | - | | | |
 | 7002-05-12 | 5/16 | 1/2-20 | 3/4-14 | 41.00 | 8.00 | 33.00 | - | | | |
 | 7002-06-02 | 3/8 | 9/16-18 | 1/8-28 | 33.00 | 7.00 | 16.00 | - | | | |
 | 7002-06-04 | 3/8 | 9/16-18 | 1/4-19 | 33.00 | 7.00 | 18.00 | - | | | |
 | 7002-06-06 | 3/8 | 9/16-18 | 3/8-19 | 33.00 | 7.00 | 22.00 | - | | | |
 | 7002-06-08 | 3/8 | 9/16-18 | 1/2-14 | 37.00 | 8.00 | 26.00 | - | | | |
 | 7002-06-10 | 3/8 | 9/16-18 | 5/8-14 | 40.00 | 8.00 | 28.00 | - | | | |
 | 7002-06-12 | 3/8 | 9/16-18 | 3/4-14 | 41.00 | 9.00 | 33.00 | - | | | |
 | 7002-08-04 | 1/2 | 3/4-16 | 1/4-19 | 36.00 | 8.00 | 21.00 | - | | | |
 | 7002-08-06 | 1/2 | 3/4-16 | 3/8-19 | 36.00 | 8.00 | 22.00 | - | | | |
 | 7002-08-08 | 1/2 | 3/4-16 | 1/2-14 | 40.00 | 8.00 | 26.00 | - | | | |
 | 7002-08-10 | 1/2 | 3/4-16 | 5/8-14 | 43.00 | 8.00 | 28.00 | - | | | |
 | 7002-08-12 | 1/2 | 3/4-16 | 3/4-14 | 44.00 | 8.00 | 33.00 | - | | | |
 | 7002-08-16 | 1/2 | 3/4-16 | 1-11 | 46.30 | 8.50 | 43.00 | - | | | |
 | 7002-10-04 | 5/8 | 7/8-14 | 1/4-19 | 39.40 | 8.50 | 26.00 | - | | | |
 | 7002-10-06 | 5/8 | 7/8-14 | 3/8-19 | 40.00 | 8.00 | 26.00 | - | | | |
 | 7002-10-08 | 5/8 | 7/8-14 | 1/2-14 | 40.00 | 8.00 | 26.00 | - | | | |
 | 7002-10-10 | 5/8 | 7/8-14 | 5/8-14 | 45.00 | 8.00 | 28.00 | - | | | |
 | 7002-10-12 | 5/8 | 7/8-14 | 3/4-14 | 46.50 | 8.50 | 33.00 | - | | | |
 | 7002-10-16 | 5/8 | 7/8-14 | 1-11 | 48.50 | 8.50 | 43.00 | - | | | |
 | 7002-12-06 | 3/4 | 11/16-12 | 3/8-19 | 45.30 | 10.00 | 29.00 | - | | | |
 | 7002-12-08 | 3/4 | 1 1/16-12 | 1/2-14 | 47.10 | 10.00 | 29.00 | - | | | |
 | 7002-12-10 | 3/4 | $11 / 16-12$ | 5/8-14 | 49.41 | 9.50 | 28.60 | - | | | |
 | 7002-12-12 | 3/4 | 11/16-12 | 3/4-14 | 50.80 | 9.50 | 33.00 | - | | | |
 | 7002-12-16 | 3/4 | $11 / 16-12$ | 1-11 | 52.60 | 10.50 | 43.00 | - | | | |
 | 7002-12-20 | 3/4 | 11/16-12 | 11/4-11 | 52.80 | 10.50 | 53.00 | - | | | |
 | 7002-14-12 | 5/8 | $13 / 16-12$ | 3/4-14 | 51.30 | 9.50 | 33.00 | - | | | |
 | 7002-16-08 | 1 | 15/16-12 | 1/2-14 | 48.93 | 10.50 | 35.00 | - | | | |
 | 7002-16-12 | 1 | 15/16-12 | 3/4-14 | 53.50 | 10.50 | 35.00 | - | | | |
 | 7002-16-16 | 1 | 15/16-12 | 1-11 | 54.40 | 11.50 | 43.00 | - | | | |
 | 7002-16-20 | 1 | 15/16-12 | 11/4-11 | 53.30 | 10.50 | 52.00 | - | | | |
 | 7002-16-24 | 1 | 15/16-12 | 11/2-11 | 58.50 | 13.50 | 56.00 | - | | | |
 | 7002-20-12 | $11 / 4$ | 15/8-12 | 3/4-14 | 53.90 | 10.50 | 47.00 | - | | | |
 | 7002-20-16 | 1-1/4 | 15/8-12 | 1-11 | 56.20 | 11.40 | 47.00 | - | | | |
 | 7002-20-20 | $11 / 4$ | 15/8-12 | 11/4-11 | 57.30 | 12.50 | 52.00 | - | | | |
 | 7002-20-24 | $11 / 4$ | 15/8-12 | 11/2-11 | 58.20 | 12.50 | 57.00 | - | | | |
 | 7002-24-16 | 11/2 | 17/8-12 | 1-11 | 61.80 | 13.50 | 52.00 | - | | | |
 | 7002-24-20 | 11/2 | 17/8-12 | 11/4-11 | 62.14 | 14.18 | 52.00 | - | | | |
 | 7002-24-24 | $11 / 2$ | 17/8-12 | 11/2-11 | 61.90 | 12.50 | 57.00 | - | | | |
 | 7002-24-32 | 11/2 | 17/8-12 | 2-11 | 67.20 | 14.50 | 70.00 | - | | | |
 | 7002-32-32 | 2 | 21/2-12 | 2-11 | 76.80 | 17.50 | 70.00 | - | | | |

 ## MJ -FBSPP 7003 Series

 | | PART | TUBE | ST1 | PT2 | $\stackrel{\text { LGTH }}{\text { LGTH }}$ | $\begin{gathered} \mathrm{w} \\ \text { WIDTH } \end{gathered}$ | $\begin{gathered} \mathrm{C} 1 \\ \text { HEX } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | NO. SIZE | O.D. | JIC | BSPP | M.M. | M.м. | M.M. | S | FG | SS | B |
 | NEW | 7003-04-02 | | | | | | | | | | |
 | NEW | 7003-04-04 | | | | | | | | | | |
 | NEW | 7003-04-06 | | | | | | | | | | |
 | NEW | 7003-06-04 | | | | | | | | | | |
 | NEW | 7003-06-06 | | | | | | | | | | |
 | NEW | 7003-06-08 | | | | | | | | | | |
 | NEW | 7003-08-06 | | | | | | | | | | |
 | NEW | 7003-08-08 | | | | | | | | | | |
 | NEW | 7003-08-10 | | | | | | | | | | |
 | NEW | 7003-08-12 | | | | | | | | | | |
 | NEW | 7003-10-08 | | | | | | | | | | |
 | NEW | 7003-10-10 | | | | | | | | | | |
 | NEW | 7003-10-12 | | | | | | | | | | |
 | NEW | 7003-12-12 | | | | | | | | | | |
 | NEW | 7003-12-16 | | | | | | | | | | |
 | NEW | 7003-16-16 | | | | | | | | | | |
 | NEW | 7003-20-20 | | | | | | | | | | |
 | NEW | 7003-24-24 | | | | | | | | | | |
 | NEW | 7003-32-32 | | | | | | | | | | |

 ## MJ -FBSPPS 7004 Series

 | | PART | TUBE | B1 | B2 | $\stackrel{\text { LGTH }}{\text { LGT }}$ | $\begin{gathered} \text { w } \\ \text { WIDTH } \end{gathered}$ | $\begin{gathered} \mathrm{C1} \\ \mathrm{HEX} \end{gathered}$ | $\begin{gathered} \text { C2 } \\ \text { HEX } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | NO. SIZE | O.D. | JIC | BSPP | M.M. | M.M. | M.M. | M.M. | S | FG | SS | B |
 | | 7004-04-02 | 1/4 | 7/16-20 | 1/4-19 | 36.16 | 6.90 | 14.28 | 15.00 | - | | | |
 | | 7004-04-04 | 1/4 | 7/16-20 | 1/4-19 | 36.50 | 8.50 | 18 | 18 | - | | | |
 | | 7004-04-06 | 1/4 | 7/16-20 | 1/4-19 | 43.50 | 8.50 | 24 | 22 | - | | | |
 | | 7004-06-04 | 3/8 | 9/16-18 | 1/4-19 | 36.00 | 6.00 | 18 | 18 | - | | | |
 | | 7004-06-06 | 3/8 | 9/16-18 | 3/8-19 | 40.50 | 6.50 | 21 | 22 | - | | | |
 | | 7004-06-08 | $3 / 8$ | 9/16-18 | 3/8-19 | 43.10 | 7.00 | 26 | 26 | - | | | |
 | | 7004-08-06 | 1/2 | 3/4-16 | 3/8-19 | 44.70 | 7.50 | 21 | 22 | - | | | |
 | | 7004-08-08 | 1/2 | 3/4-16 | 1/2-14 | 49.00 | 9.50 | 26 | 26 | - | | | |
 | | 7004-08-10 | 1/2 | 3/4-16 | 5/8-14 | 48.20 | 8.00 | 26 | 28 | - | | | |
 | | 7004-08-12 | 1/2 | 3/4-16 | 3/4-14 | 50.50 | 10.00 | 29 | 33 | - | | | |
 | | 7004-10-08 | 5/8 | 7/8-14 | 1/2-14 | 51.60 | 10.00 | 26 | 26 | - | | | |
 | | 7004-10-10 | 5/8 | 7/8-14 | 5/8-14 | 53.20 | 9.50 | 28 | 28 | - | | | |
 | NEW | 7004-12-12 | | | | | | | | - | | | |
 | | 7004-12-16 | 3/4 | 1 1/16-12 | 1-11 | 58.80 | 11.00 | 38 | 38 | - | | | |
 | | 7004-16-12 | 1 | 15/16-12 | 3/4-14 | 58.01 | 11.10 | 34.90 | 33.00 | - | | | |
 | NEW | 7004-16-16 | | | | | | | | - | | | |
 | | 7004-20-20 | 11/4 | 17/8-12 | 11/4-11 | 64.60 | 13.50 | 48 | 48 | - | | | |
 | NEW | 7004-32-32 | | | | | | | | | | | |

 # International Fittings

 ## MJ -MM Port Metric 7005 Series

 | | PART
 NO. SIZE | $\begin{aligned} & \text { TUBE } \\ & \text { O.D. } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { MM } \end{gathered}$ | | | $\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | S | FG | SS | B |
 | | 7005-04-10 | 1/4 | 7/16-20 | 10×1.0 | 30.30 | 4.00 | 14 | - | | | |
 | | 7005-04-12 | 1/4 | 7/16-20 | 12×1.5 | 32.520 | 6.10 | 15.25 | - | | | |
 | NEW | 7005-04-14 | | | | | | | - | | | |
 | NEW | 7005-05-12 | | | | | | | . | | | |
 | | 7005-06-12 | 3/8 | 9/16-18 | 12×1.5 | 32.60 | 6.00 | 15 | - | | | |
 | | 7005-06-14 | 3/8 | 9/16-18 | 14×1.5 | 32.80 | 6.50 | 18 | - | | | |
 | | 7005-06-16 | 3/8 | 9/16-18 | 16×1.5 | 34.10 | 6.50 | 22 | - | | | |
 | | 7005-06-18 | 3/8 | 9/16-18 | 18×1.5 | 34.20 | 6.50 | 22 | - | | | |
 | | 7005-08-12 | 1/2 | 3/4-16 | 12×1.5 | 36.92 | 8.05 | 20.80 | - | | | |
 | | 7005-08-14 | 1/2 | 3/4-16 | 14×1.5 | 37.30 | 8.40 | 21 | - | | | |
 | | 7005-08-16 | 1/2 | 3/4-16 | 16×1.5 | 38.00 | 8.00 | 22 | - | | | |
 | | 7005-08-18 | 1/2 | 3/4-16 | 18×1.5 | 37.80 | 8.00 | 22 | - | | | |
 | | 7005-08-20 | 1/2 | 3/4-16 | 20×1.5 | 37.85 | 8.10 | 25.65 | - | | | |
 | | 7005-08-22 | 1/2 | 3/4-16 | 22×1.5 | 37.40 | 7.00 | 27 | - | | | |
 | NEW | 7005-10-18 | | | | | | | - | | | |
 | | 7005-10-20 | 5/8 | 7/8-14 | 20×1.5 | 40.00 | 8.00 | 26 | - | | | |
 | | 7005-10-22 | 5/8 | 7/8-14 | 22×1.5 | 40.30 | 7.50 | 27 | - | | | |
 | | 7005-12-22 | 3/4 | 11/16-16 | 22×1.5 | 45.80 | 10.00 | 27 | - | | | |
 | | 7005-12-27 | 3/4 | 11/16-12 | 27×2 | 52.45 | 9.00 | 31.91 | - | | | |
 | | 7005-16-33 | 1 | 15/16-12 | 33×1.5 | 54.54 | 9.55 | 40.90 | - | | | |
 | NEW | 7005-24-48 | | | | | | | - | | | |

 ## MJ -MM Light Metric (Dual Purpose) 7005-L Series

 | | $\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$ | $\begin{aligned} & \text { TUBE } \\ & \text { O.D. } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{aligned} & \text { B2 } \\ & \text { MM } \end{aligned}$ | $\begin{gathered} \text { L. } \\ \text { LGTH } \end{gathered}$ | $\stackrel{T}{\text { W }}$ M.M. | $\begin{gathered} \text { W } \\ \text { WIDTH } \\ \text { M.M. } \end{gathered}$ | $\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | | S | FG | SS | B |
 | | 7005-04-L06-12 | 1/4 | 7/16-20 | 12×1.5 | 31.50 | 6 | 7.50 | 16.00 | - | | | |
 | | 7005-04-L08-14 | 1/4 | 7/16-20 | 14×1.5 | 32.83 | 8 | 6.40 | 18.00 | - | | | |
 | | 7005-06-L08-14 | 3/8 | 9/16-18 | 14×1.5 | 32.10 | 8 | 7.75 | 18.98 | - | | | |
 | | 7005-06-L10-16 | 3/8 | 9/16-18 | 16×1.5 | 33.73 | 10 | 9.52 | 22.22 | - | | | |
 | | 7005-06-L12-18 | 3/8 | 9/16-18 | 18×1.5 | 36.40 | 12 | 8.80 | 23.00 | - | | | |
 | | 7005-08-L10-16 | 1/2 | 3/4-16 | 16×1.5 | 38.38 | 10 | 8.00 | 22.00 | - | | | |
 | | 7005-08-L12-18 | 1/2 | 3/4-16 | 18×1.5 | 38.30 | 12 | 10.00 | 23.00 | - | | | |
 | | 7005-12-L18-24 | 3/4 | 11/16-12 | 24×1.5 | 51.95 | 18 | 12.12 | 31.75 | - | | | |
 | | 7005-10-L15-22 | 5/8 | 7/8-14 | 22×1.5 | 43.00 | 15 | 10.00 | 27.00 | - | | | |
 | | 7005-12-L18-26 | 3/4 | 11/16-12 | 26×1.5 | 51.00 | 18 | 12.50 | 31.70 | - | | | |
 | | 7005-12-L22-30 | 3/4 | 11/16-12 | 30×2.0 | 52.60 | 22 | 12.50 | 38.20 | - | | | |
 | | 7005-16-L28-36 | 1 | 15/16-12 | 36×2.0 | 53.70 | 28 | 14.00 | 41.20 | - | | | |
 | NEW | 7005-20-L35-45 | | | | | | | | | | | |

 # MJ -MM Heavy Metric (Dual Purpose) 7005-S Series

 | | $\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$ | $\begin{aligned} & \text { TUBE } \\ & \text { O.D. } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { MM } \end{gathered}$ | $\begin{aligned} & \text { L.L. } \\ & \text { LG.M. } \end{aligned}$ | $\stackrel{T}{\mathrm{~T}}$ M.M. | $\begin{aligned} & \text { W } \\ & \text { WIDTH } \end{aligned}$М.М. | $\begin{gathered} \text { C1 } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | | S | FG | SS | B |
 | | 7005-04-S06-14 | 1/4 | 7/16-20 | 14×1.5 | 33.40 | 6 | 8.00 | 19 | - | | | |
 | | 7005-04-S08-16 | 1/4 | 7/16-20 | 16×1.5 | 34.50 | 8 | 8.50 | 23 | - | | | |
 | | 7005-06-S10-18 | 3/8 | 9/16-18 | 18×1.5 | 37.40 | 10 | 8.50 | 23 | . | | | |
 | | 7005-06-S12-20 | 3/8 | 9/16-18 | 20×1.5 | 36.90 | 12 | 10.50 | 27 | . | | | |
 | | 7005-08-S10-18 | 1/2 | 3/4-16 | 18×1.5 | 37.50 | 10 | 9.00 | 24 | , | | | |
 | | 7005-08-S12-20 | 1/2 | 3/4-16 | 20×1.5 | 41.50 | 12 | 10.00 | 26 | . | | | |
 | | 7005-08-S14-22 | 1/2 | 3/4-16 | 22×1.5 | 41.70 | 14 | 11.50 | 27 | . | | | |
 | | 7005-10-S12-20 | 5/8 | 7/8-14 | 20×1.5 | 42.60 | 12 | 10.00 | 29 | . | | | |
 | | 7005-10-S16-24 | 5/8 | 7/8-14 | 24×1.5 | 44.80 | 16 | 10.00 | 29 | | | | |
 | NEW | 7005-12-S16-24 | | | | | | | | | | | |
 | | 7005-12-S20-30 | 3/4 | 11/16-12 | 30×1.5 | 53.51 | 20 | 14.00 | 38.10 | - | | | |
 | | 7005-12-S25-36 | 3/4 | 11/16-12 | 36×2.0 | 53.00 | 25 | 13.50 | 45 | - | | | |
 | | 7005-16-S30-42 | 1 | 15/16-12 | 42×2.0 | 42.30 | 30 | 13.50 | 48 | - | | | |
 | | 7005-24-S38-52 | $11 / 2$ | 17/8-12 | 52×2.0 | 66.20 | 38 | 16.50 | 57 | | | | |

 ## MJ -FMS Light Metric 7007-L Series

 | PART
 NO. SIZE | $\begin{aligned} & \text { TUBE } \\ & \text { O.D. } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{aligned} & \text { B2 } \\ & \text { MS } \end{aligned}$ | | | | | $\begin{gathered} \text { C2 } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | | S | FG | SS | B |
 | 7007-05-L06-12 | 5/16 | 1/2-20 | 12×1.5 | 38.00 | 6 | 6.50 | 15 | 18 | - | | | |
 | 7007-06-L08-14 | 3/8 | 9/16-18 | 14×1.5 | 39.00 | 8 | 6.50 | 16 | 18 | - | | | |
 | 7007-06-L10-16 | 3/8 | 9/16-18 | 16×1.5 | 40.60 | 10 | 8.15 | 18 | 20.80 | - | | | |
 | 7007-06-L12-18 | 3/8 | 9/16-18 | 18×1.5 | 41.00 | 12 | 7.00 | 18 | 24 | - | | | |
 | 7007-06-L15-22 | 3/8 | 9/16-18 | 22×1.5 | 42.00 | 15 | 8.15 | 20.80 | 26.95 | - | | | |
 | 7007-08-L10-16 | 1/2 | 3/4-16 | 16×1.5 | 43.80 | 16 | 8.05 | 20.60 | 20.80 | - | | | |
 | 7007-08-L12-18 | 1/2 | 3/4-16 | 18×1.5 | 44.30 | 12 | 8.00 | 21 | 26 | - | | | |
 | 7007-08-L15-22 | 1/2 | 3/4-16 | 22×1.5 | 44.50 | 15 | 7.50 | 21 | 27 | - | | | |
 | 7007-10-L15-22 | 5/8 | 7/8-14 | 22×1.5 | 47.60 | 15 | 8.00 | 26 | 27 | - | | | |

 ## International Fittings

 ## MJ -FMS Heavy Metric 7007-S Series

 | | PART | TUBE | B1 | B2 | $\underset{\text { LGTH }}{\stackrel{\text { L }}{2}}$ | T
 WIDTH | $\begin{gathered} \text { w } \\ \text { WIDTH } \end{gathered}$ | $\begin{gathered} \mathrm{C} 1 \\ \mathrm{HEX} \end{gathered}$ | $\begin{gathered} \mathrm{C} 2 \\ \mathrm{HEX} \end{gathered}$ | | dar | Mate | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | NO. SIZE | O.D. | JIC | MS | M.M. | M.M. | M.M. | M.M. | M.M. | S | FG | SS | B |
 | | $\begin{aligned} & \text { 7007-06-S12-20 } \\ & 7007-08-S 12-20 \end{aligned}$ | $\begin{aligned} & 3 / 8 \\ & 1 / 2 \end{aligned}$ | $\begin{gathered} 9 / 16-18 \\ 3 / 4-16 \end{gathered}$ | $\begin{aligned} & 20 \times 1.5 \\ & 20 \times 1.5 \end{aligned}$ | $\begin{aligned} & 44.30 \\ & 44.30 \end{aligned}$ | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | $\begin{aligned} & 7.50 \\ & 8.00 \end{aligned}$ | $\begin{aligned} & 18 \\ & 21 \end{aligned}$ | $\begin{aligned} & 26 \\ & 26 \end{aligned}$ | $\stackrel{\square}{-}$ | | | |
 | NEW NEW | $\begin{aligned} & 7007-10-\text { S12-20 } \\ & 7007-20-\text { S30-42 } \end{aligned}$ | | | | | | | | | . | | | |

 ## MJ -MJ IS Union 7008 Series

 | $\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$ | $\begin{aligned} & \text { TUBE } \\ & \text { O.D. } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{aligned} & \text { B2 } \\ & \text { JIS } \end{aligned}$ | $\begin{gathered} \text { L } \\ \text { LGTH } \end{gathered}$ | $\begin{gathered} \text { W } \\ \text { WIDTH } \\ \text { M.M. } \end{gathered}$ | $\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | S | FG | SS | B |
 | 7008-04-02 | 1/4 | 7/16-20 | 1/8-28 | 33.70 | 7 | 16 | - | | | |
 | 7008-04-04 | 3/4 | 7/16-20 | 1/4-19 | 37.30 | 7 | 19 | - | | | |
 | 7008-06-06 | 3/8 | 3/8-18 | 3/8-19 | 38.20 | 7 | 23 | - | | | |
 | 7008-08-08 | 1/2 | 3/4-16 | 1/2-14 | 48.20 | 11 | 26 | - | | | |

 ## MJ -FJ IS 7008-F Series

 | | $\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$ | $\begin{aligned} & \text { TUBE } \\ & \text { O.D. } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{aligned} & \text { B2 } \\ & \text { JIS } \end{aligned}$ | $\begin{aligned} & \text { LGTH } \\ & \text { LGTM. } \end{aligned}$ | $\begin{aligned} & \text { W } \\ & \text { WIDTH } \\ & \text { M.M. } \end{aligned}$ | $\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | S | FG | SS | B |
 | | 7008-F-04-04 | 1/4 | 7/16-20 | 1/4-19 | 31.8 | 17.5 | 19 | - | | | |
 | | 7008-F-06-06 | 3/8 | 9/16-18 | 3/8-19 | 34.7 | 20.5 | 23 | - | | | |
 | | 7008-F-08-08 | 1/2 | 3/4-16 | 1/2-14 | 43.4 | 26.2 | 27 | - | | | |
 | | 7008-F-12-12 | 3/4 | 1 1/16-12 | 3/4-14 | 49.22 | 27.4 | 31.75 | - | | | |
 | NEW | 7008-F-16-16 | 1 | 15/16-12 | 1-11 | | | | | | | |

 # Komatsu MJ -MK Union 7009 Series

 | | PART | TUBE | B1 | B2 | $\underset{\text { LGTH }}{\text { L }}$ | $\begin{gathered} \text { w } \\ \text { WIDTH } \end{gathered}$ | $\underset{\text { HEX }}{C}$ | | dard | Mate | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | NO. SIZE | O.D. | JIC | MK | M.M. | M.M. | M.M. | S | FG | SS | B |
 | | 7009-04-14 | 1/4 | 7/16-20 | 14×1.5 | 36.20 | 6.50 | 19 | | | | |
 | | 7009-06-18 | 3/8 | 9/16-18 | 18×1.5 | 41.20 | 7.00 | 23 | - | | | |
 | | 7009-08-22 | 1/2 | 3/4-16 | 22×1.5 | 47.80 | 10.00 | 24 | - | | | |
 | | 7009-10-24 | 5/8 | 7/8-14 | 24×1.5 | 51.30 | 10.00 | 27 | - | | | |
 | | 7009-12-30 | 3/4 | 11/16-12 | 30×1.5 | 60.80 | 11.50 | 35 | - | | | |
 | NEW | 7009-16-33 | | | | | | | | | | |

 ## Komatsu MJ -FK 7009-F Series

 | $\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$ | $\begin{aligned} & \text { TUBE } \\ & \text { O.D. } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{aligned} & \text { B2 } \\ & \text { FK } \end{aligned}$ | | | $\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | S | FG | SS | B |
 | 7009-F-04-14 | 1/4 | 7/16-20 | 14×1.5 | 36.92 | 23.20 | 19 | - | | | |
 | 7009-F-06-18 | 3/8 | 9/16-18 | 18×1.5 | 36.80 | 22.50 | 24 | - | | | |
 | 7009-F-08-22 | 1/2 | 3/4-16 | 22×1.5 | 42.50 | 25.50 | 27 | - | | | |
 | 7009-F-10-24 | 5/8 | 7/8-14 | 24×1.5 | 41.80 | 22.50 | 32 | - | | | |
 | 7009-F-12-30 | 3/4 | 11/16-12 | 30×1.5 | 52.50 | 27.50 | 39 | - | | | |

 ## FJ S-MBSPP 7022 Series

 | | PART NO. SIZE | $\begin{aligned} & \text { TUBE } \\ & \text { O.D. } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$ | | | $\begin{gathered} \mathrm{C1} \\ \mathrm{HEX} \\ \text { M.M. } \end{gathered}$ | $\begin{gathered} \text { C2 } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | | S | FG | SS | B |
 | | 7022-04-04 | 1/4 | 7/16-20 | 1/4-19 | 34.60 | 6.00 | 14.28 | 15 | - | | | |
 | | 7022-04-06 | 1/4 | 7/16-20 | 3/8-19 | 36.80 | 6.50 | 14.28 | 24 | - | | | |
 | NEW | 7022-05-04 | | | | | | | | | | | |
 | | 7022-06-04 | 3/8 | 9/16-18 | 1/4-19 | 37.20 | 6.50 | 17.46 | 18 | - | | | |
 | | 7022-06-06 | 3/8 | 9/16-18 | 3/8-19 | 38.60 | 6.50 | 17.46 | 24 | - | | | |
 | | 7022-06-08 | 3/8 | 9/16-18 | 1/2-14 | 42.70 | 8.50 | 17.46 | 26 | - | | | |
 | | 7022-08-06 | 1/2 | 3/4-18 | 3/8-19 | 43.80 | 7.50 | 22.23 | 24 | - | | | |
 | | 7022-08-08 | 1/2 | 3/4-18 | 1/2-14 | 47.30 | 8.50 | 22.23 | 26 | - | | | |
 | | 7022-10-08 | 5/8 | 7/8-14 | 1/2-14 | 50.30 | 9.00 | 25.40 | 26 | - | | | |
 | | 7022-10-10 | 5/8 | 7/8-14 | 5/8-14 | 51.60 | 7.50 | 25.40 | 28 | - | | | |
 | | 7022-12-12 | 3/4 | 11/16-12 | 3/4-14 | 51.10 | 11.00 | 31.75 | 36 | - | | | |
 | | 7022-16-16 | 1 | 15/16-12 | 1-11 | 60.10 | 10.30 | 38.00 | 42.42 | - | | | |
 | | 7022-20-20 | $11 / 4$ | 15/8-12 | 11/4-11 | 62.00 | 11.40 | 47.60 | 52.00 | - | | | |
 | | 7022-24-24 | $11 / 2$ | 17/8-12 | 11/2-11 | 69.20 | 13.00 | 56.30 | 56.30 | - | | | |

 # International Fittings

 ## FJ S-FBSPP 7023 Series

 | PART
 NO. SIZE | $\begin{aligned} & \text { TUBE } \\ & \text { O.D. } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{gathered} \mathrm{B2} \\ \mathrm{BSPP} \end{gathered}$ | $\begin{aligned} & \text { LL } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$ | $\begin{aligned} & \text { C1 } \\ & \text { HEX } \\ & \text { M.M. } \end{aligned}$ | $\begin{aligned} & \text { C2 } \\ & \text { HEX } \\ & \text { M.M. } \end{aligned}$ | Standard Materia From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | S | FG | SS | B |
 | 7023-04-04 | 1/4 | 7/16-20 | 1/4-19 | 36.00 | 14.28 | 18 | - | | | |
 | 7023-06-06 | 3/8 | 9/16-18 | 3/8-19 | 41.30 | 17.46 | 21 | - | | | |
 | 7023-06-08 | 3/8 | 9/16-18 | 1/2-14 | 44.80 | 17.46 | 26 | - | | | |
 | 7023-08-06 | 1/2 | 3/4-16 | 3/8-19 | 46.20 | 22.23 | 22 | - | | | |
 | 7023-08-08 | 1/2 | 3/4-16 | 1/2-14 | 47.80 | 22.23 | 26 | - | | | |

 ## FJ S-MM Metric 7025 Series

 | | $\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$ | $\begin{aligned} & \text { TUBE } \\ & \text { O.D. } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { MM } \end{gathered}$ | $\begin{aligned} & \text { L. } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$ | $\begin{aligned} & \text { W } \\ & \text { WIDTH } \end{aligned}$М.М. | $\begin{gathered} \text { C1 } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | $\begin{gathered} \mathrm{C} 2 \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard MaterialFrom Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | | S | FG | SS | B |
 | | 7025-05-12 | 5/16 | 1/2-20 | 12×1.5 | 40.20 | 19.50 | 15.87 | 17 | - | | | |
 | | 7025-06-14 | 3/8 | 9/16-18 | 14×1.5 | 38.40 | 6.50 | 17.46 | 18 | - | | | |
 | | 7025-06-16 | 3/8 | 9/16-18 | 16×1.5 | 39.50 | 6.50 | 17.46 | 22 | - | | | |
 | | 7025-06-18 | 3/8 | 9/16-18 | 18×1.5 | 39.00 | 6.50 | 17.46 | 22 | - | | | |
 | | 7025-08-16 | 1/2 | 3/4-16 | 16×1.5 | 41.62 | 6.86 | 22.22 | 21.91 | - | | | |
 | NEW | 7025-08-18 | | | | | | | | - | | | |
 | | 7025-08-22 | 1/2 | 3/4-16 | 22×1.5 | 41.69 | 6.70 | 22.22 | 25.60 | - | | | |
 | | 7025-10-22 | 5/8 | 7/8-14 | 22×1.5 | 45.12 | 7.00 | 25.65 | 27.00 | - | | | |

 ## MP-MBSPT Nipple 7030 Series

 | PART
 NO. SIZE | $\begin{gathered} \text { A1 } \\ \text { NPTF } \end{gathered}$ | $\begin{gathered} \text { B2 } \\ \text { BSPT } \end{gathered}$ | $\begin{aligned} & \text { L } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$ | W WIDTH M.M. | | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | S | FG | SS | B |
 | 7030-04-04 | 1/4-18 | 1/4-19 | 38.30 | 7.50 | 14.20 | - | | | |
 | 7030-04-06 | 1/4-18 | 3/8-19 | 39.00 | 7.90 | 17.45 | - | | | |
 | 7030-06-04 | 3/8-18 | 1/4-19 | 38.40 | 7.50 | 17.40 | - | | | |
 | 7030-06-06 | 3/8-18 | 3/8-19 | 40.10 | 8.50 | 17.40 | - | | | |
 | 7030-08-08 | 1/2-14 | 1/2-14 | 49.90 | 8.50 | 22.20 | - | | | |
 | 7030-12-12 | 3/4-14 | 3/4-14 | 51.70 | 10.00 | 27.70 | - | | | |
 | 7030-16-16 | 1-11 1/2 | 1-11 | 66.20 | 13.00 | 34.80 | - | | | |
 | 7030-20-20 | 1-1/4-11 1/2 | 11/4-11 | 65.80 | 12.50 | 47.60 | - | | | |
 | 7030-24-24 | 1-1/2-11 1/2 | 11/2-11 | 69.80 | 14.00 | 57.15 | - | | | |
 | 7030-32-32 | 2-111/2 | 2-11 | 70.60 | 14.00 | 69.80 | - | | | |

 ## MP-MBSPP Nipple 7032 Series

 | | PART NO. SIZE | $\begin{aligned} & \text { A1 } \\ & \text { MP } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$ | $\begin{aligned} & \text { L } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$ | W WIDTH M.M. | C HEX M.M. | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | S | FG | SS | B |
 | | 7032-02-02 | 1/8-27 | 1/8-28 | 27.00 | 6.00 | 15.00 | - | | | |
 | | 7032-02-04 | 1/8-27 | 1/4-19 | 28.20 | 6.50 | 18.00 | - | | | |
 | | 7032-04-02 | 1/4-18 | 1/8-28 | 33.20 | 7.70 | 15.20 | - | | | |
 | | 7032-04-04 | 1/4-18 | 1/4-19 | 33.80 | 8.50 | 18.00 | - | | | |
 | | 7032-04-06 | 1/4-18 | 3/8-19 | 35.30 | 7.50 | 24.00 | - | | | |
 | | 7032-04-08 | 1/4-18 | 1/2-14 | 38.10 | 8.50 | 26.00 | - | | | |
 | | 7032-06-04 | 3/8-18 | 1/4-19 | 33.80 | 8.00 | 18.00 | - | | | |
 | | 7032-06-06 | 3/8-18 | 3/8-19 | 35.40 | 7.50 | 24.00 | - | | | |
 | | 7032-06-08 | 3/8-18 | 1/2-14 | 37.90 | 7.75 | 25.65 | - | | | |
 | NEW | 7032-06-12 | | | | | | - | | | |
 | | 7032-08-04 | 1/2-14 | 1/4-19 | 38.30 | 8.00 | 22.00 | - | | | |
 | | 7032-08-06 | 1/2-14 | 3/8-19 | 40.40 | 8.00 | 24.00 | - | | | |
 | | 7032-08-08 | 1/2-14 | 1/2-14 | 42.80 | 8.00 | 26.00 | - | | | |
 | | 7032-08-10 | 1/2-14 | 5/8-14 | 46.00 | 9.10 | 27.90 | - | | | |
 | | 7032-08-12 | 1/2-14 | 3/4-14 | 46.12 | 7.80 | 33.00 | - | | | |
 | | 7032-08-16 | 1/2-14 | 1-11 | 50.10 | 10.00 | 43.00 | - | | | |
 | | 7032-12-08 | 3/4-14 | 1/2-14 | 44.40 | 9.50 | 28.00 | - | | | |
 | | 7032-12-12 | 3/4-14 | 3/4-14 | 46.70 | 9.00 | 33.00 | - | | | |
 | | 7032-12-16 | 3/4-14 | 1-11 | 49.50 | 9.50 | 43.00 | - | | | |
 | NEW | 7032-16-08 | | | | | | - | | | |
 | | 7032-16-12 | 1-11 1/2 | 3/4-14 | 55.30 | 10.85 | 34.90 | - | | | |
 | NEW | 7032-16-16 | | | | | | - | | | |
 | NEW | 7032-16-20 | | | | | | - | | | |
 | | 7032-20-16 | 11/4-11 1/2 | 1-11 | 58.40 | 12.75 | 47.25 | - | | | |
 | | 7032-20-20 | 11/4-11 1/2 | 1-11 | 57.90 | 13.00 | 52.00 | - | | | |
 | NEW | 7032-20-24 | | | | | | - | | | |
 | NEW | 7032-24-20 | | | | | | - | | | |
 | | 7032-24-24 | 11/2-11 1/2 | 11/2-11 | 60.20 | 13.00 | 56.30 | - | | | |
 | NEW | 7032-24-32 | | | | | | - | | | |
 | | 7032-32-20 | 2-12 | 11/4-11 | 61.12 | 14.30 | 70.00 | - | | | |
 | | 7032-32-32 | 2-111/2 | 2-11 | 66.20 | 14.00 | 70.00 | - | | | |

 ## International Fittings

 ## MP-FBSPP 7033 Series

 | PART
 NO. SIZE | $\begin{aligned} & \text { A1 } \\ & \text { MP } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$ | | | $\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | S | FG | SS | B |
 | 7033-04-04 | 1/4-18 | 1/4-19 | 38.20 | 23.70 | 18 | - | | - | |
 | 7033-08-06 | 1/2-14 | 3/8-19 | 25.30 | 6.50 | 22 | - | | | |
 | 7033-08-08 | 1/2-14 | 1/2-14 | 47.68 | 28.00 | 26 | - | | | |
 | 7033-12-12 | 3/4-14 | 3/4-14 | 52.05 | 32.70 | 33 | - | | | |
 | 7033-16-16 | 1-111/2 | 1-11 | 61.50 | 37.00 | 43 | - | | | |
 | 7033-20-20 | 11/4-11 1/2 | 11/4-11 | 58.47 | 33.20 | 50.75 | - | | | |
 | 7033-24-24 | 11/2-11 1/2 | 11/2-11 | 56.60 | 32.00 | 57 | - | | | |
 | 7033-32-32 | 2-11 1/2 | 2-11 | 71.30 | 44.60 | 70.10 | - | | | |

 ## MP-FBSPPS 7034 Series

 | | PART | A1 | B2 | $\begin{gathered} \text { LGTH } \end{gathered}$ | W WIDTH | $\begin{gathered} \text { C1 } \\ \text { HEX } \end{gathered}$ | $\begin{gathered} \mathrm{C} 2 \\ \mathrm{HEX} \end{gathered}$ | | dard rom | Mate Stock | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | NO. SIZE | MP | BSPPS | M.M. | M.M. | M. M. | M.M. | S | FG | SS | B |
 | | 7034-02-02 | 1/8-27 | 18-28 | 32.40 | 7.00 | 15 | 15 | - | | | |
 | | 7034-02-04 | 1/8-27 | 1/4-19 | 33.00 | 7.00 | 16 | 18 | - | | | |
 | | 7034-04-04 | 1/4-18 | 1/4-19 | 38.00 | 7.00 | 15 | 18 | - | | | |
 | NEW | 7034-04-06 | | | | | | | | | | |
 | | 7034-06-04 | 3/8-18 | 1/4-19 | 39.00 | 8.80 | 18 | 18 | - | | | |
 | | 7034-06-06 | 3/8-18 | 3/8-19 | 43.60 | 8.50 | 18 | 22 | - | | | |
 | | 7034-06-08 | 3/8-18 | 1/2-14 | 45.20 | 8.50 | 24 | 26 | - | | | |
 | | 7034-08-06 | 1/2-14 | 3/8-19 | 48.40 | 10.00 | 22 | 21 | - | | | |
 | | 7034-08-08 | 1/2-14 | 1/2-14 | 51.20 | 9.50 | 22 | 26 | - | | | |
 | | 7034-12-08 | 3/4-14 | 1/2-14 | 52.72 | 10.50 | 28 | 26 | - | | | |
 | | 7034-12-12 | 3/4-14 | 3/4-14 | 52.40 | 9.50 | 28 | 33 | - | | | |
 | | 7034-16-16 | 1-11 1/2 | 1-11 | 63.34 | 11.00 | 38 | 38 | - | | | |

 ## FNPT-MBSPT 7040 Series

 | | PART NO. SIZE | $\begin{aligned} & \text { A1 } \\ & \text { MP } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$ | $\begin{aligned} & \text { L } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$ | | $\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | S | FG | SS | B | |
 | NEW | 7040-02-02 | | | | | | - | | | | |
 | NEW | 7040-04-04 | | | | | | - | | | | |
 | NEW | 7040-06-06 | | | | | | - | | | | |
 | NEW | 7040-08-08 | | | | | | - | | | | |
 | NEW | 7040-12-12 | | | | | | - | | | | |

 ## FP-MBSPP 7042 Series

 | | PART
 NO. SIZE | $\begin{aligned} & \text { A1 } \\ & \text { FP } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$ | $\underset{\text { LGTH }}{\mathrm{L}}$ | $\begin{aligned} & \text { W } \\ & \text { WIDTH } \\ & \text { M.M. } \end{aligned}$ | $\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | S | FG | SS | B |
 | | 7042-02-02 | 1/8-27 | 1/8-28 | 27.37 | 16.13 | 15.20 | - | | | |
 | | 7042-02-04 | 1/8-27 | 1/4-19 | 30.80 | 19.30 | 19.00 | - | | | |
 | | 7042-02-06 | 1/2-27 | 3/8-19 | 34.40 | 20.20 | 24.00 | - | | | |
 | | 7042-04-02 | 1/4-18 | 1/8-28 | 30.90 | 22.10 | 19.05 | - | | | |
 | | 7042-04-04 | 1/4-18 | 1/4-19 | 31.91 | 20.70 | 18.00 | - | | - | |
 | | 7042-04-06 | 1/4-18 | 3/8-19 | 36.90 | 25.50 | 24.00 | - | | | |
 | | 7042-04-08 | 1/4-18 | 1/2-14 | 24.80 | 10.00 | 26.00 | - | | | |
 | | 7042-06-04 | 3/8-18 | 1/4-19 | 38.30 | 26.60 | 24.00 | - | | | |
 | | 7042-06-06 | 3/8-18 | 3/8-19 | 35.22 | 23.70 | 23.80 | - | | | |
 | | 7042-06-08 | 3/8-18 | 1/2-14 | 42.50 | 25.70 | 26.00 | - | | | |
 | | 7042-08-08 | 1/2-14 | 1/2-14 | 44.30 | 27.10 | 26.00 | - | | | |
 | NEW | 7042-08-12 | | | | | | . | | | |
 | | 7042-12-12 | 3/4-12 | 3/4-12 | 56.52 | 37.44 | 33.00 | - | | | |
 | | 7042-16-16 | 1-11 1/2 | 1-11 | 55.25 | 36.30 | 41.30 | - | | | |
 | NEW | 7042-16-20 | | | | | | . | | | |
 | | 7042-20-16 | 1 1/4-11 1/2 | 1-11 | 50.00 | 27.90 | 50.80 | - | | | |
 | | 7042-20-20 | 11/4-11 1/2 | 11/4-11 | 62.90 | 39.80 | 50.85 | - | | | |
 | NEW | 7042-20-24 | | | | | | - | | | |
 | | 7042-24-20 | 1 1/2-11 1/2 | 11/4-11 | 60.70 | 37.90 | 57.00 | - | | | |
 | | 7042-24-24 | $11 / 2-111 / 2$ | 11/2-11 | 60.20 | 38.40 | 57.20 | - | | | |
 | | 7042-32-32 | 2-11 1/2 | 2-11 | 61.80 | 35.30 | 69.70 | - | | | |

 ## FP-MM Metric 7045 Series

 | | PART | A1 | B2 | $\stackrel{\mathrm{L}}{\text { LGTH }}$ | $\begin{gathered} \mathrm{w} \\ \text { WIDTH } \end{gathered}$ | $\underset{\text { HEX }}{C}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | NO. SIZE | FP | MM | M.M. | M.M. | M.M. | S | FG | SS | B |
 | NEW | 7045-02-06 | | | | | | - | | | |
 | NEW | 7045-02-14 | | | | | | - | | | |
 | NEW | 7045-02-16 | | | | | | - | | | |
 | NEW | 7045-02-18 | | | | | | - | | | |
 | NEW | 7045-02-20 | | | | | | | | | |
 | | 7045-04-10 | 1/4-18 | 10x1.0 | 32.75 | 21.95 | 19.05 | - | | | |
 | | 7045-04-12 | 1/4-18 | 12X1.5 | 33.22 | 21.85 | 19.06 | - | | | |
 | | 7045-02-10 | 1/8-27 | 10×1.0 | 29.90 | 20.00 | 14.20 | - | | | |
 | | 7045-04-14 | 1/4-18 | 14×1.5 | 35.00 | 25.00 | 19.00 | - | | | |
 | | 7045-06-16 | 3/8-18 | 16X1.5 | 38.50 | 27.20 | 22.30 | - | | | |
 | NEW | 7045-06-18 | | | | | | | | | |
 | NEW | 7045-06-20 | | | | | | | | | |
 | | 7045-08-16 | 1/2-14 | 16×1.5 | 42.40 | 29.70 | 28.60 | - | | | |
 | | 7045-08-18 | 1/2-14 | 18×1.5 | 42.90 | 28.90 | 28.50 | - | | | |
 | | 7045-08-22 | 1/2-14 | 22×1.5 | 45.00 | 28.50 | 29.00 | - | | | |
 | | 7045-12-26 | 3/4-14 | 26×1.5 | 45.60 | 26.90 | 35.00 | - | | | |
 | | 7045-12-27 | 3/4-14 | 27×2.0 | 45.70 | 26.70 | 35.00 | - | | | |
 | | 7045-16-33 | 1-11 1/2 | 33×2.0 | 50.10 | 30.30 | 42.00 | - | | | |
 | NEW | 7045-16-42 | | | | | | - | | | |

 ## International Fittings

 ## MORB-MBSPP 7062 Series

 | | $\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { SAE } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$ | $\begin{gathered} \text { L. } \\ \text { LGTH } \end{gathered}$ | $\begin{aligned} & \text { W } \\ & \text { WIDTH } \\ & \text { M.M. } \end{aligned}$ | $\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | S | FG | SS | B |
 | | 7062-03-04 | 3/8-27 | 1/4-19 | 25.30 | 6.50 | 18 | | | | |
 | | 7062-04-04 | 7/16-20 | 1/4-19 | 27.20 | 6.50 | 18 | - | | | |
 | | 7062-04-06 | 7/16-20 | 3/8-19 | 28.70 | 6.60 | 24 | - | | | |
 | | 7062-05-04 | 1/2-20 | 1/4-19 | 28.10 | 7.50 | 18 | - | | | |
 | | 7062-06-04 | 9/16-18 | 1/4-19 | 27.50 | 6.70 | 18 | - | | | |
 | | 7062-06-06 | 9/16-18 | 3/8-19 | 28.40 | 5.50 | 24 | - | | | |
 | | 7062-06-08 | 9/16-18 | 1/2-14 | 32.90 | 8.00 | 26 | - | | | |
 | | 7062-08-06 | 3/4-16 | 3/8-19 | 31.80 | 7.50 | 24 | - | | | |
 | | 7062-08-08 | 3/4-16 | 1/2-14 | 34.00 | 7.60 | 26 | - | | | |
 | | 7062-08-12 | 3/4-16 | 3/4-14 | 37.20 | 7.50 | 33 | - | | | |
 | | 7062-10-06 | 7/8-14 | 3/8-19 | 33.70 | 7.80 | 26 | - | | | |
 | | 7062-10-08 | 7/8-14 | 1/2-14 | 35.30 | 7.70 | 26 | - | | | |
 | | 7062-12-08 | 11/16-12 | 1/2-14 | 39.40 | 9.30 | 32 | - | | | |
 | | 7062-12-12 | 11/16-12 | 3/4-14 | 43.80 | 9.50 | 34 | - | | | |
 | | 7062-12-16 | 11/16-12 | 1-11 | 44.50 | 10.00 | 43 | - | | | |
 | | 7062-16-12 | 15/16-12 | 3/4-14 | 44.10 | 10.00 | 38 | - | | | |
 | | 7062-16-16 | 15/16-12 | 1-11 | 46.15 | 11.00 | 42.40 | - | | | |
 | | 7062-20-20 | 15/8-12 | 11/4-11 | 48.40 | 12.50 | 52 | \cdot | | | |
 | NEW | 7062-24-24 | | | | | | | | | |

 ## MJ -MBSPT 45° Elbow 7100 Series

 | PART
 NO. SIZE | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPT } \end{gathered}$ | $\stackrel{\mathrm{L}}{\text { LGTH }}$M.M. | | | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | S | FG | SS | B |
 | 7100-04-04 | 7/16-20 | 1/4-19 | 21.50 | 21.00 | 14 | | - | | |
 | 7100-06-04 | 9/16-18 | 1/4-19 | 21.50 | 21.00 | 14 | - | - | | |
 | 7100-06-06 | 9/16-18 | 3/8-19 | 24.00 | 22.00 | 19 | - | - | | |
 | 7100-08-06 | 3/4-16 | 3/8-19 | 24.00 | 25.00 | 19 | - | - | | |
 | 7100-08-08 | 3/4-16 | 1/2-14 | 30.00 | 25.00 | 22 | - | - | | |
 | 7100-10-08 | 7/8-14 | 1/2-14 | 29.50 | 28.00 | 22 | - | - | | |
 | 7100-12-12 | 11/16-12 | 3/4-14 | 30.50 | 32.50 | 27 | - | - | | |
 | 7100-16-16 | 15/16-12 | 1-11 | 37.50 | 37.00 | 33 | | | | |

 # MJ -MBSPPADJ 45º Elbow 7102-NWO Series

 | | $\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$ | $\begin{gathered} \text { L } \\ \text { LGTH } \\ \text { M.M. } \end{gathered}$ | $\begin{aligned} & \text { M } \\ & \text { LGTH } \\ & \text { M.M. } \end{aligned}$ | $\begin{aligned} & \text { Y } \\ & \text { FLATS } \\ & \text { M.M. } \end{aligned}$ | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | S | FG | SS | B |
 | | 7102-04-04-NWO | 7/16-20 | 1/4-19 | 29.00 | 21.00 | 11 | | - | | |
 | NEW | 7102-06-04-NWO | | | | | | | - | | |
 | | 7102-06-06-NWO | 9/16-18 | 3/8-19 | 33.00 | 22.00 | 14 | | - | | |
 | NEW | 7102-08-06-NWO | | | | | | | - | | |
 | | 7102-08-08-NWO | 3/4-16 | 1/2-14 | 38.50 | 25.50 | 19 | | - | | |
 | | 7102-12-12-NWO | 11/16-12 | 3/4-14 | 44.00 | 32.50 | 27 | | - | | |
 | | 7102-16-16-NWO | 15/16-12 | 1-11 | 47.00 | 37.00 | 33 | | - | | |
 | | 7102-20-20-NWO | 15/8-12 | 11/4-11 | 48.50 | 40.50 | 41 | | - | | |

 ## MJ -MBSPT 90° Elbow 7200 Series

 | $\begin{aligned} & \text { PART } \\ & \text { NO. SIZE } \end{aligned}$ | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPT } \end{gathered}$ | LLGTHM.M. | | | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | S | FG | SS | B |
 | 7200-04-02 | 7/16-20 | 1/8-28 | 20.55 | 23.55 | 11.50 | | - | | |
 | 7200-04-04 | 7/16-20 | 1/4-19 | 27.50 | 27.00 | 14 | | - | | |
 | 7200-06-04 | 9/16-18 | 1/4-19 | 27.50 | 27.00 | 14 | | - | | |
 | 7200-06-06 | 9/16-18 | 3/8-19 | 31.00 | 28.50 | 19 | | - | | |
 | 7200-08-06 | 3/4-16 | 3/8-19 | 31.00 | 31.50 | 19 | | - | | |
 | 7200-08-08 | 3/4-16 | 1/2-14 | 37.00 | 24.00 | 22 | | - | | |
 | 7200-12-12 | 11/16-12 | 3/4-14 | 40.50 | 42.00 | 27 | | - | | |
 | 7200-16-16 | 15/16-12 | 1-11 | 50.00 | 46.00 | 33 | | - | | |
 | 7200-20-20 | 15/8-12 | 11/4-11 | 60.00 | 52.00 | 41 | | - | | |

 ## International Fittings

 # MJ -MBSPPADJ 90° Elbow 7202-NWO Series

 | | PART NO. SIZE | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$ | | | $\begin{aligned} & \text { C } \\ & \text { HEX } \\ & \text { M.M. } \end{aligned}$ | | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | S | FG | SS | B |
 | NEW | 7202-04-02-NWO | | | | | | | | - | | |
 | | 7202-04-04-NWO | 7/16-20 | 1/4-19 | 31.50 | 27.00 | 19.50 | 11 | | - | | |
 | | 7202-05-04-NWO | 1/2-20 | 1/4-19 | 31.40 | 27.40 | 19.00 | 14.28 | | - | | |
 | | 7202-06-04-NWO | 9/16-18 | 1/4-19 | 36.50 | 28.50 | 19.50 | 14 | | - | | |
 | | 7202-06-06-NWO | 9/16-18 | 3/8-19 | 36.50 | 28.50 | 24.00 | 14 | | - | | |
 | | 7202-06-08-NWO | 9/16-18 | 1/2-14 | 43.00 | 31.00 | 28.50 | 19 | | - | | |
 | | 7202-08-06-NWO | 3/4-16 | 3/8-19 | 36.50 | 31.50 | 24.00 | 19 | | - | | |
 | | 7202-08-08-NWO | 3/4-16 | 1/2-14 | 43.00 | 34.00 | 28.50 | 19 | | - | | |
 | NEW | 7202-08-12-NWO | | | | | | | | - | | |
 | | 7202-10-08-NWO | 7/8-14 | 1/2-14 | 43.00 | 36.50 | 28.50 | 22 | | - | | |
 | | 7202-10-12-NWO | 7/8-14 | 3/4-14 | 49.00 | 39.50 | 35.00 | 22 | | - | | |
 | NEW | 7202-12-08-NWO | | | | | | | | - | | |
 | | 7202-12-12-NWO | 11/16-12 | 3/4-14 | 49.00 | 42.00 | 35.00 | 27 | | - | | |
 | | 7202-12-16-NWO | 1 1/16-12 | 1-11 | 52.70 | 44.50 | 41.00 | 33.50 | | - | | |
 | | 7202-16-12-NWO | 15/16-12 | 3/4-14 | 52.52 | 46.20 | 36.00 | 34.00 | | - | | |
 | | 7202-16-16-NWO | 15/16-12 | 1-11 | 52.00 | 46.00 | 43.00 | 33 | | - | | |
 | NEW | 7202-16-20-NWO | | | | | | | | - | | |
 | | 7202-20-20-NWO | 15/8-12 | 11/4-11 | 57.00 | 52.00 | 52.50 | 41 | | - | | |
 | | 7202-24-24-NWO | 11/2-12 | 11/2-12 | 61.70 | 59.00 | 60.00 | 48.00 | | | | |

 ## MJ -FBSPPS 90° Elbow 7204 Series

 | | PART
 NO. SIZE | $\begin{aligned} & \text { B1 } \\ & \text { JIC } \end{aligned}$ | $\begin{gathered} \text { B2 } \\ \text { BSPP } \end{gathered}$ | L
 LGTH
 M.M. | M LGTH M.M. | $\begin{gathered} \text { C } \\ \text { HEX } \\ \text { M.M. } \end{gathered}$ | | Standard Material From Stock | | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | | | | | | | | S | FG | SS | B |
 | NEW | 7204-06-06 | | | | | | | - | | | |
 | | 7204-08-08 | 3/4-16 | 1/2-14 | 25.00 | 33 | 25.40 | 22.23 | - | | | |
 | | 7204-12-12 | 11/16-12 | 11/16-12 | 27.80 | 41 | 31.75 | 33.33 | - | | | |

 # BREMNAN molustries

 MJ -MMADJ 90° Elbow

 MJ -MMADJ 90° Elbow 7205-NWO Series

 7205-NWO Series[^13]: Lexan 950 is a registered trademark of the General Electric Company. The performance specifications are nominal.

[^14]: * For ordering BUNA seals please replace "V" with "P"
 * For EPDM seals replace "V" with "E"

